Eventual Positivity of Operator Semigroups

Jochen Glück

Ulm University

Iwota 2014, July 14 - 18

based on joint work with W. Arendt, D. Daners and J. Kennedy
Assumptions throughout the talk:

(i) Let E be a complex Banach lattice, e.g. $E = C(K)$ for a compact space K, or $E = L^p(\Omega, \Sigma, \mu)$.

(ii) Let $(e^{tA})_{t \geq 0}$ be a C_0-semigroup on E.
Assumptions throughout the talk:

(i) Let E be a complex Banach lattice, e.g. $E = C(K)$ for a compact space K, or $E = L^p(\Omega, \Sigma, \mu)$.

(ii) Let $(e^{tA})_{t\geq 0}$ be a C_0-semigroup on E.

Definition

The semigroup $(e^{tA})_{t\geq 0}$ is called...

(i) ... *positive*, if $e^{tA}x \geq 0$ for all $x \geq 0$ and for all $t \geq 0$.

(ii) ... *uniformly eventually positive* if there is a $t_0 \in [0, \infty)$ such that $e^{tA}x \geq 0$ for all $x \geq 0$ and for all $t \geq t_0$.

(iii) ... *individually eventually positive* if for each $x \geq 0$ there is a $t_0 \in [0, \infty)$ such that $e^{tA}x \geq 0$ whenever $t \geq t_0$.
Example

Let $E = \mathbb{C}^3$ and let $B = (u_1, u_2, u_3)$ be the orthonormal basis given by

\[
 u_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad u_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \quad u_3 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}.
\]
Example

Let $E = \mathbb{C}^3$ and let $B = (u_1, u_2, u_3)$ be the orthonormal basis given by

$$u_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad u_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \quad u_3 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}.$$

Let the representation matrix of e^{tA} with respect to the basis B be given by

$$\exp(t \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & 1 & -1 \end{pmatrix}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{-t} \cos t & -e^{-t} \sin t \\ 0 & e^{-t} \sin t & e^{-t} \cos t \end{pmatrix}.$$

Then $(e^{tA})_{t \geq 0}$ is individually eventually positive.
Remark

Let $E = \mathbb{C}^n$ and let $(e^{tA})_{t \geq 0}$ be individually eventually positive. For large t, we have $e^{tA}e_1 \geq 0, \ldots, e^{tA}e_n \geq 0$.
Thus, e^{tA} is uniformly eventually positive.
Remark

Let \(E = \mathbb{C}^n \) and let \((e^{tA})_{t \geq 0} \) be individually eventually positive. For large \(t \), we have \(e^{tA}e_1 \geq 0, \ldots, e^{tA}e_n \geq 0 \). Thus, \(e^{tA} \) is uniformly eventually positive.

Example

Let \(E = C([-1, 1]) \) and \(F := \{ f \in E : \int f \, d\lambda = 0 \} \). Then \(E = \langle 1 \rangle \oplus F \).
Remark

Let $E = \mathbb{C}^n$ and let $(e^{tA})_{t \geq 0}$ be individually eventually positive. For large t, we have $e^{tA}e_1 \geq 0$, ..., $e^{tA}e_n \geq 0$.
Thus, e^{tA} is uniformly eventually positive.

Example

Let $E = C([-1, 1])$ and $F := \{f \in E : \int f \, d\lambda = 0\}$. Then $E = \langle 1 \rangle \oplus F$.
Let R be the reflection operator on F, i.e.

$$Rf(\omega) = f(-\omega) \quad \text{for all } f \in E \text{ and for all } \omega \in [-1, 1].$$

Then $\sigma(R) = \{-1, 1\}$.
Remark

Let $E = \mathbb{C}^n$ and let $(e^{tA})_{t \geq 0}$ be individually eventually positive. For large t, we have $e^{tA}e_1 \geq 0$, ..., $e^{tA}e_n \geq 0$. Thus, e^{tA} is uniformly eventually positive.

Example

Let $E = C([-1, 1])$ and $F := \{ f \in E : \int f \, d\lambda = 0 \}$. Then $E = \langle 1 \rangle \oplus F$. Let R be the reflection operator on F, i.e.

$$Rf(\omega) = f(-\omega) \quad \text{for all } f \in E \text{ and for all } \omega \in [-1, 1].$$

Then $\sigma(R) = \{-1, 1\}$. The operator

$$A = 0\langle 1 \rangle \oplus (R - 2 \text{id}_F)$$

generates an individually eventually positive semigroup on E.
The following theorem is well-known for positive semigroups.

Theorem

Let \((e^{tA})_{t \geq 0}\) be individually eventually positive with growth bound \(\omega\) and spectral bound \(s(A) := \sup \{\text{Re } \lambda : \lambda \in \sigma(A)\}\).

(i) We always have \(s(A) \in \sigma(A)\).

(ii) If \(E = C(K)\) or \(E = L^1(\Omega, \Sigma, \mu)\) or \(E\) is a Hilbert space, then \(s(A) = \omega\).
The following theorem is well-known for positive semigroups.

Theorem

Let \((e^{tA})_{t \geq 0}\) be individually eventually positive with growth bound \(\omega\) and spectral bound \(s(A) := \sup \{ \Re \lambda : \lambda \in \sigma(A) \}\).

(i) We always have \(s(A) \in \sigma(A)\).

