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1 Introduction: Why this lecture?

Physics and mathematics are related fields, In particular, this holds true for
quantum mechanics and functional analysis, which both were founded at the
beginning of the 20th century and are developed since then.

Historically, quantum mechanics started with the discovery of Planck’s
law of radiation (1900) and Einstein’s explanation of the photoeffect (1905).
Until around 1920 the so-called “old quantum mechanics” was developed by
Bohr, Sommerfeld, Born and others, who explained in particular the atomic
spectra (Bohr atomic model). The formalisation of quantum mechanics star-
ted in the mid-1920s, particularly by Erwin Schrödinger’s wave mechanics
and Werner Heisenberg’s matrix mechanics, later by Paul Dirac in the 1930s.
The mathematical foundations were laid by John von Neumann in 1932.1

Later in the 1940s quantum field theory was developed, which we shall not
consider in this lecture. Quantum mechanics and its foundations have been
questioned over and over again, and starting from the 1980s quantum infor-
mation theory gives rise to new interest in quantum-mechanical foundations.

We shall start this lecture by two examples which show that quantum
mechanics differs from classical physics: the first experiment has historically
proven that certain quantities are quantised, the second is a Gedankenexperi-
ment showing the incompatibility of certain classical reasoning with quantum
mechanics.

1.1 The Stern-Gerlach experiment

[...]

1.2 Bell’s inequality

[...]

2 The formalism of quantum mechanics

We shall introduce quantum mechanics in this lecture by five postulates and
will then present some elementary aspects of quantum mechanics.

1Note that the title of this lecture is the title of John von Neumann’s book from 1932.
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2.1 Postulates of quantum mechanics

There is a variety of approaches to quantum mechanics such as wave mecha-
nics, path integrals, phase spaces etc., but none of this is a priory the right
one. Here, we use a well-known approach by introducing five postulates of
quantum mechanics; we should note here that there are different versions of
these postulates used by different authors, in particular, they should not be
understood as mathematical axioms, but rather as guidelines.

Postulate 1 (Hilbertraum).
To every physical system there is associated a complex Hilbert space H.

Now and for the rest of this lecture, H shall always denote a complex Hilbert
space. At this point it is not clear how to associate a Hilbert space to a
physical system, which will be discussed later.

Already at this point we should make some comments on notation, which
often differs in mathematics and physics. First, abstract vectors in a Hilbert
space (elements of H) are written in the form |Ψ〉 and called ket vectors.
Vectors in the dual space H′ of H are functionals on H and are written as
〈ϕ| and called bra vectors; the bra vector acts upon a ket vactor to yield
〈ϕ|ψ〉 ∈ C. This notation is called Dirac or bra-ket notation, where bra-c-ket
is the inner product; a vector and its dual are so a „half“ inner product). The
mathematical justification for this notation is the Riesz-Fréchet theorem. In
the same fashion |ϕ〉〈ψ| is understood as the mappting |x〉 7→ 〈ψ|x〉 · |ϕ〉;
in particular, if |ψ〉 is normalised, then |ψ〉〈ψ| is a projector on the one-
dimensional subspace generated by |ψ〉. Note further, the following differences
in notation:

• In physics, the inner product is linear in the second argument, in ma-
thematics usually in the first (and skew-linear in the other).

• The complex conjugate of z ∈ C is denoted z∗ in physics and z in
mathematics; the adjoint of an operator A is denoted by A† in physics
and A∗ in mathematics.

We can distinguish two types of Hilbert spaces: finite-dimensional and infinite-
dimensional. The finite-dimensional complex Hilbert spaces are essentially
given by Cd with the canonical inner product and their elements can be re-
presented by column vectors. Functionals on these spaces are row vectors,
operators are matrices, and we can use the methods from linear algebra.
Infinite-dimensional Hilbert spaces such as L2(Rn) are the realm of functional
analysis; there are similarities to linear algebra, but also subtle differences.

The next two postulates deal with the description of measureable quan-
tities and states of a system.
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Postulate 2 (Observables).
Measureable quantities (physical variables or observables) are described by
selfadjoint operators on H; possible values (measurement outcomes) of an
observable Â are its eigenvalues or, more generally, its spectrum.

In physics, operators are commonly denoted by a hat, e. g. Â, but we will not
use this notation consistently. It is not said that every selfadjoint operator
corresponds to a measureable quantity, though, we will sometimes assume
this. The principal reason for using operators is that operators need not
commute. Depending on whether two observables Â and B̂ commute, the
quantities they represent are jointly measureable or not (note that matrices
commute, if they can be put into diagonal form simultaneously).

Postulate 3 (States).
The state of a physical system is described by a density operator (or statistical
operator) ρ on H. This operator is positive semidefinite and trace-normalised
(i. e. Tr ρ = 1). The expectation value of a measurement of an observable Â
given this state is 〈A〉 = Tr ρÂ.

The density operator may be understood as a generalisation of a probability
distribution; in particular, the expectation value of the identity operator
is 1. By the trace formula it yields the expectation values of all possible
observables. Thus, quantum mechanics is a theory of measureable quantities.

In finite-dimensional systems (dim H = d) the density operator becomes
a density matrix which can be diagonalised and decomposed, not necessarily
uniquely, into projection operators:

ρ =
∑d

k=1
λi|Ψk〉〈Ψk|, (1)

where λk ≥ 0 and
∑k

k=1 λk = 1. A special case is ρ = |Ψ〉〈Ψ|, i. e. ρ is a one-
dimensional projection; in this case the state is called pure, otherwise mixed.
The state vector |Ψ〉 is unique up to a global phase eiϕ. It is often easier to
work with the state vector than with the density operator (and we will do
so), but the properties of the density operator follow from the decomposition
above. We mention some more terminology:

• In physics (unlike in mathematics) one does not strictly distinguish
between states and state vectors for pure states.

• Given two (or more) state vectors |ψ〉 and |ϕ〉, in physics one talks
of coherent and incoherent superpositions: coherent superpositions are
superpositions of vectors |ψ〉+|ϕ〉, incoherent those of density operators
|ψ〉〈ψ| + |ϕ〉〈ϕ| (appropriately renormalised).
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• The spectrum is invariant under unitary transformations, and one can
consider observables and states in different bases without changing
measureable quantities: for a unitary operator U there holds Tr ρÂ =
Tr(UρU † · UÂU †).

• The state vector is also called „wave function“.

Having described observables and states, we should consider dynamics (time
evolution) of states and operators. Since the essential quantities of quantum
mechanics are expectation values, we can distinguish two so-called pictures
of quantum mechanics: the Schrödinger picture, where the states change in
time, but the operators do not, and the Heisenberg picture, where it is the
opposite. The Schrödinger picture is the more common one.

There are essentially two ways of how a state can change in time: a con-
tinuous evolution by the Schrödinger equation and an instantaneous change
by measurements.

Postulate 4 (Time evolution).
The time evolution of a state vector |Ψ〉 is described by the Schrödinger equa-
tion i~ ∂

∂t
|Ψ〉 = Ĥ|Ψ〉, where Ĥ is the selfadjoint the Hamiltonian operator.

The Hamiltonian operator is the operator analog of the energy; in particular,
〈Ĥ〉 is the expectation value of the energy of the system. If there are external
forces, Ĥ may depend on time, but we shall not consider this here. The formal
solution of the Schrödinger equation is |Ψ〉t = U(t)|Ψ〉0 with the unitary

operator U(t) = e− i
~

Ĥt, which itself fulfils the Schrödinger equation; note
that U(t = 0) = 1 and U(t1)U(t2) = U(t1 + t2) hold.

