

Universität Ulm

Abgabe: 17.06.10, vor der Übung

Prof. W. Arendt M. Gerlach Sommersemester 10

12 Punkte

Übungen zur Funktionalanalysis

Blatt 8

- 17. Es seien E und F Banachräume und $U \subset E$ ein dichter Teilraum. Zeige, dass es für jeden Operator $T \in \mathcal{L}(U, F)$ genau einen Operator $\hat{T} \in \mathcal{L}(E, F)$ gibt, sodass $\hat{T}x = Tx$ für alle $x \in U$ und $||T|| = ||\hat{T}||$.
- 18. Betrachte den Maßraum $(\mathbb{R}, \mathcal{B}, \lambda)$, wobei $\mathcal{B} = \mathcal{B}(\mathbb{R})$ die Borel- σ -Algebra und λ das Lebesguemaß auf \mathbb{R} bezeichne. Finde jeweils eine Folge $(f_n) \subset L^2(\mathbb{R}, \mathcal{B}, \lambda)$, sodass
 - (a) der Grenzwert $\lim_{n\to\infty} f_n(x)$ für alle $x\in\mathbb{R}$ existiert, die Folge (f_n) jedoch nicht in $L^2(\mathbb{R},\mathcal{B},\lambda)$ konvergiert.
 - (b) die Folge (f_n) in $L^2(\mathbb{R}, \mathcal{B}, \lambda)$ konvergiert, jedoch für kein $x \in \mathbb{R}$ der Grenzwert $\lim_{n \to \infty} f_n(x)$ existiert.
- 19. Betrachte den Maßraum ([0,1], \mathcal{B}, λ), wobei $\mathcal{B} = \mathcal{B}([0,1])$ die Borel- σ -Algebra und λ das (4) Lebesguemaß auf [0,1] bezeichne. Es sei

$$\mathcal{F} := \{\emptyset, [0, 1/2), [1/2, 1], [0, 1]\}.$$

- (a) Bestimme alle Funktionen aus $L^2([0,1], \mathcal{F}, \lambda)$.
- (b) Bestimme die bedingte Erwartung Pf einer beliebigen Funktion $f \in L^2([0,1], \mathcal{B}, \lambda)$ bzgl. \mathcal{F} .