

Universität Ulm

Deadline: Thursday, 26 October 2017

Prof. Dr. Wolfgang Arendt Dr. Jochen Glück Winter term 2017/18

Points: $18 + 5^*$

Exercise course in Functional Analysis: Problem Sheet 1

- 1. Let $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$.
 - (a) Define $\ell^1 := \{x = (x_n)_{n \in \mathbb{N}} \subseteq \mathbb{K} : \sum_{n=1}^{\infty} |x_n| < \infty \}$ and set $||x||_1 := \sum_{n=1}^{\infty} |x_n|$ for each $x \in \ell^1$. Show that $(\ell^1, ||\cdot||_1)$ is a Banach space.
 - (b) Define $c_0 := \{x = (x_n)_{n \in \mathbb{N}} \subseteq \mathbb{K} : x_n \to 0 \text{ as } n \to \infty\}$ and set $||x||_{\infty} := \sup_{n \in \mathbb{N}} |x_n|$ for each (1) $x \in c_0$. Show that $(c_0, ||\cdot||_{\infty})$ is a Banach space.
- **2.** Let V and W be normed vector spaces over the same scalar field and let $T:V\to W$ be linear. (4) Show that the following assertions are equivalent:
 - (i) If a sequence $(x_n)_{n\in\mathbb{N}}$ in V converges to a vector $x\in V$, then $(Tx_n)_{n\in\mathbb{N}}$ converges to Tx (i.e. T is continuous).
 - (i') If a sequence $(x_n)_{n\in\mathbb{N}}$ in V converges to 0, then $(Tx_n)_{n\in\mathbb{N}}$ converges to 0 (i.e. T is continuous in 0).
 - (ii) There exists a real number $c \ge 0$ such that $||Tx|| \le c||x||$ for all $x \in V$.
 - (iii) There exists a real number $\tilde{c} \geq 0$ such that $||Tx|| \leq \tilde{c}$ for all x in the closed unit ball $\{v \in V : ||v|| \leq 1\}$.

Definition. Let V, W be normed vector spaces over the same scalar field.

- (a) An isomorphism between V and W is a bijective linear mapping $\psi: V \to W$ such that both ψ and its inverse ψ^{-1} are continuous. The spaces V and W are called isomorphic if there exists an isomorphism between them.
- (b) An isometric isomorphism between V and W is a bijective linear mapping $\psi: V \to W$ which is isometric, meaning that $\|\psi(x)\| = \|x\|$ for all $x \in V$. The spaces V and W are called isometrically isomorphic if there exists an isometric isomorphism between them.
- **3.** Let V, W be normed spaces over the same scalar field $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$.
 - (a) Show that every isometric isomorphism $\psi: V \to W$ is also an isomorphism. (1)
 - (b) Assume that V and W are isomorphic. Show that V is a Banach space if and only if W is a \qquad (1) Banach space.
 - (c) For each $y \in \ell^1$ we define a mapping $Ty : c_0 \to \mathbb{K}$ by

$$(Ty)(x) = \sum_{n=0}^{\infty} y_n x_n$$
 for all $x \in c_0$.

Show that the above series converges, that Ty is an element of the dual space $(c_0)'$ and that the mapping $T: \ell^1 \to (c_0)'$, $y \mapsto Ty$ is an isometric isomorphism.

4. Let $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. We set $M := \{A = (a_{j,k})_{j,k \in \mathbb{N}} \subseteq \mathbb{K} : \sup_{j,k \in \mathbb{N}} |a_{j,k}| < \infty \}$. For each $A = (a_{j,k})_{j,k \in \mathbb{N}} \in M$ we define $\|A\|_{\infty} := \sup_{j,k} |a_{j,k}|$. It follows from the lecture that $(M, \|\cdot\|_{\infty})$ is a Banach space.

For every $A \in M$ we define a mapping $\psi(A) : \ell^1 \to \ell^\infty$ by

$$\psi(A)x = (\sum_{k=1}^{\infty} a_{j,k} x_k)_{j \in \mathbb{N}} \text{ for } x \in \ell^1.$$

(a) Show that, for every $A \in M$, $\psi(A)$ is indeed a well-defined mapping from ℓ^1 to ℓ^∞ ; show also that $\psi(A)$ is linear and continuous, i.e. $\psi(A) \in \mathcal{L}(\ell^1; \ell^\infty)$.

(b) Endow the space $\mathcal{L}(\ell^1; \ell^{\infty})$ with the operator norm. Show that

$$\psi: M \to \mathcal{L}(\ell^1; \ell^\infty), \quad A \mapsto \psi(A)$$

is an isometric isomorphism.

5. Let $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ and endow the space

$$c := \{x = (x_n)_{n \in \mathbb{N}} \subseteq \mathbb{K} : \lim_{n \to \infty} x_n \text{ exists} \}$$

with the supremum norm given by $||x||_{\infty} := \sup_{n \in \mathbb{N}} |x_n|$. It is not difficult to show that $(c, ||\cdot||_{\infty})$ is a Banach space.

- (a) Show that the dual spaces of c_0 and c are isometrically isomorphic. (3^*)
- (b) Show that c_0 and c are isomorphic. (2*) Fun fact: One can prove that c_0 and c are not isometrically isomorphic.