For a density operator, the time evolution formally reads ρt = U(t)ρ0U(t)†,
and the Schrödinger equation is replaced by the von-Neumann equation
i~∂ρ

∂t
= [Ĥ, ρ]. If we want to use the Heisenberg picture instead of the Schrö-

dinger picture, we have to transform the operators instead of the states,
but the expectation values of the observables should stay the same: 〈A〉 =
TrUρU † · Â = Tr ρ · U †ÂU . Therefore the Heisenberg operators are ÂH(t) =

U(t)†ÂU(t), which fulfil the Heisenberg equations of motions i~∂ÂH

∂t
= [ÂH , Ĥ].

While the time evolution by a Hamiltonian operator is in principle rever-
sible, this is not the case for state changes due to measurements (known as
„collapse of the wave function“). For simplicity we shall formulate the mea-
surement postulate in terms of finite-dimensional systems only; the general
case is similar, but needs more functional analysis.

Postulate 5 (Measurements).
If on a state ρ an observable Â =

∑

i λiPi is measured, where the Pi are
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projections on orthogonal eigenspaces with distinct eigenvalues λi, a specific
outcome λk is measured with probability Tr ρPk, and in this case the state is
instantaneously transformed into ρk = PkρPk

Tr ρPk
.

We have here the intrinsic statistics of quantum mechanics: given two ob-
servables with no common eigenspace, the state ρ cannot jointly give deter-
ministic values to both observables. For measurement statistics (but not for
dynamics) it is the decomposition of the operator into eigenspaces, rather
than the spectrum itself, which is relevant.

Note that measurements can be repeated. If measuring the same obser-
vable once again (and no other measurement has occured inbetween) the
outcome is the same, and the state does not change. A measurement is the-
refore also a preparation of a state.

2.2 Modelling a quantum system

We have not yet considered which Hilbert space to use for a given quantum
system. Although there is no precise theorem for that, we can formulate the
following rule: dim H cannot be less than the number of possible outcomes.

We have seen that the Stern-Gerlach experiment produces two measure-
ment outcomes: “up” and “down” for each possible measurement direction;
so we choose the Hilbert space of the spin-1/2 particle to be C2, and we

model the measurement in the z-direction by σz =
(

1 0
0 −1

)

with eigenvalues

±1 (we ignore prefactors of ~/2 here) and eigenvectors

|z,+〉 :=

(

1
0

)

, |z,−〉 :=

(

0
1

)

. (2)

Now, as the x-direction should have exactly the same properties, we need
another matrix with the same eigenvalues, but other eigenvectors |x,+〉 and
|x,−〉, such that |〈x,±|z,±〉|2 = 1/2. All such matrices can be obtained by
rotating σz by some U , which (up to irrelevant global phases) is given by

U =

(

cos ϑ
2

− sin ϑ
2
e−iϕ

sin ϑ
2
eiϕ cos ϑ

2

)

⇒ UσzU
† =

(

cos ϑ e−iϕ sin ϑ
eiϕ sinϑ − cosϑ

)

(3)

We can write ~r = (x, y, z) ∈ R3 in polar coordinates by r ∈ R
+
0 , ϑ ∈ [0; π]×

and ϕ ∈ [0; 2π] as





x
y
z




 = r






sin ϑ cosϕ
sin ϑ sinϕ

cosϑ




 . (4)
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Assuming r = 1, we see that every space direction gives a matrix UσzU
†

with eigenvalues ±1; in particular, we find the Pauli matrices σx =
(

0 1
1 0

)

,

σy =
(

0 −i
i 0

)

, σz =
(

1 0
0 −1

)

and find that they consistently describe the mea-
surements in the Stern-Gerlach experiment.

2.3 More general systems: position and momentum

In the same fashion as the Stern-Gerlach experiment, we can, in principle,
describe any two-level (or spin-1/2) system. Similarly, we can describe sy-
stems with d ∈ N possible measurement outcomes by using the Hilbert space
H = C

d. Nevertheless, the spin and has no classical analogon and the as-
sumption of finitely many results may seem artificial. We shall thus consider
more natural systems.

2.3.1 Classical mechanics

In classical mechanics, a state of a system is described by a point in phase
space, which takes the place of the Hilbert space in quantum mechanics.
For a point-like particle the phase space is R

3 × R
3, where the components

(~r, ~p) = (x, y, z, px, px, px) describe position and momentum in a cartesian
coordinate system. The time evolution of the state is described e. g. by the
Hamiltonian equations of motions, which are first-order in time and define
trajectories in phase space (see later). The analogon of a mixed state would
be a probability density (instead of a point-like probability) in phase space.

We want to model this system quantum-mechanically. We shall often re-
strict our consideration to a particle movement in one direction, so that we
are left with just one position x and one momentum p. Since the possible out-
comes of both position and momentum lie on the real line and are continuous,
we need an infinite-dimensional Hilbert space.

2.3.2 Canonical quantisation

Classically, every quantity of a physical system can be expressed in terms
of position and momentum, and a rule termed canonical quantisation states
that commutator of the operators of these quantities should fulfil [x̂, p̂] :=
x̂p̂−p̂x̂ = i~1H (in more that one dimension this would read [x̂i, p̂j] = i~δij1).

Exercise 6 (Commutators and traces).
What is wrong with the following reasoning?

1. For A and B, there holds TrAB = TrBA by the coordinate represen-
tation of matrices. This can be rewritten as Tr [A, B] = 0.
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2. For [x̂, p̂] = i~1H, this implies 0 = i~ dim H or dim H = 0, i. e. there
is no quantum mechanics.

But we can try the following: on H = L2(R), or strictly speaking on an
appropriate dense subset thereof, let x̂ be the multiplication operator, i. e.
(x̂f)(x) := x · f(x), and let p̂ := ~

i
∂

∂x
. For any appropriate function f , there

holds
(

x
~

i

∂

∂x
− ~

i

∂

∂x
x

)

f(x) =
~

i

(

x
∂

∂x
− ∂

∂x
x

)

f(x) =
~

i

(

x
∂

∂x
− ∂

∂x
x − x

∂

∂x
f(x)

)

= i~f,

i. e. the canonical commutation relation [x̂, p̂] = i~. Since x̂ is a multiplica-
tion operator, this is called the position representation. We could also choose
(for functions g(p)) p̂ to be a multiplication operator, p̂ = p·, and x̂ := i~ ∂

∂p
,

the momentum representation. Essentially, this is a change of bases by a
Fourier transform.

2.3.3 Eigenvalues and eigenvectors

In the finite-dimensional case, a number λ ∈ C is an eigenvalue of a matrix
A, if and only if λ1 −A is singular. So we may ask about the eigenvalues of
x̂ and p̂.

For ψk(x) := eikx for k ∈ R and the momentum operator, we calcula-
te p̂ψ(x) = ~kψ(x), so every real number is an eigenvalue of p̂ and in the
spectrum of p̂. But this reasoning is not correct, since none of the ψk is
square-integrable. For the position operator x̂ we can also find formal solu-
tions to the eigenvector problem (x̂ψ)(x) = aψ(x) for every a ∈ R, namely
“delta functions” δa, defined by the property that δa(x) = 0 for x 6= a and
∫

x∈R
δa(x) dx = 1. Measure theory tells us that no such function exists, but

if it did exist, it would be a solution.
Consider, however, L2-normalised functions ϕn(x) := (2n/π)1/4e−nx2

. Then
limn→∞(λ1−x̂)ϕn(x−λ) = 0—as it would be, if ϕn(x−λ were eigenfunctions.
If we could exchange limit and operator, we would find limn→∞ ϕ2

n(x− λ) =
δλ(x). With this in mind, we call λ an approximative eigenvalue of x̂.

Functional analysis will tell us that the spectra of x̂ and p̂ are indeed R,
and that for self-adjoint operators, the spectrum consists of eigenvalues and
approximative eigenvalues only. The notion of a delta function will be made
precise in the theory of distributions.

