Eventual Positivity of Operator Semigroups

Jochen Glück

Ulm University

Positivity IX, 17 July – 21 July 2017

Joint work with Daniel Daners (University of Sydney) and James B. Kennedy (University of Lisbon)
The Spectrum of Positive Matrices

Theorem (Perron–Frobenius)

Let $T \in \mathbb{R}^{d \times d}$ be such that $T \geq 0$.

(a) The spectral radius $r(T)$ is an element of the spectrum $\sigma(T)$.

(b) There exists a positive eigenvector for $r(T)$.

(c) The peripheral spectrum $\sigma_{\text{per}}(T) := \{ \lambda \in \sigma(T) : |\lambda| = r(T) \}$ is cyclic, i.e. if $r(T)e^{i\theta} \in \sigma_{\text{per}}(T)$, then $r(T)e^{in\theta} \in \sigma_{\text{per}}(T)$ for all $n \in \mathbb{Z}$.

(d) And many more...
The Spectrum of Positive Matrices

Theorem (Perron–Frobenius)

Let $T \in \mathbb{R}^{d \times d}$ be such that $T \geq 0$.

(a) The spectral radius $r(T)$ is an element of the spectrum $\sigma(T)$.

(b) There exists a positive eigenvector for $r(T)$.

(c) The peripheral spectrum $\sigma_{\text{per}}(T) := \{ \lambda \in \sigma(T) : |\lambda| = r(T) \}$ is cyclic, i.e. if $r(T)e^{i\theta} \in \sigma_{\text{per}}(T)$, then $r(T)e^{in\theta} \in \sigma_{\text{per}}(T)$ for all $n \in \mathbb{Z}$.

(d) And many more...
The Spectrum of Positive Matrices

Theorem (Perron–Frobenius)

Let $T \in \mathbb{R}^{d \times d}$ be such that $T \geq 0$.

(a) The spectral radius $r(T)$ is an element of the spectrum $\sigma(T)$.

(b) There exists a positive eigenvector for $r(T)$.

(c) The peripheral spectrum $\sigma_{\text{per}}(T) := \{\lambda \in \sigma(T) : |\lambda| = r(T)\}$ is cyclic, i.e. if $r(T)e^{i\theta} \in \sigma_{\text{per}}(T)$, then $r(T)e^{in\theta} \in \sigma_{\text{per}}(T)$ for all $n \in \mathbb{Z}$.

(d) And many more...
The Spectrum of Positive Matrices

Theorem (Perron–Frobenius)

Let $T \in \mathbb{R}^{d \times d}$ be such that $T \geq 0$.

(a) The spectral radius $r(T)$ is an element of the spectrum $\sigma(T)$.

(b) There exists a positive eigenvector for $r(T)$.
The Spectrum of Positive Matrices

Theorem (Perron–Frobenius)

Let \(T \in \mathbb{R}^{d \times d} \) be such that \(T \geq 0 \).

(a) The spectral radius \(r(T) \) is an element of the spectrum \(\sigma(T) \).

(b) There exists a positive eigenvector for \(r(T) \).

(c) The peripheral spectrum

\[
\sigma_{\text{per}}(T) := \{ \lambda \in \sigma(T) : |\lambda| = r(T) \}
\]

is cyclic
The Spectrum of Positive Matrices

Theorem (Perron–Frobenius)

Let $T \in \mathbb{R}^{d \times d}$ be such that $T \geq 0$.

(a) The spectral radius $r(T)$ is an element of the spectrum $\sigma(T)$.

(b) There exists a positive eigenvector for $r(T)$.

(c) The peripheral spectrum

$$\sigma_{\text{per}}(T) := \{ \lambda \in \sigma(T) : |\lambda| = r(T) \}$$

is cyclic, i.e. if $r(T)e^{i\theta} \in \sigma_{\text{per}}(T)$, then $r(T)e^{in\theta} \in \sigma_{\text{per}}(T)$ for all $n \in \mathbb{Z}$.

Jochen Glück (Ulm University)
The Spectrum of Positive Matrices

Theorem (Perron–Frobenius)

Let $T \in \mathbb{R}^{d \times d}$ be such that $T \geq 0$.

(a) The spectral radius $r(T)$ is an element of the spectrum $\sigma(T)$.

(b) There exists a positive eigenvector for $r(T)$.

(c) The peripheral spectrum

$$\sigma_{\text{per}}(T) := \{ \lambda \in \sigma(T) : |\lambda| = r(T) \}$$

is cyclic, i.e. if $r(T)e^{i\theta} \in \sigma_{\text{per}}(T)$, then $r(T)e^{in\theta} \in \sigma_{\text{per}}(T)$ for all $n \in \mathbb{Z}$.

