

Universität Ulm

Abgabe: Mi, 07.05.14 in der Vorlesung Dr. M. Kunze M. Gerlach Sommersemester 14

14 Punkte

Blatt 2

Übungen zur Elemente der Funktionalanalysis

4. Es sei (Ω, Σ, μ) ein Maßraum. Wir definieren

$$\mathscr{L}^{\infty}(\Omega) := \{ f : \Omega \to \mathbb{K} \text{ messbar} : \exists N \in \Sigma, \, \mu(N) = 0, \, f_{\Omega \setminus N} \text{ ist beschränkt} \}$$

und das wesentliche Supremum

$$||f||_{\infty}^* := \inf \left\{ c > 0 : \exists N \in \Sigma, \, \mu(N) = 0, \, |f(\omega)| \le c \, \forall \omega \in \Omega \setminus N \right\}$$

für alle $f \in \mathscr{L}_{\infty}(\Omega)$.

- (a) Zeige, dass es für alle $f \in \mathscr{L}^{\infty}(\Omega)$ ein $N \in \Sigma$, $\mu(N) = 0$, gibt mit $||f||_{\infty}^* = ||f_{\Omega \setminus N}||_{\infty}$. (3)
- (b) Zeige, dass $\mathcal{L}^{\infty}(\Omega)$ ein halbnormierter Vektorraum ist. (2)
- (c) Zeige, dass $\mathcal{L}^{\infty}(\Omega)$ vollständig ist. (3)

Nun identifizieren wir, wie bei der Definition von L^p , Funktionen $f, g \in \mathscr{L}^{\infty}(\Omega)$ falls $||f - g||_{\infty}^* = 0$. Genauer: Wir betrachten die Äquivalenzklassen [f] der Äquivalenzrelation

$$f \sim g :\Leftrightarrow ||f - g||_{\infty}^* = 0$$

auf $\mathscr{L}^{\infty}(\Omega)$ und setzen $L^{\infty}(\Omega) := \{[f] : f \in \mathscr{L}^{\infty}(\Omega)\}$, versehen mit den Vektorraumoperationen [f] + [g] := [f + g] und $\lambda[f] := [\lambda f]$ sowie der Norm $\|[f]\|_{\infty} := \|f\|_{\infty}^*$. Man überzeuge sich davon, dass die Operationen wohldefiniert sind und $\|\cdot\|_{\infty}$ eine Norm auf $L^{\infty}(\Omega)$ definiert.

- (d) Zeige, dass $(L^{\infty}(\Omega), \|\cdot\|)$ ein Banachraum ist. (1)
- 5. Es sei (Ω, Σ, μ) ein Maßraum und $1 \leq p < \infty$. Ferner sei $(f_n) \subset L^p(\Omega)$ eine konvergente (5) Folge mit $f := \lim f_n$. Zeige, dass es eine Teilfolge (f_{n_k}) gibt, die fast überall gegen f konvergiert und durch ein Element $h \in L^p(\Omega)$ dominiert ist $(d.h. |f_n(\omega)| \leq h(\omega)$ für fast alle $\omega \in \Omega$ und alle $n \in \mathbb{N}$).

Anleitung: Konstruiere eine Teilfolge (f_{n_k}) derart, dass die Reihe über $(f_{n_k} - f_{n_{k+1}})$ absolut konvergiert und folge dem Beweis der Vollständigkeit von L^p .

Bemerkung: Die Aussage stimmt (trivialerweise) auch für $p = \infty$.