2.4 Uncertainty relations

Given an observable Â, we can—in the sense of classical statistics—speak of
it moments, in particular, its expectation value E(Â) = 〈Â〉 and its variance
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Var(Â) = (∆Â)2 = 〈(Â − 〈Â〉)2〉 = 〈Â2〉 − 〈Â〉2; the standard deviation is

the square root of the variance ∆Â =
√

(∆Â)2. Let us for the sake of sim-

plicity assume that 〈Â〉 = 〈B̂〉 = 0 (otherwise one could shift the observable
accordingly) and consider an arbitrary pure state |Ψ〉. We calculate

(∆Â)2(∆B̂)2 ≥
∣
∣
∣〈ÂΨ|B̂Ψ〉

∣
∣
∣

2
=
∣
∣
∣Re 〈ÂΨ|B̂Ψ〉 + i Im 〈ÂΨ|B̂Ψ〉

∣
∣
∣

2
(5)

=
∣
∣
∣Re 〈ÂΨ|B̂Ψ〉

∣
∣
∣

2
+
∣
∣
∣Im 〈ÂΨ|B̂Ψ〉

∣
∣
∣

2
(6)

=

∣
∣
∣
∣
∣

〈ÂΨ|B̂Ψ〉 + 〈B̂Ψ|ÂΨ〉
2

∣
∣
∣
∣
∣

2

+

∣
∣
∣
∣
∣

〈ÂΨ|B̂Ψ〉 − 〈B̂Ψ|ÂΨ〉
2i

∣
∣
∣
∣
∣

2

(7)

=
1

4

(∣
∣
∣〈Ψ|{Â, B̂}|Ψ〉

∣
∣
∣

2
+
∣
∣
∣〈Ψ|[Â, B̂]|Ψ〉

∣
∣
∣

2
)

(8)

=
1

4

(∣
∣
∣〈{Â, B̂}〉

∣
∣
∣

2
+
∣
∣
∣〈[Â, B̂]〉

∣
∣
∣

2
)

, (9)

where [Â, B̂] := ÂB̂ − B̂Â is the commutator and {Â, B̂} := ÂB̂ + B̂Â the
anticommutator of Â and B̂. This is known as Schrödinger’s uncertainty
relation.

Since both terms are non-negative, we can ignore the first term and ta-
ke the square root to get the Robertson relation ∆Â∆B̂ = 1

2

∣
∣
∣〈[Â, B̂]〉

∣
∣
∣.

Futher, for Â = x̂ and B̂ = p̂ with [x̂, p̂] = i~, we get the Kennard-
Heisenberg relation ∆Â∆B̂ ≥ ~

2
.

2.5 Mathematical aspects

We have constructed operators x̂ and p̂, which fulfil the canonical commuta-
tion relation. Now we have to ask whether the construction is unique in the
sense that their spectrum is already determined by the canonical commuta-
tion relations. This is not the case.

Consider the Hilbert space L2
per[−a; a] restricted to periodic functions,

i. e. ψ(−a) = ψ(a), with formally the same operators x̂ and p̂. The spectrum
of x̂ is [−1; 1], and the eigenfunctions of p̂ are given by the normalised func-
tions ψk(x) = (2a)−1/2eikx. The boundary conditions imply e−ika = eika or
2ika ∈ 2πiZ, i. e. k ∈ π

a
Z, so that the spectrum of p̂ is discrete, rather than

continuous. Just by changing the domain of definition of the operator, the
spectrum changes, even if the commutators stay the same.

We can now summarise a bit: The position and momentum operators, as
we have introduced them here, already give us sort of an overview over the
mathematical topics of the lecture:
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• For x̂ there exists a spectrum, where there are no eigenfunctions—in
contrast to linear algebra. We therefore need spectral theory.

• In physics, one would consider “delta functions” as eigenfunctions of x̂;
while this is in some sense true (there exists a complete set of genera-
lised eigenfunctions), we at least need to discuss generalised functions
or distributions.

• For p̂, we used a derivative. It is, however, not clear, which functions are
differentiable, particularly, since we consider L2 functions, which more
precisely are just equvalence classes. We need a more general concept
of derivatives, provided by Sobolev spaces.

To give a feeling for the fact that these subjects and topics are non-trivial,
consider the following exercise.

Exercise 7 (Eigenvalues of hermitian operators).
Consider a hermitian operator A with eigenvector v and eigenvalue λ, i. e.

Av = λv. Since λ∗ 〈v, v〉 = 〈λv, v〉 = 〈Av, v〉 A hermitian
= 〈v, Av〉 = 〈v, λv〉

= λ 〈v, v〉, the eigenvalue λ must be real.

Now consider Â = x̂3p̂ + p̂x̂3 and f(x) := 1√
2

|x|−3/2 e− 1
4x2 , x 6= 0, and

f(0) := 0. The function f is square-integrable and normalised: ‖f‖2 = 1. But

Âf = ~

i
f . Altogether, Â is an hermitian operator with an eigenfunction f ,

but its eigenvalue is not a real number. Where is the error?

2.6 The time-independent Schrödinger equation

Consider a Hamiltonian Ĥ and the Schrödinger equation i~ d
dt

|Ψ〉 = Ĥ|Ψ〉;
the formal solution of this is, as already said,

|Ψ〉t = U(t)|Ψ〉0, where U(t) = e− i
~

Ĥt (10)

How to calculate U(t)? If Ĥ were a matrix (or bounded operator), the power
series ex =

∑∞
k=0

xn

n!
would converge for x = − i

~
Ĥ . For unbounded operators,

one has to use the functional calculus, which we can explain for hermitian
matrices: one diagonalises the matrix, applies the function to every diagonal
element separately and then undoes the diagonalisation. Stated otherwise:
for a matrix A = UDU †, U unitary and D = diag(d1, . . . , dn) and a function
f : C → C is defined by f(A) := U diag(f(d1), . . . , f(dn))U †. Essentially the
same works—as we will see—even for unbounded selfadjoint operator.

In physics, it may happen that Ĥ is not constant over time, but changes
as a function Ĥ(t). Then the solution U(t) of the time-dependent Schrödinger
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equation from above does not work. In case Ĥ is not time-dependent (and has
a spectrum of eigenvalues) En, we can write Ĥ =

∑∞
n=0 En|n〉〈n|, where the

energies En are usually sorted monotically increasing with a lowest value, the
ground state. Energies belonging to a more-than-one-dimensional subspace
are called degenerate. This form resembles a diagonal matrix and

U(t) = e− i
~

Ĥt =
∑∞

n=0
e− i

~
Ent|n〉〈n|. (11)

What remains is to find the |n〉. The eigenvalue equation Ĥ|Ψ〉 = E|Ψ〉 is
called the time-independent Schrödinger equation. There are a few prominent
cases of Hamiltonians where the time-independent Schrödinger equation can
be solved: In general, the form of the Hamiltonian in position representation

is Ĥ =
~̂p2

2m
+ V (~r) = − ~2

2m
∆ + V (~r), where the first part represents the (non-

relativistic) kinetic energy T = 1
2
mv2 = p2

2m
and V is the potential. Prominent

examples are

• the free particle: V (~r) = 0: here the generalised eigenfunctions are

ψ(~r) ∼ ei~k~r; this is a plane wave, and this is the reason why states are
sometimes called wavefunctions;

• radially symmetric potentials: V (~r) = V (r) in sperical coordinates with
~r = r (sinϑ cosϕ, sin ϑ sinϕ, cosϑ)t, r ∈ R

+
0 , ϑ ∈ [0; π], ϕ ∈ [0; 2π].

Here, Ψ(~r) = u(r)
r
Ylm(ϑ, ϕ), where Ylm(ϑ, ϕ) are the spherical harmo-

nics (in german: Kugelflächenfunktionen) and u fulfils a radial Schrö-

dinger equation with V (r) + l(l+1)~2

2mr2 (the second part is a centrifugal
potential) on the Hilbert space L2(R+

0 ), where we require u(0) = 0.