(d) And many more...
Generalisations

Similar results remain true (under appropriate technical assumptions)

(a) if T is only eventually positive, i.e. $T_n \geq 0$ for all sufficiently large n (extensive literature, cf. [Glü17b, Section 1]) or

(b) if T is a positive operator on a Banach lattice (cf. [Sch74, Chapter 5]).
Generalisations

Similar results remain true (under appropriate technical assumptions)

(a) if T is only eventually positive, i.e. $T^n \geq 0$ for all sufficiently large n
(extensive literature, cf. [Glü17b, Section 1] for a brief overview)

(b) if T is a positive operator on a Banach lattice (cf. [Sch74, Chapter 5]).
Generalisations

Similar results remain true (under appropriate technical assumptions)

(a) if T is only \textit{eventually positive}, i.e. $T^n \geq 0$ for all sufficiently large n

(see extensive literature, cf. [Glü17b, Section 1] for a brief overview)

or

(b) if T is a positive operator on a Banach lattice (cf. [Sch74, Chapter 5]).
Generalisations

Similar results remain true (under appropriate technical assumptions)

(a) if T is only \textit{eventually positive}, i.e. $T^n \geq 0$ for all sufficiently large n
 (extensive literature, cf. [Glü17b, Section 1] for a brief overview)
 or

(b) if T is a positive operator on a Banach lattice (cf. [Sch74, Chapter 5]).

Observation

Nobody has combined these two approaches, yet.
Notions of Eventual Positivity

Definition

A bounded linear operator T on a Banach lattice E is called...

(a) uniformly eventually positive if the inequality $T_n \geq 0$ holds whenever n is larger than an appropriate n_0.

(b) individually eventually positive if, for all $x \in E^+$, the inequality $T_n x \geq 0$ holds whenever n is larger than an appropriate n_0 (where n_0 might depend on x).
Notions of Eventual Positivity

Definition

A bounded linear operator T on a Banach lattice E is called...

(a) uniformly eventually positive if the inequality

$$T^n \geq 0$$

holds whenever n is larger than an appropriate n_0.
Notions of Eventual Positivity

Definition
A bounded linear operator T on a Banach lattice E is called...

(a) *uniformly eventually positive* if the inequality

$$T^n \geq 0$$

holds whenever n is larger than an appropriate n_0.

(b) *individually eventually positive* if

...
Notions of Eventual Positivity

Definition

A bounded linear operator T on a Banach lattice E is called...

(a) *uniformly eventually positive* if the inequality

$$T^n \geq 0$$

holds whenever n is larger than an appropriate n_0.

(b) *individually eventually positive* if, for all $x \in E_+$, the inequality

$$T^n x \geq 0$$

holds whenever n is larger than an appropriate n_0 (where n_0 might depend on x).
Remarks

There are even more interesting notions, e.g.

- Weak eventual positivity: consider the inequality $\langle x', T_n x \rangle \geq 0$ for $x, x' \geq 0$ and let n_0 depend on both x and the functional x'.

- Asymptotic positivity: consider the condition $\text{dist}(T_n x, E^+^n) \to 0$ for $x \in E^+$.

In infinite dimensions: ind. eventual positivity $\not\Rightarrow$ unif. eventual positivity.

Counterexample (idea)

Let $E = C([0,1])$ and construct T non-positive such that for each $f \in E$ $T_n f \to \int_0^1 f(x) \, dx \cdot 1$ ($n \to \infty$).

If $f \geq 0$, then $T_n f \geq 0$ for all large n, but this might happen very late if $\int_0^1 f(x) \, dx$ is small compared to $\|f\|_\infty$.
Remarks

There are even more interesting notions, e.g.

- **weak eventual positivity**: consider the inequality $\langle x', T^n x \rangle \geq 0$ for $x, x' \geq 0$ and let n_0 depend on both x and the functional x'.
Remarks

There are even more interesting notions, e.g.

- *weak* eventual positivity: consider the inequality $\langle x', T^n x \rangle \geq 0$ for $x, x' \geq 0$ and let n_0 depend on both x and the functional x'.

- *asymptotic* positivity: consider the condition $\text{dist}(T^n x, E_+) \to 0$ for $x \in E_+$.

Counterexample (idea)

Let $E = C([0, 1])$ and construct T non-positive such that for each $f \in E$ $T^n f \to \int_0^1 f(x) \, dx \cdot 1$ (as $n \to \infty$).

If $f \geq 0$, then $T^n f \geq 0$ for all large n, but this might happen very late if $\int_0^1 f(x) \, dx$ is small compared to $\|f\|_{\infty}$.

Jochen Glück (Ulm University)
Remarks

There are even more interesting notions, e.g.

- **weak** eventual positivity: consider the inequality $\langle x', T^n x \rangle \geq 0$ for $x, x' \geq 0$ and let n_0 depend on both x and the functional x'.

