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Maximal regularity

Setting: −A generator of C0-semigroup (T (t))t≥0 on Banach space X .

Definition

−A has maximal regularity if for f ∈ Lp((0,T );X ) the mild solution
u(t) =

∫ t
0 T (t − s)f (s) ds of{

u̇(t) + Au(t) = f (t)

u(0) = 0

satisfies u ∈W 1,p((0,T );X ) ∩ Lp((0,T );D(A)).
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The connection with harmonic analysis

1 Differentiation: u′(t) = −
∫ t
0 AT (t − s)f (s) ds + f (t)

maximal regularity⇔ boundedness of conv. with ‖AT (t)‖ ∼ 1

t

2 Fourier transform: we need boundedness of Fourier multiplier

m(u) := F(−AT (t)) = −AR(iu,−A) = iuR(iu,−A)− Id

3 X = H Hilbert space, (T (t))t≥0 bounded holomorphic (on sector):

‖iuR(iu,−A)‖ bounded.

Use (operator-valued) Mihlin’s multiplier theorem ⇒ −A has maximal
regularity (De Simon).
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R-boundedness and multipliers

Problem: Operator-valued Mihlin characterizes Hilbert spaces (G. Pisier).

Theorem (L. Weis)

X UMD-space, m ∈ C 1(R \{0},B(X )), p ∈ (1,∞). Assume that

{m(t) : t ∈ R \{0}} and {tm′(t) : t ∈ R \{0}}

are R-bounded. Then Tf = F−1(m(·)f̂ (·)) extends to T ∈ B(Lp(X )).

X UMD: Hilbert transform bounded in Lp(X ) (p ∈ (1,∞)).

R-boundedness: rk(t) = sign sin(2kπt) realization of Rademachers∥∥∥∥ n∑
k=1

rkm(tk)xk

∥∥∥∥
Lp([0,1];X )

≤ C

∥∥∥∥ n∑
k=1

rkxk

∥∥∥∥
Lp([0,1];X )

.
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A characterization of maximal regularity

-A generator of bounded holomorphic C0-semigroup on X .

{itR(it,−A) : t ∈ R \{0}}R-bounded⇔ {T (z) : z ∈ Σδ}R-bounded.

Theorem (L. Weis)

(i) -A has maximal regularity ⇒ {T (z) : z ∈ Σδ} R-bounded.
(ii) If X is UMD, then the converse holds.
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The maximal regularity problem

-A has maximal regularity ⇒ -A generates holomorphic C0-semigroup
on X .

X = H Hilbert space: −A has maximal regularity ⇔ −A generates
holomorphic C0-semigroup.

Problem (Maximal regularity problem)

Which Banach spaces have this property (MRP)?

L∞[0, 1] has (MRP).

Kalton-Lancien: (MRP) characterizes Hilbert spaces in the class of
Banach spaces with an unconditional basis.
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The maximal regularity problem

Kalton & Lancien use abstract results on perfectly homogeneous
bases.

No explicit counterexample has been known on Lp[0, 1]
(p ∈ (1,∞) \ {2}).
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Schauder multipliers as semigroup generators

Definition

A sequence (en)n∈N ⊂ X is called Schauder basis if every x ∈ X has a
unique expansion

x =
∞∑
n=1

anen. (an ∈ C)

If the above series converge unconditionally, (en)n∈N is called an
unconditional basis.

For γn+1 ≥ γn, −A generates a holomorphic C0-semigroup, where

A

( ∞∑
n=1

anen

)
=
∞∑
n=1

γnanen.

We use: γn = 2n.
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An explicit counterexample

X 6' `1, `2, c0: There exist a normalized unconditional basis (ẽn)n∈N
of X , a permutation π : N→ N and (an)n∈N ⊂ C with

∞∑
n=1

anẽπ(2n) exists, but
∞∑
n=1

anẽ2n−1 does not (or vice versa).

fn =

{
ẽn, n odd

ẽπ(n) + ẽn−1, n even
is Schauder basis for X .

We take

A

( ∞∑
n=1

anfn

)
=
∞∑
n=1

2nanfn.
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An explicit counterexample

g :=
∑∞

n=1 rnanẽπ(2n) converges (unconditionality).

R-boundedness of {T (t) : t ∈ [0, 1]} would imply boundedness of

T :
∞∑
n=1

rnxn 7→
∞∑
n=1

rnT (qn)xn

on closed span of Rademachers for (qn)n∈N ⊂ [0, 1].

Take qn = log 2
22n−1 . Short calculation:

T (g) =
1

4

∞∑
n=1

anrnẽπ(2n) − anrnẽ2n−1

Thus by unconditionality,
∑∞

n=1 anẽ2n−1 converges. Contradiction!
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The case of Lp-spaces

Xp := (⊕∞n=1`
n
2)`p

is isomorphic to `p for p ∈ (1,∞) (variant of the Schröder-Bernstein
argument, Pe lczyński’s decomposition technique).

Use the unit standard basis (ẽn)n∈N for counterexamples.

This can be done consistently in the Xp-scale (1 < p <∞).

Embed this in Lp(R) consistently using Rademachers.

Theorem (SF (2012))

There exists a family (Tp(t))t≥0 of consistent holomorphic C0-semigroups
on Lp(R) (p ∈ (1,∞)) with

(Tp(t))t≥0 has maximal regularity ⇔ p = 2.
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Thank you for your attention!
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