• A particular instance of the the Coulomb potential (or hydrogen atom)
V (r) = −α

r
, which gives the basic structure of the periodic table of

chemical elements, which will be discussed later in the mathematics
part of this lecture.

• Further examples are the harmonic oscillator in three dimensions or the
the Woods-Saxon potential V (r) = −V0

1+exp( r−R
a

)
and more sophisticated

examples from nuclear physics.

There are also other potential like the delta potential V (x) = −V0δ(x), also
repulsive potentials in scattering theory. Finally, the dimensionality of the
problem is often relevant for solutions (in particular, 1D or 3D).
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2.6.1 The particle in a box or infinite-well potential

Consider the following potential for a one-dimensional spinless particle:

V (x) =







0 if x ∈ [0; L]

+∞ otherwise
. (12)

Since outside the range of [0; L] the potential is infinite, the state vector
must vanish. We require the wavefunction to be continuous, i. e. Ψ(0) =
Ψ(L) = 0. Essentially the Hilbert space of the system then is L2[0; L], where
we must assume appropriate boundary conditions. The solution of such a
wave-equation are sine functions sin kx with appropriate normalisations

ψk(x) =

√

2

L
sin

(
2πn

L
x
)

with n ∈ N. (13)

The energy is En = ~k2

2m
with k = 2πn/L or En = 2π2~

mL
n2. The spectrum is a

pure point spectrum ∼ n2. There are also other boundary conditions such as
periodic boundary conditions (e. g. in solid states), sometimes even periodic
up to phase, which give rise to a different spectrum.

Exercise 8 (Boundary conditions).
Consider an inverted parabola (such functions are used in phyics in the
Thomas-Fermi theory)

Ψ(x) =

√

30

L5
x(L− x),

and calculate the variance (∆H)2 = 〈Ĥ2〉 − 〈Ĥ〉2. The first term vanishes,
since applying Ĥ2 = ~4

4m2
d4

dx4 to the parabola gives zero, and 〈Ĥ〉2 is positive.
Therefore, the variance is negative. Where is the error?

2.6.2 The harmonic oscillator

One of the most important systems in quantum physics is the harmonic
oscillator, which is used in various fields in physics; the reason is that in a
Taylor expansion a system in the surrounding of a minimum “looks like” a
harmonic oscillator locally. Consider an ideal spring with force F = −Dx; the
associated potential is V (x) = 1

2
Dx2, so that F = −V ′. Defining an angular

frequency by ω =
√

D/m, we can write a quandratic potential in x as

V (x) =
1

2
mω2x2, (14)
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The Schrödinger equation is then “symmetric” in x and p up to constants,
roughly ∼ x2 + p2. Consider the dimensionless operators

â =

√
mω

2~
x̂+

i√
2mω~

p̂ and â† =

√
mω

2~
x̂− i√

2mω~
p̂, (15)

jointly as ladder operators: â† is the creation, â the annihilation operator.
It can be seen that [â, â†] = 1 (this is equivalent to [x̂, p̂] = i~), so that
these operators are not normal. Define n̂ := â†â and calculate [â, n̂] = a] and
[â†, n̂] = −a†. Suppose n̂ψ = λψ; then

n̂(âψ) = â†ââψ = (ââ† − 1)âψ = ââ†âψ − âψ = (λ− 1)âψ (16)

n̂(â†ψ) = â†ââ†ψ = â†(â†â+ 1)ψ = â†â†âψ + â†ψ = (λ+ 1)â†ψ (17)

That is, once we have found an eigenfunction of n̂ we get a whole sequence
of eigenfunctions with eigenvalues shifted by an integer. We should check the
normalisation of âψ and â†ψ, if ψ is an eigenvector of n̂ with eigenvalue λ:
there hold 〈â†ψ|â†ψ〉 = 〈ψ|ââ†ψ〉 = λ+ 1 and 〈âψ|âψ〉 = 〈ψ|â†âψ〉 = λ.

Now due to 〈ψ|n̂ψ〉 = 〈âψ|âψ〉 ≥ 0, the operator n̂ is positive semidefinite,
and λ ≥ 0. We find a ground state, a normalised Gaussian

ψ0(x) =
(
mω

π~

)1/4

exp
(

−mω

2~
x2
)

(18)

with eigenvalue λ = 0 and note that âψ0 is the null vector, which cannot
be normalised. On the other hand, by applying â† repeatedly on ψ0, we
find eigenstates with eigenvalues n ∈ N0. This is the infinite sequence of
so-called Fock states |0〉, |1〉, |2〉, . . . with energies En = ~ω(n + 1/2) in an
infinite-dimensional Hilbert space. The state |0〉 is called the ground state
(or vacuum state, if n counts photons etc.), the infinite sequence |n〉, n ∈ N

are the (normalised) excited states defined by |n+ 1〉 := â†|n〉√
n+1

.
Since the eigenvalues of n̂ must not be negative, we can exclude the

existence of eigenvectors with non-integer eigenvalues. Moreover, it can be
shown that the Fock states form an orthonormal basis of the Hilbert space
L2(R), and the spectrum of the harmonic oscillator is a pure point spectrum.
We can thus write an arbitrary state in the form

|Ψ〉 =
∑∞

n=0
an |n〉, (19)

where a = (an)n∈N0 = (a0, a1, a2, a3, . . . ) ∈ CN0 is a square-normalised
sequence of complex numbers, i. e.

∑∞
n=0 |an|2 = 1. In view of this, every

vector |Ψ〉 can uniquely be identified with a sequence a in the Hilbert space
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ℓ2(N0), which by construction is separable. The identification (an isomor-
phism) shows the separability of the Hilbert space L2(R), and the same holds
for L2(Rn).

In mathematics, there is commonly used an isometric (right) shift opera-
tor ŝ, and its inverse ŝ† on ℓ2(N0) defined by

ŝ =
∑∞

n=0
|n+ 1〉〈n| : (a0, a1, a2, a3, . . . ) 7→ (0, a0, a1, a2, . . . ) (20)

ŝ† =
∑∞

n=0
|n〉〈n+ 1| : (a0, a1, a2, a3, . . . ) 7→ (a1, a2, a3, a4, . . . ) (21)

Note that ŝ†ŝ = 1 with spectrum {1}, while ŝŝ† = 1 − |0〉〈0| is a pro-
jector with spectrum {0, 1}. (Usually for bounded operators, the spectrum
of AB and BA is the same up to possible zeros.) Using the square root
of the number operator,

√
n̂ =

∑∞
n=0

√
n|n〉〈n| or (a0, a1, a2, a3, . . . ) 7→

(0, a1,
√

2a2,
√

3a3, . . . ), we can write

â =
∑∞

n=0

√
n+ 1|n〉〈n+ 1| = ŝ†√n̂ (22)

â† =
∑∞

n=0

√
n+ 1|n+ 1〉〈n| =

√
n̂ŝ (23)

Here the operators are decomposed into what is called a polar decomposition,
where ŝ and ŝ† are partial isometries.

2.7 Playing around with operators

As an example, we shall calculate for the states |n〉 uncertainties of position
and momentum (∆x)2 = 〈x̂2〉 − 〈x̂〉2 and (∆p)2 = 〈p̂2〉 − 〈p̂〉2. We rewrite

x̂ =
√

~

2mω
(â + â†) and p̂ = −i

√
mω~

2
(â − â†) and immediately see that

〈x̂〉2 = 〈p̂〉2 = 0 due to 〈n|â|n〉 = 〈n|â†|n〉 = 0. In the expansions of x̂2 and p̂2

the non-vanishing terms of (â†±â†)2 are ±(ââ† +â†â) = ±(2n̂+1). Therefore,

(∆x̂)2 =
~

2mω
· (2n+ 1) and (∆p̂)2 =

mω~

2
· (2n+ 1) (24)

and ∆x̂∆p̂ = (n + 1
2
)~. So of the Fock states, only the ground state has

minimum uncertainty. To find other states with minimum uncertainty, we
need some formulae.