- **asymptotic** positivity: consider the condition $\text{dist}(T^n x, E_+) \nrightarrow 0$ for $x \in E_+$.

In infinite dimensions: ind. eventual positivity \nRightarrow unif. eventual positivity.

Counterexample (idea)

Let $E = C([0,1])$ and construct T non-positive such that for each $f \in E$ $T^n f \rightarrow \int_0^1 f(x) \, dx \cdot 1$ ($n \rightarrow \infty$).

If $f \geq 0$, then $T^n f \geq 0$ for all large n, but this might happen very late if $\int_0^1 f(x) \, dx$ is small compared to $\|f\|_\infty$.
Remarks

There are even more interesting notions, e.g.

- weak eventual positivity: consider the inequality $\langle x', T^n x \rangle \geq 0$ for $x, x' \geq 0$ and let n_0 depend on both x and the functional x'.
- asymptotic positivity: consider the condition $\text{dist}(T^n x, E_+) \xrightarrow{n \to \infty} 0$ for $x \in E_+$.

In infinite dimensions: ind. eventual positivity \nRightarrow unif. eventual positivity.

Counterexample (idea)

Let $E = C([0, 1])$ and construct T non-positive such that for each $f \in E$

$$T^n f \to \int_0^1 f(x) \, dx \cdot 1 \quad (n \to \infty).$$
Remarks

There are even more interesting notions, e.g.

- **weak eventual positivity**: consider the inequality $\langle x', T^n x \rangle \geq 0$ for $x, x' \geq 0$ and let n_0 depend on both x and the functional x'.
- **asymptotic positivity**: consider the condition $\text{dist}(T^n x, E_+) \xrightarrow{n \to \infty} 0$ for $x \in E_+$.

In infinite dimensions: ind. eventual positivity $\not\Rightarrow$ unif. eventual positivity.

Counterexample (idea)

Let $E = C([0, 1])$ and construct T non-positive such that for each $f \in E$

$$T^n f \to \int_0^1 f(x) \, dx \cdot 1 \quad (n \to \infty).$$

If $f \geq 0$, then $T^n f \geq 0$ for all large n,

Jochen Glück (Ulm University)
Remarks

There are even more interesting notions, e.g.

- **weak** eventual positivity: consider the inequality $\langle x', T^n x \rangle \geq 0$ for $x, x' \geq 0$ and let n_0 depend on both x and the functional x'.

- **asymptotic** positivity: consider the condition $\text{dist}(T^n x, E_+) \rightarrow 0$ for $x \in E_+$.

In infinite dimensions: ind. eventual positivity $\not\Rightarrow$ unif. eventual positivity.

Counterexample (idea)

Let $E = C([0, 1])$ and construct T non-positive such that for each $f \in E$

$$T^n f \rightarrow \int_0^1 f(x) \, dx \cdot 1 \quad (n \rightarrow \infty).$$

If $f \geq 0$, then $T^n f \geq 0$ for all large n, but: this might happen very late if $
\int_0^1 f(x) \, dx$ is small compared to $\|f\|_\infty$.
The Spectrum of Eventually Positive Operators

Theorem (G., in [Glü17b])

Let T be a bounded linear operator on a non-zero Banach lattice E. Assume that T is individually eventually positive and that $r(T) > 0$.

(a) We have $r(T) \in \sigma(T)$.

(b) If T is compact, then $r(T)$ is an eigenvalue of T with a positive eigenvector.

(c) If T is even uniformly eventually positive and if $T/r(T)$ is power-bounded, then the peripheral spectrum of T is cyclic.

Ideas for the proof.

(a) A (subtle) resolvent estimate.

(b) Laurent expansion of the resolvent about $r(T)$.

(c) Associate a positive operator S to the operator T by means of an ultra power argument.
The Spectrum of Eventually Positive Operators

Theorem (G., in [Glü17b])

Let T be a bounded linear operator on a non-zero Banach lattice E. Assume that T is individually eventually positive and that $r(T) > 0$.

(a) We have $r(T) \in \sigma(T)$.

(b) If T is compact, then $r(T)$ is an eigenvalue of T with a positive eigenvector.

(c) If T is even uniformly eventually positive and if $T/r(T)$ is power-bounded, then the peripheral spectrum of T is cyclic.

Ideas for the proof.

(a) A (subtle) resolvent estimate.

(b) Laurent expansion of the resolvent about $r(T)$.

(c) Associate a positive operator S to the operator T by means of an ultra power argument.
The Spectrum of Eventually Positive Operators

Theorem (G., in [Glü17b])

Let T be a bounded linear operator on a non-zero Banach lattice E. Assume that T is individually eventually positive and that $r(T) > 0$.

(a) We have $r(T) \in \sigma(T)$.

