

Universität Ulm

Abgabe: Freitag, 28.04.2017

Dr. Jochen Glück Marius Müller Fabian Rupp Sommersemester 2017

Punktzahl: 13

Lösungsvorschlag Elemente der Funktionalanalysis: Blatt 1

3. Sei $(V, \|\cdot\|)$ ein normierter K-Vektorraum.

(a) Zeigen Sie, dass $B_r(x)$ für alle $x \in V, r > 0$ offen ist. (1) Hinweis: Wenn Sie Lust haben, können Sie auch zeigen, dass das sogar in jedem metrischen Raum gilt.

Lösungsvorschlag: Sei (V, d) ein metrischer Raum, $y \in B_r(x)$. Dann ist $B_{r'}(y) \subseteq B_r(x)$ für r' := r - d(x, y) > 0, denn für $z \in B_{r'}(y)$ gilt

$$d(z,x) \le \underbrace{d(z,y)}_{\le r'} + d(y,x) < r,$$

also $z \in B_r(x)$.

(b) Zeigen Sie, dass $\overline{B_r(x)} = \{y \in V \mid ||x - y|| \le r\}$ für alle $x \in V, r > 0$ gilt. Hinweis: Für jede (1) Teilmenge S eines metrischen Raumes bezeichnen wir mit \overline{S} den Abschluss von S.

Lösungsvorschlag: Sei nun $(V, \|\cdot\|)$ ein normierter Raum, $y \in \overline{B_r(x)}$. Dann gibt es $x_n \in B_r(x)$ mit $x_n \to y$. Weil die Norm stetig ist gilt dann

$$||x - y|| = \lim_{n \to \infty} \underbrace{||x_n - y||}_{\leq r} \leq r,$$

also gilt die Inklusion $, \subseteq$ ".

Für die andere Inklusion sei $y \in V$ mit $||x - y|| \le r$. Definiere

$$x_n := x + \frac{n}{n+1}(y-x),$$

dann gilt $x_n \to y$. Weiter ist $||x_n - x|| = \frac{n}{n+1} ||y - x|| < r$, also gilt $x_n \in B_r(x)$, damit $y \in \overline{B_r(x)}$.

(c) Sei nun (M, d) ein metrischer Raum und sei $x \in M$, r > 0. Zeigen Sie anhand eines konkreten (1) Gegenbeispiels, dass nicht notwendigerweise $\overline{B_r(x)} = \{y \in V \mid d(x, y) \le r\}$ gilt.

Lösungsvorschlag: Sei M eine Menge mit $|M| \ge 2$ und

$$d(x,y) = \left\{ \begin{array}{ll} 0, & \text{falls } x = y \\ 1, & \text{falls } x \neq y \end{array} \right\}$$

die diskrete Metrik. Dann gilt $B_1(x) = \{x\}$, aber $\{y \in M | d(x,y) \le 1\} = M \ne \{x\}$, da $|M| \ge 2$. Bemerkung: Es gilt für einen metrische Raum (M,d) aber dennoch die Inklusion

$$\overline{B_r(x)} \subseteq \{ y \in M | \ d(x,y) \le r \}.$$