Lemma 9 (Baker-Campbell-Hausdorff (BCH) and related formulae).
For (bounded) operators A, B ∈ B(H) there holds (by Taylor expansion)

etABe−tA = B + t[A, B] +
t2

2!
[A, [A, B]] +

t3

3!
[A, [A, [A, B]]] + . . .

Furthermore, if [A, [A, B]] = [B, [A, B]] = 0, there holds the Zassenhaus
formula

eA+B = eAeBe− 1
2

[A, B].
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We will nevertheless apply these formulae to unbounded operators and do
not worry about domains of definition. We can define so-called unitary dis-
placement operators

D̂(α) := eαâ†−α∗â = e
i

(

Im α·
√

2mω
~

x̂−Re α·
√

2
mω~

p̂

)

for α ∈ C (25)

Using [αâ† − α∗â, βâ† − β∗â] = −αβ∗[â†, â] − α∗β[â, â†] = αβ∗ − α∗β, we
calculate

D̂(α + β) = e(αâ†−α∗â)+(βâ†−β∗â) = D̂(α)D̂(β)e
α∗β−αβ∗

2 (26)

or D̂(β)D̂(α) = D̂(α)D̂(β)eα∗β−αβ∗
, i. e. the displacement “commute up to a

phase” and thus are a projective representation of C. In particular, D̂(0) = 1

and D̂(α)−1 = D̂(α)† = D̂(−α).
It is easy to see that â† does not have any eigenvalue, since â†|Ψ〉 has a

zero vacuum component. However, for every α ∈ C, â possesses an eigen-
function â|α〉 = α|α〉. In lemma 9, let A = −(αâ† − α∗â) and B = â, so that
D̂(−α)âD̂(α) = â+ α; therefore,

âD̂(α)|0〉 = D̂(α)(â+ α)|0〉 = αD̂(α)|0〉. (27)

Explicitely, the coherent states |α〉 read |α〉 = e−|α|2/2∑∞
n=0

αn√
n!

|n〉, which all

have minimum uncertainty ∆x∆p = ~/2. There are also other minimum
uncertainty states, the squeezed states, where e. g. ∆x̂ ∼ ∆p̂−1.

2.8 The Stone-von-Neumann theorem

We have already found that the Heisenberg commutators [x̂i, p̂j] = i~δij do
not uniquely determine the spectrum of the operators by considering them
on different domains such as R and [a; b]. Intuitively this can be understood
by noting that this relation holds locally, in the neighbourhood of a point
x ∈ Rn. Therefore, to get uniqueness, we need to use operators with “global”
properties. To this aim, we use the following statement.

Lemma 10 (Unitary one-parameter groups).
Let A be a (possibly unbounded) self-adjoint operator on H and let U(t) :=
eiAt for t ∈ R (e. g. the time evolution of a Hamiltonian). Then,

1. for every t ∈ R, U(t) is unitary, and U(t + s) = U(t)U(s) (one-
parameter group) and

2. for every ψ ∈ H and t → t0, U(t)ψ → U(t0)ψ (strong continuity),
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i. e. U(t) is a strongly continuous unitary one-parameter group. Stone’s theo-
rem tells us that every strongly continuous unitary one-parameter group has
a generator like A, which can be found by “differentiating”.

Now consider the translations in position space by [U(a)Ψ](x) := Ψ(x +
a) (a shift to the left), which form a unitary strongly continuous unitary
one-parameter group, and we want to know the generator A. We formally
calculate for every x ∈ R and some Ψ in the domain of definition,

dU

da
(a0)Ψ(x) = lim

h→0

U(a0 + h) − U(a0)

h
Ψ(x) (28)

= lim
h→0

Ψ(x+ a0 + h) − Ψ(x+ a0)

h
=

dΨ

dx
(x+ a0), (29)

and, in particular dU
da

(0) = d
dx

pointwise. Comparing with dU
da

(a) = iAU(a)

and setting a = 0, we have A = −i d
dx

= p̂
~
, i. e. U(t) = e

i
~

ap̂. Thus, in
physics terms, the momentum is the generator of translations in position,
and the same holds vice versa: the position is the generator of translations
in momentum. By this we see that we can distinguish p̂ on R and on [a; b]
(free particle vs. infinite-well potential), since in the former case we would
“hit the wall”. We shall thus use exponentiated operators to find a certain
uniqueness.

Applying lemma 9 to the (unbounded!) A and B with [A, B] = i~ we find

ei(sA+tB) = e− i2st
2

[A, B]eisAeitB = e− i2st
2

[B, A]eitBeisA (30)

= e
ist~

2 eisAeitB = e
−ist~

2 eitBeisA (31)

or eisAeitB = e−ist~eitBeisA or the Weyl commutator relations (this is a group-
theoretic commutator rather than the usual algebraic commutators.) We now
formulate the uniqueness theorem.

Theorem 11 (Stone-von Neumann theorem).
Let i, j ∈ {1, . . . , n} and consider operators Ai and Bj on a Hilbert space H,
such that the following Weyl commutator relations are fulfilled:

eitAieisAj = eisAj eitAi

eitBieisBj = eisBj eitBi

eitAieisBj = e−istδij eisBj eitAi

Suppose that the operators act irreducibly on H, i. e. {0} und H are closed
subspaces invariant with respect to all eitAi und eitBi (otherwise, the theorem
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can be adapted). Then, there exist unitary operator U : H → L2(Rn), which
is unique up to a phase eiϕ, such that

UeitAiU−1 = eitx̂i and UeitBiU−1 = eitp̂i.

The intuitive reason behind this is that the Heisenberg operators exhibit the
local properties (at one point x), but not the global ones. The Weyl commu-
tators take into account global properties; remember that the exponentiated
operators are translations of momentum and position, respectively. (This is
related to the theory of Lie groups and Lie algebras.)

We can only sketch the proof here. First, the irreducibility is needed.
Consider the Hilbert space L2(R) ⊕ L2(R) and operators x̂ = x ⊕ x and
p̂ = ~

i
d

dx
⊕ ~

i
d

dx
. These operators fulfil the canonical commutation relations,

but H′ = {f ⊕ f | f ∈ L2(R)} is an invariant subspace.
We define a bounded operator (the Weyl quantisation, see next section)

Q(f) = (2π)−n
∫

~a,~b∈Rn
(Ff)(~a, ~b) ei(~a·~̂x+~b·~̂p) dn~adn~b, (32)

where (Ff)(~a,~b) = (2π)−n
∫

~x,~p∈Rn f(~x, ~p)e−i(~a·~̂x+~b·~̂p) dn~x dn~p is the Fourier trans-

form of f . Choosing f0(~x, ~p) := 2ne− |~x|2

σ e−σ
|~p|2

~2 , we have some remarkable

properties, namely for every ~a, ~b ∈ R
n there holds

Q(f0)e
i(~a· ~̂A+~b· ~̂B)Q(f0) = e

−σ|~a|2

4 e− ~
2|~b|2
4σ Q(f0). (33)

In particular, the right-hand side does not depend on ~̂A and ~̂B. Moreover,
since f0 is real-valued, Q(f0) is self-adjoint and thus an orthogonal projection.
Now, let H′ := Q(f0)H be the image of this projection (which is non-zero),
and choose ϕ, ψ ∈ H′. Then,

〈ei(~a· ~̂A+~b· ~̂B)ϕ|ei(~a′· ~̂A+~b′· ~̂B)ψ〉 = 〈Q(f0)ϕ|e−i(~a· ~̂A+~b· ~̂B)ei(~a′· ~̂A+~b′· ~̂B)Q(f0)ψ〉

= e
i~(~a·~b′)−~b·~a′)

2 〈ϕ|Q(f0)e
i((~a′−~a)· ~̂A+(~b′−~b)· ~̂B)Q(f0)ψ〉

= e
i~(~a·~b′)−~b·~a′)

2 e
−σ|~a′−~a|2

4 e− ~
2|~b′−~b|2

4σ 〈ϕ|ψ〉.