(b) If T is compact, then $r(T)$ is an eigenvalue of T with a positive eigenvector.

(c) If T is even uniformly eventually positive and if $T/r(T)$ is power-bounded, then the peripheral spectrum of T is cyclic.

Ideas for the proof.

(a) A (subtle) resolvent estimate.

(b) Laurent expansion of the resolvent about $r(T)$.

(c) Associate a positive operator S to the operator T by means of an ultra power argument.
The Spectrum of Eventually Positive Operators

Theorem (G., in [Glü17b])

Let T be a bounded linear operator on a non-zero Banach lattice E. Assume that T is individually eventually positive and that $r(T) > 0$.

(a) We have $r(T) \in \sigma(T)$.

(b) If T is compact, then $r(T)$ is an eigenvalue of T with a positive eigenvector.
The Spectrum of Eventually Positive Operators

Theorem (G., in [Glü17b])

Let T be a bounded linear operator on a non-zero Banach lattice E. Assume that T is individually eventually positive and that $r(T) > 0$.

(a) We have $r(T) \in \sigma(T)$.

(b) If T is compact, then $r(T)$ is an eigenvalue of T with a positive eigenvector.

(c) If T is even uniformly eventually positive and if $T/r(T)$ is power-bounded, then the peripheral spectrum of T is cyclic.

Ideas for the proof.

(a) A (subtle) resolvent estimate.

(b) Laurent expansion of the resolvent about $r(T)$.

(c) Associate a positive operator S to the operator T by means of an ultra power argument.
The Spectrum of Eventually Positive Operators

Theorem (G., in [Glü17b])

Let T be a bounded linear operator on a non-zero Banach lattice E. Assume that T is individually eventually positive and that $r(T) > 0$.

(a) We have $r(T) \in \sigma(T)$.
(b) If T is compact, then $r(T)$ is an eigenvalue of T with a positive eigenvector.
(c) If T is even uniformly eventually positive and if $T/r(T)$ is power-bounded, then the peripheral spectrum of T is cyclic.

Ideas for the proof.

(a) A (subtle) resolvent estimate.
The Spectrum of Eventually Positive Operators

Theorem (G., in [Glü17b])

Let T be a bounded linear operator on a non-zero Banach lattice E. Assume that T is individually eventually positive and that $r(T) > 0$.

(a) We have $r(T) \in \sigma(T)$.

(b) If T is compact, then $r(T)$ is an eigenvalue of T with a positive eigenvector.

(c) If T is even uniformly eventually positive and if $T/r(T)$ is power-bounded, then the peripheral spectrum of T is cyclic.

Ideas for the proof.

(a) A (subtle) resolvent estimate.

(b) Laurent expansion of the resolvent about $r(T)$.
The Spectrum of Eventually Positive Operators

Theorem (G., in [Glü17b])

Let T be a bounded linear operator on a non-zero Banach lattice E. Assume that T is individually eventually positive and that $r(T) > 0$.

(a) We have $r(T) \in \sigma(T)$.

(b) If T is compact, then $r(T)$ is an eigenvalue of T with a positive eigenvector.

(c) If T is even uniformly eventually positive and if $T/r(T)$ is power-bounded, then the peripheral spectrum of T is cyclic.

Ideas for the proof.

(a) A (subtle) resolvent estimate.

(b) Laurent expansion of the resolvent about $r(T)$.

(c) Associate a *positive* operator S to the operator T by means of an ultra power argument.
C_0-semigroups.

Let E be a Banach lattice and let $u \in E_+$ be a quasi-interior point.
C_0-semigroups.

Let E be a Banach lattice and let $u \in E_+$ be a quasi-interior point.

Notation: $f \gg_u 0 \iff \exists \epsilon > 0 : f \geq \epsilon u$.
\(C_0\)-semigroups.

Let \(E\) be a Banach lattice and let \(u \in E_+\) be a quasi-interior point.

Notation: \(f \gg_u 0 \iff \exists \varepsilon > 0 : f \geq \varepsilon u\).

Theorem (Daners, G., Kennedy, [DGK16a])

Let \(e^{tA}\) be an analytic \(C_0\)-semigroup on \(E\). Assume that \(e^{tA}\) is compact for one (equivalently all) \(t > 0\)
C_0-semigroups.

Let E be a Banach lattice and let $u \in E_+$ be a quasi-interior point.

Notation: $f \gg_u 0 :\Leftrightarrow \exists \varepsilon > 0 : f \geq \varepsilon u$.

