

Universität Ulm

Abgabe: ..

17.06.10, vor der Übung

Prof. W. Arendt M. Gerlach Sommersemester 10

12 Punkte

Lösungen zur Funktionalanalysis

Blatt 8

17. Es seien E und F Banachräume und $U \subset E$ ein dichter Teilraum. Zeige, dass es für jeden (4) Operator $T \in \mathcal{L}(U, F)$ genau einen Operator $\hat{T} \in \mathcal{L}(E, F)$ gibt, sodass $\hat{T}x = Tx$ für alle $x \in U$ und $||T|| = ||\hat{T}||$.

Lösung: Es sei $x \in E$. Wähle eine Folge $(x_n) \subset U$ mit $\lim x_n = x$. Dann ist (x_n) eine Cauchyfolge und wegen

$$||Tx_n - Tx_m|| \le ||T|| ||x_n - x_m|| \quad (n, m \in \mathbb{N})$$

ist auch (Tx_n) eine Cauchyfolge. Deren Grenzwert bezeichnen wir mit $\hat{T}x$. Diese Definition ist unabhängig von der Wahl der Folge (x_n) : Ist $(y_n) \subset U$ eine weitere Folge mit $\lim y_n = x$, so folgt

$$||Tx_n - Ty_n|| \le ||T|| ||x_n - y_n|| \to 0 \quad (n \to \infty).$$

Offenbar ist der so definiere Operator $\hat{T}: E \to F$ linear.

Wir zeigen nun, dass $\|\hat{T}x\| \leq \|T\|\|x\|$ für alle $x \in E$, d.h. dass $\|\hat{T}\| \leq \|T\|$. Sei dazu $x \in E$ und $\varepsilon > 0$. Wähle $y \in U$ mit $\|x - y\| \leq \varepsilon/\|T\|$ und $\|\hat{T}x - Ty\| \leq \varepsilon$. Nach der Dreiecksungleichung ist somit $\|\hat{T}x\| \leq \|Ty\| + \varepsilon$ und $\|y\| \leq \|x\| + \varepsilon/\|T\|$. Damit erhalten wir, dass

$$\|\hat{T}x\| \le \|Ty\| + \varepsilon \le \|T\|(\|x\| + \varepsilon/\|T\|) + \varepsilon = \|T\|\|x\| + 2\varepsilon.$$

Da $\varepsilon > 0$ beliebig war, folgt $\|\hat{T}x\| \leq \|T\| \|x\|$. Es ist unmittelbar klar, dass $\|T\| \leq \|\hat{T}\|$. Also erhalten wir $\|\hat{T}\| = \|T\|$.

Es bleibt die Eindeutigkeit der Fortsetzung zu zeigen. Sei dazu $S \in \mathcal{L}(E, F)$ mit Sy = Ty für alle $y \in U$. Wähle $x \in E$ und eine Folge $(x_n) \subset U$ mit $\lim x_n = x$. Dann ist

$$Sx = \lim Sx_n = \lim Tx_n = \hat{T}x$$

und also $S = \hat{T}$.

- 18. Betrachte den Maßraum $(\mathbb{R}, \mathcal{B}, \lambda)$, wobei $\mathcal{B} = \mathcal{B}(\mathbb{R})$ die Borel- σ -Algebra und λ das Lebesguemaß auf \mathbb{R} bezeichne. Finde jeweils eine Folge $(f_n) \subset L^2(\mathbb{R}, \mathcal{B}, \lambda)$, sodass
 - (a) der Grenzwert $\lim_{n\to\infty} f_n(x)$ für alle $x\in\mathbb{R}$ existiert, die Folge (f_n) jedoch nicht in $L^2(\mathbb{R},\mathcal{B},\lambda)$ konvergiert.
 - (b) die Folge (f_n) in $L^2(\mathbb{R}, \mathcal{B}, \lambda)$ konvergiert, jedoch für kein $x \in \mathbb{R}$ der Grenzwert $\lim_{n \to \infty} f_n(x)$ existiert.