Again, the overlap depends only on ~a and ~b and not on the explicit forms of

~̂A and ~̂B, from which we used only their commutator relations. The essence
of the proof is that we can replace in this formula Ai by x̂i and Bi by p̂i

without changing inner products. We therefore have to identify vectors in
the Hilbert space H with vectors in L2(Rn).
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3 Quantisation

Up to now, we have discussed self-adjoint operators of position and mo-
mentum and spin. Apart from quantities, for which there exists no classical
analog, we would like to start with a classial observable and “quantise” it,
i. e. to find a corresponding self-adjoint operator.

3.1 Weyl quantisation

We have seen that position and momentum are the defining variables for
a classical physical system. We also know what their quantum-mechanical
counterparts are, the operators x̂ and p̂ with [x̂i, p̂j ] = i~. How to quantise
an arbitrary function f(~x, ~p)? The standard Hamilton operator we simply get
by formally replacing x̂ and p̂ by their operators in the Hamiltonian function.
For other quantities, e. g. for xp, this is not so simple: should we quantise it as
x̂p̂, as p̂x̂ or as something else? Here enters the so-called operator ordering;
our quantum-mechanical operators should be selfadjoint, so at least they
should formally be hermitian. A solution to this question is given by the Weyl
ordering and the Weyl quantisation; there are other important orderings such
as normal ordering which we shall not treat here.2

Given a monomial xn−kpk of order n ∈ N0, we set its Weyl quantisation
QW to be the totally symmetric homogeneous polynomial of n-th order

QW (xn−kpk) :=
1

n!

∑

σ∈Sn

σ(x̂, . . . , x̂
︸ ︷︷ ︸

n−k times

, p̂, . . . , p̂
︸ ︷︷ ︸

k times

), (34)

where σ(A1, . . . , An) = Aσ1 . . . Aσn is a permutation of the operators and
Sn the symmetric group consisting of all n! of the numbers {1, . . . , n}. This
concept also works for systems with more x̂i and p̂j, since the operators for
different i and j commute. The Weyl quantisation can be uniquely characte-
rised by the property that

QW ((ax+ bp)k) = (ax̂+ bp̂)k (35)

for all k ∈ N0 and a, b ∈ C. Extending this to more than one variable R
2n,

and formally applying a power series results in

QW (ei(~a·~x+~b·~p)) = ei(~a·~̂x+~b·~̂p) (36)

The basic idea now is to express an arbitrary function f(~x, ~p) as the inverse
fourier transform of its fourier transform Ff by

f(~x, ~p) =
1

(2π)n

∫

(~a,~b)∈R2n
(Ff)(~a, ~b) ei(~a·~x+~b·~p) d2n(~a, ~b) (37)

2Note again that a simple symmetrisation need not always work as the exercise 7 shows.
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and to replace the exponential by its Weyl quantisation as in eq. (36).3 The
right hand side is then defined to be QW (f) and is an operator acting on

L2(Rn). To determine the action of the operators ei(~a·~̂x+~b·~̂p) consider for every

~a, ~b ∈ Rn the (stronly continuous unitary one-parameter) group

(U~a,~b(t)ψ)(~x) := e
it2

~(~a,~b)
2 eit~a·~̂xψ(~x+ t~~b). (38)

By doing a formal derivative we find that this group is generated by ~a ·
~̂x +~b · ~̂p.4 We know that momentum is a generator of translations in space,

(eit~b·~̂pψ)(~x) := ψ(~x+ t~~b), so that we can write

ei(~a·~̂x+~b·~̂p) = e
it2

~(~a,~b)
2 eit~a·~̂xeit~b·~̂p (39)

without having to invoke the BCH formula here. We shall now write ei(~a·~̂x+~b·~̂p)

in terms of a kernel operator k, i. e.

(ei(~a·~̂x+~b·~̂p)ψ)(~x) =
∫

y∈Rn
k(~x, ~y)ψ(~y) dn~y (40)

with k(~x, ~y) = e
i~(~a,~b)

2 ei~a·~̂xδ(~x+~~b−~y), where we use the n-dimensional delta
function. We can rewrite this expression by

(QW (f)ψ)(y) = (2π)−n
∫

(~a,~b)∈R2n
(Ff)(~a, ~b)

[∫

x∈Rn
k(~x, ~y)ψ(~y) dn~y

]

d2n(~a, ~b)

=
∫

y∈Rn
kf(~x, ~y)ψ(~y) dn~y.

We use
∫

x∈Rn e±ia(~x− ~x0) dn~x = (2π
a

)nδ(~x− ~x0) to find

kf (~x, ~y) := (2π)−n
∫

(~a,~b)∈R2n
(Ff)(~a, ~b)e

i~(~a,~b)
2 ei~a·~̂xδ(~x+ ~~b− ~y) d2n(~a, ~b)

~b′:=~~b
= (2π~)−n

∫

(~a,~b′)∈R2n
(Ff)



~a,
~b′

~



 e
i(~a,~b′)

2 ei~a·~̂xδ(~x+~b′ − ~y) d2n(~a, ~b′)

= (2π~)−n
∫

~a∈Rn
(Ff)

(

~a,
~y − ~x

~

)

e
i~a(~x+~y)

2 dn~a.

The last term is (up to a constant) the partial inverse Fourier transform
with respect to the second component at the point (~x+~y

2
, ~y−~x

~
). So we may

3We do not formally introduce integrals of operators.
4Doing the derivative of the right-hand side gives the prefactor i~t~a, ~b + i~a · ~̂x + i~a · ~̂p

to the exponential function; the first term vanishes, the third is precisely the same as we
did it before.
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as well take the original function f and transform it with respect to the first
component, so that

kf(~x, ~y) := (2π~)−n
∫

~p∈Rn
f

(

~x+ ~y

2
, ~p

)

e− i~p(~y−~x)
~ dn~p.

Strictly speaking, this expression needs not to be convergent, but can be un-
derstood pointwise. The operator Â is the operator belonging to this kernel;
in physics notation one would write with

QW (f) =
∫

(~x, ~y)∈R2n
kf(~x, ~y) |~x〉〈~y| d2n(~x, ~y),

where |~x〉〈~y| is strictly speaking not defined everywhere. This process can be
done for functions on the phase space L2(Rn ×Rn) and results in a bounded
operator, more precisely a Hilbert-Schmidt operator; note that polynomials
with which we started are in usually not L2 functions.

3.2 Trace of operators and compact operators

In linear algebra, the trace of an operator is the sum of its diagonal elements.
By the commutativity TrAB = TrBA, the trace is invariant with respect to
a basis change A 7→ UAU−1. We can generalise this notion to some operators
B(H) on a Hilbert space by setting TrA :=

∑

i∈I〈i|A|i〉, where the |i〉 form
an orthonormal basis of H. Now we sum up possibly an infinite amount of
complex numbers 〈i|A|i〉, and at this point we cannot say anything about
the convergence of such sum. However, if we take A to be a positive operator
(in a separable Hilbert space), 〈i|A|i〉 ≥ 0, and either the series is absolutely
convergent or diverges to infinity.