Theorem (Daners, G., Kennedy, [DGK16a])

Let $(e^{tA})_{t \geq 0}$ be an analytic C_0-semigroup on E. Assume that e^{tA} is compact for one (equivalently all) $t > 0$ and that $D(A^n) \subseteq \bigcup_{c > 0}[-cu, cu]$ for some $n \in \mathbb{N}$. Equivalent:

(a) The semigroup has the following eventual positivity property:

$\forall f \in E^+ \{0\} \exists t_0 \geq 0 \forall t \geq t_0$:

$e^{tA}f \gg u_0$.

(b) The spectral bound $s(A)$ is a dominant spectral value of A; moreover, $\ker(s(A) - A)$ is spanned by a vector $v \gg u_0$ and $\ker(s(A) - A')$ contains a strictly positive functional.
C_0-semigroups.

Let E be a Banach lattice and let $u \in E_+$ be a quasi-interior point.

Notation: $f \gg_u 0 :\iff \exists \varepsilon > 0 : f \geq \varepsilon u.$

Theorem (Daners, G., Kennedy, [DGK16a])

Let $(e^{tA})_{t \geq 0}$ be an analytic C_0-semigroup on E. Assume that e^{tA} is compact for one (equivalently all) $t > 0$ and that $D(A^n) \subseteq \bigcup_{c > 0} [-cu, cu]$ for some $n \in \mathbb{N}$. Equivalent:

(a) The semigroup has the following eventual positivity property:

$$\forall f \in E_+ \setminus \{0\} \exists t_0 \geq 0 \forall t \geq t_0 : e^{tA}f \gg_u 0.$$
C_0-semigroups.

Let E be a Banach lattice and let $u \in E_+$ be a quasi-interior point.

Notation: $f \gg_u 0 \iff \exists \varepsilon > 0 : f \geq \varepsilon u$.

Theorem (Daners, G., Kennedy, [DGK16a])

Let $(e^{tA})_{t \geq 0}$ be an analytic C_0-semigroup on E. Assume that e^{tA} is compact for one (equivalently all) $t > 0$ and that $D(A^n) \subseteq \bigcup_{c > 0} [-cu, cu]$ for some $n \in \mathbb{N}$. Equivalent:

(a) The semigroup has the following eventual positivity property:

$$\forall f \in E_+ \setminus \{0\} \exists t_0 \geq 0 \forall t \geq t_0 : e^{tA}f \gg_u 0.$$

(b) The spectral bound $s(A)$ is a dominant spectral value of A; moreover, $\ker(s(A) - A)$ is spanned by a vector $v \gg_u 0$ and $\ker(s(A) - A')$ contains a strictly positive functional.
Remarks.

(a) One can also relate the above properties (a) and (b) to properties of the resolvent and to the spectral projection associated with A.

(b) One can vary the assumptions of the theorem (e.g. analyticity) in several ways. That’s all certainly nice – but is it useful?
Remarks.

(a) One can also relate the above properties (a) and (b) to properties of the resolvent and to the spectral projection associated with $s(A)$.

(b) One can vary the assumptions of the theorem (e.g. analyticity) in several ways. That's all certainly nice – but is it useful?
Remarks.

(a) One can also relate the above properties (a) and (b) to properties of the resolvent and to the spectral projection associated with $s(A)$.

(b) One can vary the assumptions of the theorem (e.g. analyticity) in several ways.
Remarks.

(a) One can also relate the above properties (a) and (b) to properties of the resolvent and to the spectral projection associated with $s(A)$.

(b) One can vary the assumptions of the theorem (e.g. analyticity) in several ways.

That’s all certainly nice – but is it useful?
Consider again the assertion (a):

\[\forall f > 0 \exists t_0 \geq 0 \forall t \geq t_0 : e^{tA}f \gg u 0. \]
Consider again the assertion (a):

\[\forall f > 0 \exists t_0 \geq 0 \forall t \geq t_0 : e^{tA}f \gg u 0. \]

Example 1.

Let \(\Omega \subseteq \mathbb{R}^d \) be the unit ball.
Consider again the assertion (a):

$$\forall f > 0 \exists t_0 \geq 0 \forall t \geq t_0 : e^{tA}f \gg u 0.$$

Example 1.

Let $\Omega \subseteq \mathbb{R}^d$ be the unit ball. Consider the Cauchy problem

$$\begin{cases}
\dot{w} = -\Delta^2 w & \text{in } B, \\
w|_{\partial \Omega} = \frac{\partial}{\partial \nu} w = 0 \\
+ \text{ initial condition.}
\end{cases}$$
Consider again the assertion (a):

$$\forall f > 0 \exists t_0 \geq 0 \forall t \geq t_0 : e^{tA}f \gg u \ 0.$$

Example 1.