(ii) If \(E = C(K)\) or \(E = L^1(\Omega, \Sigma, \mu)\) or \(E\) is a Hilbert space, then \(s(A) = \omega\).

Question

For positive semigroups, (ii) is also true on \(E = L^p(\Omega, \Sigma, \mu)\) and on \(E = C_0(L)\) for a locally compact space \(L\).

Does this remain true for (individually or uniformly) eventually positive semigroups?
Let $E = C(K)$.

(i) We write $f > 0$ if $f \geq 0$ and $f \neq 0$.

(ii) We write $f \gg 0$ and say that f is strongly positive if $f(\omega) > 0$ for all $\omega \in K$.

Let $E = C(K)$.

(i) We write $f > 0$ if $f \geq 0$ and $f \neq 0$.

(ii) We write $f \gg 0$ and say that f is strongly positive if $f(\omega) > 0$ for all $\omega \in K$.

Definition

Let $E = C(K)$. The semigroup $(e^{tA})_{t \geq 0}$ is called individually eventually strongly positive if for each $f > 0$ there is a $t_0 \in [0, \infty)$ such that $e^{tA}f \gg 0$ for all $t \geq t_0$.
Theorem

If e^{tA} is compact for large t, then the following assertions are equivalent:

(i) $(e^{tA})_{t \geq 0}$ is individually eventually strongly positive.

(ii) $s(A)$ is a simple and dominant eigenvalue of A and $\ker(s(A) - A) = \langle u \rangle$ for some $u \gg 0$.

A glimpse of the proof.

"(ii) \Rightarrow (i)"

Assertion (ii) implies that the spectral projection P corresponding to $s(A)$ is strongly positive and that $e^{tA} \to P$ as $t \to \infty$.

"(i) \Rightarrow (ii)"

To see that $s(A)$ is dominant:

Split off the peripheral spectrum.

Show that the corresponding restriction of the semigroup is positive.

Apply Perron-Frobenius theory of positive semigroups.
Theorem

If e^{tA} is compact for large t, then the following assertions are equivalent:

(i) $(e^{tA})_{t \geq 0}$ is individually eventually strongly positive.

(ii) $s(A)$ is a simple and dominant eigenvalue of A and $\ker(s(A) - A) = \langle u \rangle$ for some $u \gg 0$.

A glimpse of the proof.

“(ii) $\Rightarrow (i)$” Assertion (ii) implies that the spectral projection P corresponding to $s(A)$ is strongly positive and that $e^{tA} \to P$ as $t \to \infty$.
A characterization

Theorem

If e^{tA} is compact for large t, then the following assertions are equivalent:

(i) $(e^{tA})_{t \geq 0}$ is individually eventually strongly positive.

(ii) $s(A)$ is a simple and dominant eigenvalue of A and $\ker(s(A) - A) = \langle u \rangle$ for some $u \gg 0$.

A glimpse of the proof.

“(ii) \Rightarrow (i)” Assertion (ii) implies that the spectral projection P corresponding to $s(A)$ is strongly positive and that $e^{tA} \to P$ as $t \to \infty$.

“(i) \Rightarrow (ii)” To see that $s(A)$ is dominant:

- Split off the peripheral spectrum.
- Show that the corresponding restriction of the semigroup is positive.
- Apply Perron-Frobenius theory of positive semigroups.
Remark

(i) *Further characterizations involve the resolvent of A or the spectral projection corresponding to $s(A)$.*

(ii) *A generalization to arbitrary Banach lattices is possible under additional regularity assumptions on $(e^{tA})_{t \geq 0}$ and on the domain $D(A)$.*
Remark

(i) Further characterizations involve the resolvent of A or the spectral projection corresponding to $s(A)$.

(ii) A generalization to arbitrary Banach lattices is possible under additional regularity assumptions on $(e^{tA})_{t \geq 0}$ and on the domain $D(A)$.

(iii) This generalization can be applied to study e.g. the semigroup generated by the bi-Laplacian on the disk in \mathbb{R}^2.
For $x \in E$, let $d_+(x) := \text{dist}(x, E_+)$ be the distance of x to the positive cone.

Definition

Suppose that $s(A) = 0$. The semigroup $(e^{tA})_{t \geq 0}$ is called...

(i) ...*uniformly asymptotically positive* if for each $\varepsilon > 0$ there is a $t_0 \in [0, \infty)$ such that $d_+(e^{tA}x) \leq \varepsilon \|x\|$ for all $x \geq 0$ and for all $t \geq t_0$.

(ii) ...*individually asymptotically positive* if $\lim_{t \to \infty} d_+(e^{tA}x) = 0$ for all $x \geq 0$.
Suppose that $s(A) = 0$ and that $(e^{tA})_{t \geq 0}$ is bounded and eventually compact. Then the following assertions are equivalent:

(i) $(e^{tA})_{t \geq 0}$ is individually asymptotically positive.

(ii) $(e^{tA})_{t \geq 0}$ is uniformly asymptotically positive.

(iii) $s(A)$ is a dominant eigenvalue and the corresponding spectral projection P is positive.

(iv) e^{tA} converges (in operator norm) to a positive mapping as $t \to \infty$.

Theorem
Literature

For the finite dimensional case, see e.g.

For the Dirichlet-to-Neumann operator which motivated this work, see

For eventual positivity of the bi-Laplacian, see e.g.