Now, for any A ∈ B(H), the operator A†A is positive, and we can define
its square root by |A| :=

√
A†A, so that the spectrum is contained in R

+
0 . If

the trace should exist at all, the spectrum of |A| (the singular values of A)
must be given by a null sequence. It is then a compact operator on H, which
in this case is the uniform limit of operators with finite rank. Therefore, they
behave somewhat like matrices. Similar to the usual p-norms in functional
analysis, we can define

‖A‖p := [Tr(|A|p)]
1/p

(41)

for p ∈ (1; ∞), provided, Tr |A|p is finite. In particular, for p = 1 we get trace-
class operators (such as the density operator), for p = 2 Hilbert-Schmidt
operators. (For p = ∞ we get the non-compact bounded operators.) There
holds the following theorem, which is relevant for the quantisation scheme.
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Theorem 12 (Hilbert-Schmidt operators).
Let (Ω, Σ, µ) be a measure space and H := L2(Ω). An operator A ∈ B(H) is a
Hilbert-Schmidt operator, if and only if there exists a function f ∈ L2(Ω×Ω),
such that

(Af)(x) =
∫

y∈Ω
k(x, y)f(y)dµ(y),

and in this case, there holds ‖A‖2 = ‖k‖2 :=
(∫

x, y∈Ω |k(x, y)|2 dx dy
)1/2

.

We do not give a proof here, but for the norm equalities compare the case
of matrices, i. e. Ω = {1, . . . , n} with the counting measure. Then, for A =
(aij)

n
i,j=1, we compute ‖A‖2

2 =
∑n

i,j=1 |aij |2 and similarly for k.

3.3 Dequantisation and the Wigner function

The quantisation map QW possesses an inverse, a dequantisation.

Theorem 13 (Dequantisation).
The map QW is unitary up to a constant from L2(R2n) to the Hilbert-Schmidt
operators on H = L2(Rn) with inverse

[Q−1
W (A)](~x, ~p) = ~

n
∫

~b∈Rn
k



~x− ~~b

2
, ~x+

~~b

2



 ei~b·~p d~b. (42)

Further, QW (f ∗) = QW (f)†, and QW (f) is selfadjoint, if and only if f is
real-valued. (Note that the adjoint of an operator given by k(x, y) is given by
k(y, x)∗, similarly as for matrices.)

Up to now we have quantised classical phase-space functions. The inverse
mapping now also allows us to dequantise genuinely quantum-mechanical
operators, in particular the density operator ρ, since this is of trace class and
thus Hilbert-Schmidt. The dequantisation of ρ is known as the Wigner functi-
on Wρ(~x, ~p), and we have two equivalent formulations of quantum mechanics.
We required that ρ is trace-normalised, which is translated to

∫

W = 1; ho-
wever, it is not clear, which phase-space functions correspond to positive
semidefinite operators (although there are restrictions on the functions).

Now classically a state would be a probability distribution P on the phase
space (a pure state a point-distribution) and we can express expectation
values by 〈f〉 =

∫

~x, ~p∈R2n P (~x, ~p)f(~x, ~p)d2n(~x, ~p). Usually we quantise f and
calculate expectation values in Hilbert space by a density operator ρ. But we
could also dequantise the density operator to the Wigner function W (~x, ~p)
and calculate expectation values in phase space. But note, in particular, that
not every probability distribution corresponds to a Wigner function (we can
violate the uncertainty principle by a point distribution) and that unlike
classical probability distributions Wigner functions may have negative parts.
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3.4 The Moyal star product

We have seen that there are two different ways of discussing quantum mecha-
nics. The bounded operators (and some of their subclasses) on a Hilbert space
form an algebra, i. e., they can be multiplied. In particular, the product of
two Hilbert-Schmidt operators is—by Cauchy-Schwarz—trace-class and thus
again a Hilbert-Schmidt operator. Therefore, given QW (f) and QW (g), the-
re exists a function QW (f ∗ g), such that QW (f)QW (g) = QW (f ∗ g). To
calculate this functions we invoke the original quantisation formula

QW (f)QW (g) = (2π)−2n
∫

~a,~b,~a′,~b′∈R

(Ff)(~a, ~b)(Fg)(~a′, ~b′) ei(~a·~̂x+~b·~̂p) ei(~a′·~̂x+~b′·~̂p) d4n(~a, ~b, ~a′, ~b′)

Using ei(~a·~̂x+~b·~̂p) ei(~a′·~̂x+~b′·~̂p) = e−i~~a~b′−~b~a′

2 ei((~a+~a′)·~̂x+(~b+~b′)·~̂p), substituting ~a by ~a′′ −
~a′ and ~a by ~b′′ −~b′ and using ~a~b′ −~b~a′ = ~a′′~b′ −~b′′~a′, this may be rewritten as

QW (f)QW (g) = (2π)−n
∫

~a′′,~b′′∈R

[F(f ∗ g)](~a′′, ~b′′) ei(~a′′·~̂x+~b′′·~̂p) d2n(~a′′, ~b′′),

which is the quantisation of the function f ∗ g with

[F(f ∗ g)](~a, ~b) = (2π)−n
∫

~a′,~b′∈R

e−i~~a~b′−~b~a′

2

× (Ff)(~a− ~a′, ~b−~b′)(Fg)(~a′, ~b′) d2n(~a′, ~b′)

Up to the exponential factor including ~, this is a convolution of thr func-
tions Ff and Fg. In the classical limit ~ → 0, the factor vanishes and
[F(f ∗ g)] (~a, ~b) = (2π)−n[(Ff) ∗ (Fg)](~a′, ~b′), and by reversing the Fourier

transform we find f ∗ g ~→0→ fg, i. e. the pointwise multiplication of the two
functions. Note that the Moyal star product in non-commutative (as the
multiplication of operators), but the multiplication of functions is.

3.5 Classical and quantum mechanics

We have seen some correspondence of classical and quantum mechanics and
not want to check how well they fit together. To this aim, we shall formulate
classical mechanics in a way which resembles quantum mechanics.

We consider a classical particle moving in space; we assume it to be point-
like, i. e. it should not rotate in space etc. The movement of such particle is
given its trajectory in configuration space ~x = ~x(t) ∈ R3.5 The velocity is the

5This is the physicists notation that ~x is a function of time t, in mathematical terms
~x : R → R3.

21.06.2015 Universität Ulm – Institut für Quantenphysik Seite 23/27



Kedar S. Ranade

first, the acceleration the second derivative with respect to time t, i. e. ~v = ~̇x
and ~a = ~̇v = ~̈x, respectively.

Newton’s second law (colloquially, F = ma) is then written as m~̈x = ~F ,
the equation of motion. This second-order differential equation is usually
posed as an initial value-problem with two initial values ~x(0) and ~̇x(0). Pro-

vided that the force ~F is is conservative, i. e. the integral over every closed
path vanishes (

∮ ~F (~s) d~s = 0), we can write it as the negative gradient of

a potential V = V (~r), i. e. ~F = −gradV = −∇V . In case the potential is
time-independent, the Hamiltonian function is the total energy given by

H = T + V =
~p2

2m
+ V (~r), (43)

where T = 1
2
m~v2 = ~p2

2m
is the kinetic energy with ~p = m~v being the (kinemati-

cal) momentum. For the components of position there holds ẋj =
pj

m
= ∂

∂pj

p2
j

2m
,

for those of the momentum ṗk = mv̇k = mẍk = Fk = − ∂V
∂xk

. We have the

Hamiltonian equations of motion6

ẋj =
∂H

∂pj

and ṗk = −∂H

∂xk

with j, k ∈ {1, . . . , n}. (44)

Using these first-order differential equations and initial values (~x(0), ~p(0)), we
can completely describe the motion of the particle by a trajectory (~x(t), ~p(t))
in phase space R3 × R3. Every measureable quantity of that particle must
then be a function on that phase space, and a point (~x, ~p) is a classical pure
state on phase space (mixed states would then be probability distributions).

We shall rewrite this a bit; for this we use the Poisson brackets.