Let $\Omega \subseteq \mathbb{R}^d$ be the unit ball. Consider the Cauchy problem

$$\begin{cases}
\dot{w} = -\Delta^2 w \quad \text{in } B, \\
w|_{\partial \Omega} = \frac{\partial}{\partial \nu} w = 0 \\
\text{+ initial condition.}
\end{cases}$$

Then the associated semigroup on $L^p(\Omega)$ ($1 < p < \infty$) fulfils (a),
Consider again the assertion (a):

\[\forall f > 0 \exists t_0 \geq 0 \forall t \geq t_0 : e^{tA}f \gg_0 u. \]

Example 1.

Let \(\Omega \subseteq \mathbb{R}^d \) be the unit ball. Consider the Cauchy problem

\[
\begin{cases}
\dot{w} = -\Delta^2 w & \text{in } B, \\
w|_{\partial\Omega} = \frac{\partial}{\partial \nu} w = 0 \\
+ \text{ initial condition.}
\end{cases}
\]

Then the associated semigroup on \(L^p(\Omega) \) (\(1 < p < \infty \)) fulfils (a), where \(u(x) = \text{dist}(x, \partial \Omega)^2 \) for all \(x \in \Omega \).
Consider again the assertion (a):

\[\forall f > 0 \exists t_0 \geq 0 \forall t \geq t_0 : e^{tA}f \gg u 0. \]

Example 1.

Let \(\Omega \subseteq \mathbb{R}^d \) be the unit ball. Consider the Cauchy problem

\[
\begin{cases}
\dot{w} = -\Delta^2 w & \text{in } B, \\
 w|_{\partial \Omega} = \frac{\partial}{\partial \nu} w = 0 \\
+ \text{ initial condition.}
\end{cases}
\]

Then the associated semigroup on \(L^p(\Omega) \) (\(1 < p < \infty \)) fulfils (a), where

\[u(x) = \text{dist}(x, \partial \Omega)^2 \]

for all \(x \in \Omega \). But the semigroup is not positive.
Consider again the assertion (a):

\[\forall f > 0 \ \exists t_0 \geq 0 \ \forall t \geq t_0 : \ e^{tA}f \gg_u 0. \]

Example 1.

Let \(\Omega \subseteq \mathbb{R}^d \) be the unit ball. Consider the Cauchy problem

\[
\begin{align*}
\dot{w} &= -\Delta^2 w \quad \text{in } B, \\
w|_{\partial \Omega} &= \frac{\partial}{\partial \nu} w = 0 \\
+ \text{ initial condition.}
\end{align*}
\]

Then the associated semigroup on \(L^p(\Omega) \) (\(1 < p < \infty \)) fulfils (a), where \(u(x) = \text{dist}(x, \partial \Omega)^2 \) for all \(x \in \Omega \). But the semigroup is not positive.

Proof.

It follows from work of Grunau and Sweers [GS98] that \(-\Delta^2 \) (with the given boundary conditions) fulfils the spectral condition (b) in the above theorem.
Consider again the assertion (a):

\[\forall f > 0 \exists t_0 \geq 0 \forall t \geq t_0 : e^{t A} f \gg u 0. \]
Consider again the assertion (a):

\[\forall f > 0 \exists t_0 \geq 0 \forall t \geq t_0 : e^{tA}f \gg u 0. \]

Example 2.
Consider the following heat equation with non-local boundary conditions:

\[
\begin{align*}
\dot{w} &= \Delta w \quad \text{in} \quad (0,1), \\
\lim_{t \to 0} w(t) &= \lim_{t \to 1} w(t) = w'(0) = -w'(1) + \text{initial condition}.
\end{align*}
\]

Then the associated semigroup on \(L^2((0,1)) \) fulfills (a), where \(u = 1((0,1)) \).

But the semigroup is not positive.

Sketch of the proof.
Let \(\Delta \) denote the Laplace operator with the above boundary conditions.
Explicit computation:
\[(\Delta)^{-1}f \gg u \quad \text{whenever} \quad 0 \neq f \geq 0. \]

Kre˘ın–Rutman type argument \(\Rightarrow \) condition (b) in the theorem holds.
Consider again the assertion (a):

\[\forall f > 0 \exists t_0 \geq 0 \forall t \geq t_0 : e^{tA}f \gg_u 0. \]

Example 2.

Consider the following heat equation with non-local boundary conditions:

\[\dot{w} = \Delta w \quad \text{in} \ (0, 1), \]

\[w(0) + w(1) = w'(0) = -w'(1) \]

+ initial condition.
Consider again the assertion (a):
\[\forall f > 0 \exists t_0 \geq 0 \forall t \geq t_0 : e^{tf} \gg u. \]

Example 2.

Consider the following heat equation with non-local boundary conditions:
\[
\begin{aligned}
\dot{w} &= \Delta w \quad \text{in } (0, 1), \\
 w(0) + w(1) &= w'(0) = -w'(1) \\
 \text{+ initial condition.}
\end{aligned}
\]

Then the associated semigroup on \(L^2((0, 1)) \) fulfils (a), where \(u = \mathbb{1}_{(0,1)} \).

