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Basics

Assumptions throughout the talk:

(i) Let E be a complex Banach lattice, e.g. E = C(K) for a compact
space K, or E = LP(Q, X, p).
(ii) Let (e"*)s>0 be a Co-semigroup on E.
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Basics

Assumptions throughout the talk:

(i) Let E be a complex Banach lattice, e.g. E = C(K) for a compact
space K, or E = LP(Q, X, p).

(ii) Let (e"*)s>0 be a Co-semigroup on E.

Definition
The semigroup (et4):>g is called...
(i) ...positive, if e x >0 for all x > 0 and for all t > 0.

(ii) ...uniformly eventually positive if there is a ty € [0, 00) such that
etAx > 0 for all x> 0 and for all t > t.

(iii) ...individually eventually positive if for each x > 0 there is a
to € [0,00) such that e*x > 0 whenever t > t;.
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Basics

Example

Let E = C3 and let B = (uy, uz, u3) be the orthonormal basis given by

SR U G WS U (o R U et
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Basics

Example

Let E = C3 and let B = (uy, uz, u3) be the orthonormal basis given by

Let the representation matrix of e with respect to the basis 3 be given by

0 0 0 1 0 0
exp(t [0 -1 —1|)=|0 e fcost —e 'sint
0 1 -1 0 efsint e tcost

Then (e**);>0 is individually eventually positive.
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Basics

Remark

Let E = C" and let (€"):>0 be individually eventually positive. For large
t, we have ee; >0, ..., etAe, > 0.
Thus, et is uniformly eventually positive.
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Basics

Remark

Let E = C" and let (€"):>0 be individually eventually positive. For large
t, we have ee; >0, ..., etAe, > 0.
Thus, et is uniformly eventually positive.

Example
Let E=C([-1,1]) and F := {f € E: [ fdA =0}. Then £ = (1) & F.
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Basics

Remark

Let E = C" and let (€"):>0 be individually eventually positive. For large
t, we have ee; >0, ..., etAe, > 0.
Thus, et is uniformly eventually positive.

Example

Let E=C([-1,1]) and F:={f € E: [fd\ =0}. Then E=(1)® F.
Let R be the reflection operator on F, i.e.

Rf(w) = f(—w) for all f € E and for all w € [-1,1].

Then o(R) = {~1,1}.
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Basics

Remark

Let E = C" and let (€"):>0 be individually eventually positive. For large
t, we have ee; >0, ..., etAe, > 0.
Thus, et is uniformly eventually positive.

Example

Let E=C([-1,1]) and F:={f € E: [fd\ =0}. Then E=(1)® F.
Let R be the reflection operator on F, i.e.

Rf(w) = f(—w) for all f € E and for all w € [-1,1].
Then o(R) = {—1,1}. The operator

A:0<1> @(R—Qidp)

generates an individually eventually positive semigroup on E.
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Spectral properties

The following theorem is well-known for positive semigroups.

Theorem

Let (€*)>0 be individually eventually positive with growth bound w and
spectral bound s(A) :=sup{Re X : X € o(A)}.

(i) We always have s(A) € o(A).
(i) If E= C(K) or E = LY(Q,X,u) or E is a Hilbert space, then
s(A) = w.
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Spectral properties

The following theorem is well-known for positive semigroups.

Theorem

Let (€*)>0 be individually eventually positive with growth bound w and
spectral bound s(A) :=sup{Re X : X € o(A)}.

(i) We always have s(A) € o(A).

(i) If E= C(K) or E = LY(Q,X,u) or E is a Hilbert space, then
s(A) = w.

Question
For positive semigroups, (ii) is also true on E = LP(Q2, X, ) and on
E = Co(L) for a locally compact space L.

Does this remain true for (individually or uniformly) eventually positive
semigroups?
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A characterization

Let E = C(K).
(i) We write f > 0if f > 0and f #0.

(i) We write f > 0 and say that f is strongly positive if f(w) > 0 for all
we K.
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A characterization

Let E = C(K).
(i) We write f > 0if f > 0and f #0.

(i) We write f > 0 and say that f is strongly positive if f(w) > 0 for all
we K.

Definition
Let E = C(K). The semigroup (e4);>o is called individually eventually

strongly positive if for each f > 0 there is a tp € [0, 00) such that
etAf > 0 for all t > to.
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A characterization

Theorem

If e*A is compact for large t, then the following assertions are equivalent:

(i) (e™)t>0 is individually eventually strongly positive.

(i) s(A) is a simple and dominant eigenvalue of A and
ker(s(A) — A) = (u) for some u>> 0.
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A characterization

Theorem
If e is compact for large t, then the following assertions are equivalent:
(i) (e™)t>0 is individually eventually strongly positive.

(i) s(A) is a simple and dominant eigenvalue of A and
ker(s(A) — A) = (u) for some u>> 0.

A glimpse of the proof.

“(ii) = (i)" Assertion (ii) implies that the spectral projection P
corresponding to s(A) is strongly positive and that e — P as t — oo.
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A characterization

Theorem
If e is compact for large t, then the following assertions are equivalent:
(i) (e™)t>0 is individually eventually strongly positive.

(i) s(A) is a simple and dominant eigenvalue of A and
ker(s(A) — A) = (u) for some u>> 0.

A glimpse of the proof.
“(ii) = (i)" Assertion (ii) implies that the spectral projection P
corresponding to s(A) is strongly positive and that e — P as t — oo.
“(i) = (ii)" To see that s(A) is dominant:

@ Split off the peripheral spectrum.

@ Show that the corresponding restriction of the semigroup is positive.

@ Apply Perron-Frobenius theory of positive semigroups. O

v
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A characterization

Remark

(i) Further characterizations involve the resolvent of A or the spectral
projection corresponding to s(A).

(i) A generalization to arbitrary Banach lattices is possible under
additional regularity assumptions on (etA)tZO and on the domain
D(A).
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A characterization

Remark

(i) Further characterizations involve the resolvent of A or the spectral
projection corresponding to s(A).

(i) A generalization to arbitrary Banach lattices is possible under
additional regularity assumptions on (etA)tZO and on the domain
D(A).

(iii) This generalization can be applied to study e.g. the semigroup
generated by the bi-Laplacian on the disk in R?.
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Asymptotic positivity

For x € E, let dy(x) := dist(x, E+) be the distance of x to the positive

cone.

Definition

Suppose that s(A) = 0. The semigroup (e™);> is called...

(i) ...uniformly asymptotically positive if for each £ > 0 there is a
to € [0,00) such that d, (e"x) < e|x|| for all x > 0 and for all
t>ty.

(ii) ...individually asymptotically positive if lim;_,. d, (e4x) = 0 for all
x > 0.

Jochen Glick (Ulm University) Eventual Positivity Ilwota 2014 9 / total



Asymptotic positivity

Theorem

Suppose that s(A) = 0 and that ()0 is bounded and eventually
compact. Then the following assertions are equivalent:

(i) (e"*)¢>0 is individually asymptotically positive.
(ii) (e")e>0 is uniformly asymptotically positive.

(iii) s(A) is a dominant eigenvalue and the corresponding spectral
projection P is positive.

(iv) et converges (in operator norm) to a positive mapping as t — oo.

v
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