Definition 14 (Poisson brackets).
Let f and g be real-valued C∞-functions acting on (~x, ~p) ∈ R2n. The Poisson
bracket is then defined as the real-valued C∞-function

{f, g} :=
n∑

j=1

(

∂f

∂xj

· ∂g
∂pj

− ∂f

∂pj

· ∂g
∂xj

)

.

Note that if the degree of f and g is n andm, the degree of the Poisson bracket
is at most n+m−2. In particular, polynomials of degree at most 2 are closed
with respect to the Poisson bracket (similar things hold for commutators),
but those of degree 3 or larger do not.

6This is a somewhat clumsy way of derivation; the usual approach is using Lagrange
functions of second kind for generalised coordinates and the Legendre transform.
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The Poisson bracket is bilinear, skew-symmetric ({g, f} = − {f, g}) and
fulfils the Jacobi identity {f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0, i. e.
it has the structure of a Lie algebra. Morover, it fulfils the product rule of
derivation {fg, h} = f {g, h} + {f, h} g. Since xj and pk can be viewed as
functions on (~x, ~p) extracting the respective components, we find in particu-
lar {xj , xk} = {pj, pk} = 0 and {xj , pk} = δjk.

Now if (~x, ~p)(t) is a trajectory in phase space fulfilling the Hamiltonian
equations of motion and f(~x, ~p) a function, then

df

dt
=

n∑

j=1

(

∂f

∂xj

dxj

dt
+
∂f

∂pj

dpj

dt

)

=
n∑

j=1

(

∂f

∂xj

∂H

∂pj
− ∂f

∂pj

∂H

∂xj

)

= {f, H} (45)

In particular, setting f = xi or f = pj , we get back the Hamiltonian equations
of motion. Moreover,

{xi, g} =
∂g

∂pi

and {pi, g} = − ∂g

∂xi

. (46)

The (Lie) algebraic rules for the Poisson brackets are essentially also fulfilled
by the commutators on algebras.

3.6 Quantisation and Groenewold’s theorem

We note that all these rules also hold true, if we replace the classical varia-
bles by their quantised operators and the Poisson brackets by commutators
divided by i~. In particular, the Heisenberg equations of motion read

i~
dÂH

dt
= [ÂH , Ĥ] (47)

and also the algebra of operators with the commutators forms a Lie algebra.
This motivates the substituion rule that { · , · } is to be replaced by

[ · , · ]/i~ while going from classical to quantum mechanics, though we have to
remember that quantum mechanics is something new and cannot completely
be described classically. We shall show that this rule cannot be true for all
quantities.

The previous subsection has shown that the Weyl transformation has so-
me properties which are desired. It remains to be checked that is is consistent
with the substitution rule, i. e.

QW ({f, g}) =
1

i~
[QW (f), QW (g)] (48)

i. e. it is a homomorphism of Lie algebras. It will be shown that this is not
the case and, in fact, there is no such quantisation from R2n to B(L2(Rn)).
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Theorem 15 (Groenewold’s theorem).
There is no linear mapping Q from polynomials to differential operators with
constant coefficients on Rn, such that Q(1) = 1, Q(xi) = x̂i and Q(pi) = p̂i

hold for all i ∈ {1, . . . , n} and eq. (48) holds.

It will already fail on a polynomial of degree 4. We will only give s sketch of
the proof. The proof will be done in three steps:

1. Equation (48) holds for the Weyl quantisation, if f and g are polyno-
mials, and the degree of f is not larger than 2.

2. If Q fulfils the conditions of the theorem, Q = QW on polynomials with
degree not larger than 3.

3. We use the fact that x2p2 = 1
9

{x3, p3} = 1
4

{x2p, xp2} and find a contra-
diction forQ = QW by showing that 1

9
[Q(x3), Q(p3)] 6= 1

4
[Q(x2p), Q(xp2)].

Step 1: For f of degree 0, f is constant, and both sides are zero. For degree 1,
f = xi or f = pj, and one can show (we do not)

QW (xig) = QW (xi)QW (g) − i~

2
QW

(

∂g

∂pi

)

= QW (g)QW (xi) +
i~

2
QW

(

∂g

∂pi

)

,

so that [QW (xi), QW (g)] = i~QW ( ∂g
∂pi

) = QW ({xi, g}). A similar result holds
for f = pj. For degree 2, we use homogeneous polynomials f1 and f2 of
degree 1. It follows that

QW (f1f2) =
QW (f1)QW (f2) +QW (f2)QW (f1)

2
(49)

and

[QW (f1f2), QW (g)] =
1

2
[QW (f1)QW (f2) +QW (f2)QW (f1), QW (g)]

=
1

2

(

QW (f1)[QW (f2), QW (g)] + [QW (f1), QW (g)]QW (f2)

+QW (f2)[QW (f1), QW (g)] + [QW (f2), QW (g)]QW (f1)
)

,

so that we have reduced it to the degree-1 case. We now use in this case the
property QW (f1)[QW (f2), QW (g)] = QW (f1)

QW ({f2, g})
i~

etc. and the reverse

of the derivation property to find [QW (f1f2), QW (g)] = QW ({f1f2, g})
i~

, and by
linearity this is all we need to show.

Seite 26/27 Universität Ulm – Institut für Quantenphysik 21.06.2015



Mathematische Grundlagen der Quantenmechanik (SS 2015)

Step 2: From the initial conditions, we see that Q = QW for degree-1 polyno-
mials. For f of degree 2, set Q(f) = QW (f) + q(f). Then, for g of degree 1,
there holds

Q({f, g}) =
1

i~
[Q(f), Q(g)] =

1

i~
[QW (f), QW (g)] +

1

i~
[q(f), QW (g)]. (50)

The first term is QW ({f, g}) by assumption, and since the degree of {f, g}
is 1. Thus the second term is zero, and q(f) commutes with all x̂i and p̂j.
Now we know that the associated exponential operators act irreducibly on
L2(Rn). In some analogy to Schur’s lemma from representation theory, one
can show that operators sommuting with all x̂i and p̂j must be multiples of
unity, i. e. q(f) = cf1. Now, for f and g of degree 2. we find

Q({f, g}) = [QW (f) + cf1, QW (g) + cg1] = QW ({f, g}) (51)

Since every polynomial of degree 2 can be written as {f, g} for two other
degree-2 polynomials, Q = QW for degree-2 polynomials.

Starting with degree-3 polynomials f and degree-1 g, the first argument
similarly yields Q(f) = QW (f) + cf1 and for degree-2 g we then find again
cf = 0. The brackets {f, g} with degrees 3 and 2 generate all polynomials of
degree 3, so that Q = QW for degree-3 polynomials.

Step 3: Contradiction: We consider the polynomial f(~x, ~p) = x2
1p

2
1 = 1

9
{x3

1, p
3
1}

= 1
3

{x2
1p1, x1p

2
1} of degree 4 written in two ways as Poisson brackets. Since

the polynomials in the Poisson brackets are of degree 3, we must have

1

9
[QW (x3

1), QW (p3
1)] =

1

3
[QW (x2

1p1), QW (x1p
2
1)]. (52)

But this leads to a contradiction. For the left-hand side, we easily find
1
9
(x̂3

1p̂
3
1 − p̂3

1x̂
3
1), and for the right-hand side we have to use the Weyl sym-

metrisation procedure. Since we want to find a contradiction, it suffices to
apply these operators to some specific function. Taking a function f which is
constant in some neighbourhood of zero, we can ignore all terms ending with
a p̂-operator due to the vanishing derivatives. The left hand side we find for

the derivative in the neighbourhood of zero −1
9
(~

i
)3 dx3

1

dx1
= 2

3
i~3; similarly, we

can do the calculation for the right-hand side and find 2
3
i~3 6= 1

3
i~3.
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