Lösung:

(a) Für $n \in \mathbb{N}$ definiere

$$f_n(x) := \sqrt{n} \cdot \mathbb{1}_{(0,1/n]} \quad (x \in \mathbb{R}).$$

Dann ist jede Funktion f_n messbar und wegen $\int_{\mathbb{R}} |f_n|^2 d\lambda = 1$ enthalten in $L^2(\mathbb{R}, \mathcal{B}, \lambda)$. Ferner gilt $\lim_{n\to\infty} f_n(x) = 0$ für alle $x \in \mathbb{R}$. Gäbe es eine Funktion $f \in L^2(\mathbb{R}, \mathcal{B}, \lambda)$ gegen die (f_n) in L^2 konvergiert, so würde eine Teilfolge (f_{n_k}) fast überall gegen f konvergieren. Da (f_n) aber überall gegen f0 konvergiert, wäre f = f0. Wegen $||f_n||_{L^2} = f$ 1 für alle f0 kann dies nicht sein. (b) Setze

$$f_1 = \mathbb{1}_{[-1,0)}, \quad f_2 = \mathbb{1}_{[0,1)}, \quad f_3 = \mathbb{1}_{[-2,-3/2)}, \quad f_4 = \mathbb{1}_{[-3/2,-1)}, \quad f_5 = \mathbb{1}_{[-1,-1/2)}$$

$$f_6 = \mathbb{1}_{[-1/2,0)}, \quad f_7 = \mathbb{1}_{[0,1/2)}, \quad f_8 = \mathbb{1}_{[1/2,1)}, \quad f_9 = \mathbb{1}_{[1,3/2)}, \quad f_{10} = \mathbb{1}_{[3/2,1)}, \quad \dots$$

Dann ist $\lim_{n\to\infty} ||f_n||_{L^2} = 0$ aber für jedes $x \in \mathbb{R}$ existieren jeweils unendlich viele $n \in \mathbb{N}$ mit $f_n(x) = 1$ und $f_n(x) = 0$.

19. Betrachte den Maßraum ([0, 1], \mathcal{B}, λ), wobei $\mathcal{B} = \mathcal{B}([0, 1])$ die Borel- σ -Algebra und λ das (4) Lebesguemaß auf [0, 1] bezeichne. Es sei

$$\mathcal{F} := \{\emptyset, [0, 1/2), [1/2, 1], [0, 1]\}.$$

- (a) Bestimme alle Funktionen aus $L^2([0,1], \mathcal{F}, \lambda)$.
- (b) Bestimme die bedingte Erwartung Pf einer beliebigen Funktion $f \in L^2([0,1], \mathcal{B}, \lambda)$ bzgl. \mathcal{F} .

Lösung:

(a) Es ist leicht zu sehen, dass \mathcal{F} -messbare Funktion auf den Intervallen [0, 1/2) und [1/2, 1] konstant sein muss, d.h. eine Funktion $f:[0,1] \to [-\infty,\infty]$ ist genau dann \mathcal{F} -messbar, wenn es Konstanten $c_1, c_2 \in [-\infty, \infty]$ gibt, sodass

$$f = c_1 \mathbb{1}_{[0,1/2)} + c_2 \mathbb{1}_{[1/2,1]}. \tag{1}$$

Da eine Funktion der Form (1) genau dann in $L^2([0,1], \mathcal{F}, \lambda)$ liegt, wenn $c_1, c_2 \in \mathbb{R}$, haben wir alle Funktionen aus $L^2([0,1], \mathcal{F}, \lambda)$ bestimmt.

(b) Es sei $f \in L^2([0,1], \mathcal{B}, \lambda)$. Wir setzen

$$c_1 := 2 \cdot \int_{[0,1/2)} f \, d\mu \quad \text{und} \quad c_2 := 2 \cdot \int_{[1/2,1]} f \, d\mu$$

und $Pf = c_1 \mathbb{1}_{[0,1/2)} + c_2 \mathbb{1}_{[1/2,1]}$. Dann ist

$$\int_{F} f \, \mathrm{d}\mu = \int_{F} P f \, \mathrm{d}\mu \quad (F \in \mathcal{F})$$

und also Pf die bedingte Erwartung von f bzgl. \mathcal{F} .