But the semigroup is not positive.
Consider again the assertion (a):

$$\forall f > 0 \exists t_0 \geq 0 \forall t \geq t_0 : e^{tA}f \gg u_0.$$

Example 2.

Consider the following heat equation with non-local boundary conditions:

$$\begin{cases}
\dot{w} = \Delta w \text{ in } (0,1), \\
w(0) + w(1) = w'(0) = -w'(1)
\end{cases}$$

+ initial condition.

Then the associated semigroup on $L^2((0,1))$ fulfils (a), where $u = 1_{(0,1)}$. But the semigroup is not positive.
Consider again the assertion (a):

$$\forall f > 0 \; \exists t_0 \geq 0 \; \forall t \geq t_0 : \; e^{tA} f \gg_u 0.$$

Example 2.

Consider the following heat equation with non-local boundary conditions:

$$\begin{cases}
\dot{w} = \Delta w \quad \text{in } (0,1), \\
w(0) + w(1) = w'(0) = -w'(1) \\
+ \text{ initial condition.}
\end{cases}$$

Then the associated semigroup on $L^2((0,1))$ fulfils (a), where $u = \mathbb{1}_{(0,1)}$. But the semigroup is not positive.

Sketch of the proof.

Let Δ denote the Laplace operator with the above boundary conditions.
Consider again the assertion (a):

$$\forall f > 0 \exists t_0 \geq 0 \forall t \geq t_0 : e^{tA}f \gg_u 0.$$

Example 2.

Consider the following heat equation with non-local boundary conditions:

\[
\begin{aligned}
\dot{w} &= \Delta w \quad \text{in } (0,1), \\
w(0) + w(1) &= w'(0) = -w'(1) &+ \text{initial condition.}
\end{aligned}
\]

Then the associated semigroup on $L^2((0,1))$ fulfils (a), where $u = \mathbb{1}_{(0,1)}$. But the semigroup is not positive.

Sketch of the proof.

Let Δ denote the Laplace operator with the above boundary conditions. Explicit computation: $(-\Delta)^{-1}f \gg_u 0$ whenever $0 \neq f \geq 0$.
Consider again the assertion (a):

\[\forall f > 0 \exists t_0 \geq 0 \forall t \geq t_0 : e^{tA}f \gg_u 0. \]

Example 2.

Consider the following heat equation with non-local boundary conditions:

\[
\left\{
\begin{array}{l}
\dot{w} = \Delta w \quad \text{in} \ (0,1), \\
w(0) + w(1) = w'(0) = -w'(1) \\
+ \text{initial condition.}
\end{array}
\right.
\]

Then the associated semigroup on \(L^2((0,1)) \) fulfils (a), where \(u = \mathbb{1}_{(0,1)}. \) But the semigroup ist not positive.

Sketch of the proof.

Let \(\Delta \) denote the Laplace operator with the above boundary conditions. Explicit computation: \((-\Delta)^{-1}f \gg_u 0 \) whenever \(0 \neq f \geq 0. \) Kreĭn–Rutman type argument \(\Rightarrow \) condition (b) in the theorem holds.
The state of the art.
The state of the art.

What do we know?
The state of the art.

What do we know?

- Characterisations and properties of (certain types of) individual eventual positivity for C_0-semigroup – under strong a priori assumptions on the spectrum [DGK16b, DGK16a, DGa].
The state of the art.

What do we know?

- Characterisations and properties of (certain types of) individual eventual positivity for C_0-semigroup – under strong a priori assumptions on the spectrum [DGK16b, DGK16a, DGa].
- First steps towards a perturbation theory of eventual positivity [SA17, DGb].

Spectral results for eventually positive operators – under quite weak assumptions [Glü17b].

A large variety of applications [DGK16b, DGK16a, Glü17a]; see also [Dan14].

Work in progress:
- Characterisation of uniform eventual positivity for C_0-semigroups – under strong a priori assumptions on the spectrum.
- Analysis of eventual positivity for Dirichlet-to-Neumann operators on metric graphs.
The state of the art.

What do we know?

- Characterisations and properties of (certain types of) individual eventual positivity for C_0-semigroup – under strong a priori assumptions on the spectrum [DGK16b, DGK16a, DGa].
- First steps towards a perturbation theory of eventual positivity [SA17, DGb].
- Spectral results for eventually positive operators – under quite weak assumptions [Glü17b].
The state of the art.

What do we know?

- Characterisations and properties of (certain types of) individual eventual positivity for C_0-semigroup – under strong a priori assumptions on the spectrum [DGK16b, DGK16a, DGa].
- First steps towards a perturbation theory of eventual positivity [SA17, DGb].
- Spectral results for eventually positive operators – under quite weak assumptions [Glü17b].
- A large variety of applications [DGK16b, DGK16a, Glü17a]; see also [Dan14].

Work in progress:
- Characterisation of uniform eventual positivity for C_0-semigroups – under strong a priori assumptions on the spectrum.
- Analysis of eventual positivity for Dirichlet-to-Neumann operators on metric graphs.
The state of the art.

What do we know?

- Characterisations and properties of (certain types of) individual eventual positivity for C_0-semigroup – under strong a priori assumptions on the spectrum [DGK16b, DGK16a, DGa].
- First steps towards a perturbation theory of eventual positivity [SA17, DGb].
- Spectral results for eventually positive operators – under quite weak assumptions [Glü17b].
- A large variety of applications [DGK16b, DGK16a, Glü17a]; see also [Dan14].

Work in progress:
The state of the art.

What do we know?

- Characterisations and properties of (certain types of) individual eventual positivity for C_0-semigroup – under strong a priori assumptions on the spectrum [DGK16b, DGK16a, DGa].
- First steps towards a perturbation theory of eventual positivity [SA17, DGb].
- Spectral results for eventually positive operators – under quite weak assumptions [Glü17b].
- A large variety of applications [DGK16b, DGK16a, Glü17a]; see also [Dan14].

Work in progress:

- Characterisation of *uniform* eventual positivity for C_0-semigroups – under strong a priori assumptions on the spectrum.
The state of the art.

What do we know?

- Characterisations and properties of (certain types of) individual eventual positivity for C_0-semigroup – under strong a priori assumptions on the spectrum [DGK16b, DGK16a, DGa].

- First steps towards a perturbation theory of eventual positivity [SA17, DGb].

- Spectral results for eventually positive operators – under quite weak assumptions [Glü17b].

- A large variety of applications [DGK16b, DGK16a, Glü17a]; see also [Dan14].

Work in progress:

- Characterisation of uniform eventual positivity for C_0-semigroups – under strong a priori assumptions on the spectrum.

- Analysis of eventual positivity for Dirichlet-to-Neumann operators on metric graphs.
The state of the art.

What do we not know, yet? – Open problems:
The state of the art.

What do we not know, yet? – Open problems:

- Consider the line $s(A) + i\mathbb{R}$.
The state of the art.

What do we not know, yet? – Open problems:

- Consider the line $s(A) + i\mathbb{R}$. Characterise eventual positivity of $(e^{tA})_{t \geq 0}$ if there exist essential spectral values and/or infinitely many spectral values on this line.

Can one obtain cyclicity results for the spectrum of eventually positive semigroups?

Develop the perturbation theory of eventually positive semigroups until it reaches a satisfactory state.

Your turn!

Jochen Glück (Ulm University)
The state of the art.

What do we not know, yet? – Open problems:

- Consider the line $s(A) + i\mathbb{R}$. Characterise eventual positivity of $(e^{tA})_{t \geq 0}$ if there exist essential spectral values and/or infinitely many spectral values on this line.

- Can one obtain cyclicity results for the spectrum of eventually positive semigroups?
The state of the art.

What do we not know, yet? – Open problems:

- Consider the line $s(A) + i\mathbb{R}$. Characterise eventual positivity of $(e^{tA})_{t \geq 0}$ if there exist essential spectral values and/or infinitely many spectral values on this line.
- Can one obtain cyclicity results for the spectrum of eventually positive semigroups?
- Develop the perturbation theory of eventually positive semigroups until it reaches a satisfactory state.
The state of the art.

What do we not know, yet? – Open problems:

- Consider the line $s(A) + i\mathbb{R}$. Characterise eventual positivity of $(e^{tA})_{t \geq 0}$ if there exist essential spectral values and/or infinitely many spectral values on this line.

- Can one obtain cyclicity results for the spectrum of eventually positive semigroups?

- Develop the perturbation theory of eventually positive semigroups until it reaches a satisfactory state.

Your turn!

Jochen Glück (Ulm University)
Daniel Daners.
Non-positivity of the semigroup generated by the Dirichlet-to-Neumann operator.

Daniel Daners and Jochen Glück.
The role of domination and smoothing conditions in the theory of eventually positive semigroups.
Bulletin of the Australian Mathematical Society.
Available online; DOI: 10.1017/S0004972717000260.

Daniel Daners and Jochen Glück.
Towards a perturbation theory for eventually positive semigroups.

Hans-Christoph Grunau and Guido Sweers.
The maximum principle and positive principal eigenfunctions for polyharmonic equations.

F. Shakeri and R. Alizadeh.
Nonnegative and eventually positive matrices.

Helmut H. Schaefer.
Banach lattices and positive operators.
Die Grundlehren der mathematischen Wissenschaften, Band 215.