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11. (a) Let K = R and let K ⊆ Rn be a non-empty compact set. By P(K) we denote the space of all (2)
polynomial functions (in real n variables) on K which have real coefficients. Prove that P(K)
is dense in C(K) (with respect to the ‖ · ‖∞-norm).

(b) Let K = C and denote the closed unit disk in C by D = {z ∈ C : |z| ≤ 1}. By P(D) we (2)
denote space of all polynomial functions (in one complex variable) on D which have complex
coefficients. Prove that P(D) is not dense in C(D).
Hint: You may use the following result which follows, for instance, from the maximum principle
in complex analysis:
For all p ∈ P(D) there exists a complex number z0 ∈ ∂D = {z ∈ C : |z| = 1} such that
maxz∈D |p(z)| = |p(z0)|.

(c) Let K = C, let K be a compact metric space and let A ⊆ C(K) be a subalgebra of C(K) (3)
(i.e. a vector subspace of C(K) such that fg ∈ A for all f, g ∈ A) which has the following
properties:

(a) 1K ∈ A.
(b) A separates the points of K.
(c) We have f ∈ A for all f ∈ A.
Show that A is dense in C(K). (This is the complex version of the Stone-Weierstraß theorem!)

(d) Let K = C and let T := ∂D = {z ∈ C : |z| = 1} denote the complex unit circle. A function (2)
f ∈ C(T) is called a trigonometric polynomial if there exist an integer n ∈ N0 and complex
numbers a−n, . . . , an such that f(z) =

∑n
k=−n akz

k for all z ∈ T. Let T (T) denote the set of
all trigonometric polynomials in C(T).
Prove that T (T) is dense in C(T).

Remark: The following three problems deal with compactness in normed spaces and, in particular, in
Banach spaces. If you feel unsure about the concept of compactness, you can read the brief reminder on
the second page of this Exercise Sheet; you can also solve the additional problems there.

12. Let V,W be normed vector spaces. A linear mapping T : V → W is called compact if the set
T (B1(0)) is relatively compact in W (here, B1(0) denotes the closed unit ball in V ).
(a) Prove that every compact linear mapping T : V →W is continuous. (2)

(b) Let P ∈ L(V ) be a compact projection. Prove that the range of P is finite dimensional. (3)

13. Let K ⊆ Rd be a non-empty, compact set and let θ ∈ (0, 1]. Fix x0 ∈ K and endow the Hölder (3)
space Cθ(K) with the norm ‖f‖Cθ(K) = [f ]θ + |f(x0)| for all f ∈ Cθ(K). According to the lecture,
(Cθ(K), ‖ · ‖θ) is a Banach space and we have Cθ(K) ⊆ C(K).

Show that the canonical embedding

j : Cθ(K) ↪→ C(K), f 7→ f

is compact.

14. Let C ⊆ `1. Prove that the following assertions are equivalent: (6)

(i) C is relatively compact.

(ii) C is bounded and supx∈C
∑∞
k=m |xk| → 0 as m→∞.



A brief reminder of compactness.

Definition. Let (M,d) be a metric space and let C ⊆M .

(a) The subset C is called bounded if there exist an element x ∈M and a real number r > 0 such that
C ⊆ Br(x) (here, Br(x) := {y ∈M : d(y, x) < r} denotes the open ball with radius r in M).

(b) The subset C is called complete if the metric space (C, d|C×C) is complete.

(c) The subset C is called totally bounded (or pre-compact) if for every ε > 0 there exist finitely many
numbers x1, . . . , xn ∈ C such that

⋃n
k=1Bε(xk) ⊇ C.

(d) The subset C is called compact if every open covering of C admits a finite subcovering (more
precisely, this means the following: whenever

⋃
λ∈Λ Uλ ⊇ C for a family (Uλ)λ∈Λ of open subsets of

M , then there exist finitely many indices λ1, . . . , λn ∈ Λ such that
⋃n
k=1 Uλk ⊇ C).

Let C be a subset of a metric space (M,d). We point out the following two observations:

(a) Compactness is an intrinsic property of C, i.e. we do not need any information about the surrounding
space M in order to decide whether C is compact.

This seems a bit counter-intuitive at first glance since open subsets of M are used in the definition
of compactness of C. However, a moment of reflection shows that we can rewrite the definition in a
way that uses only intersections of open subsets of M with the set C; and those intersections are
exactly the open sets in the metric space (C, d|C×C).

(b) Suppose that (M,d) is complete; then C is complete if and only if C is closed in M .

One can prove the following important characterisation of compact sets:

Theorem. Let (M,d) be a metric space and let C ⊆M . The following assertions are equivalent:

(i) C is compact.

(ii) C is totally bounded and complete.

(iii) Every sequence in C has a convergent subsequence whose limit is contained in C.

15. Let C be a subset of a metric space (M,d).
(a) Show that the following assertions are equivalent: (2*)

(i) C is bounded.
(ii) For every x ∈M there exists a real number r > 0 such that C ⊆ Br(x).

(b) Prove that if C is totally bounded, then C is bounded. (2*)

(c) Show that the following assertions are equivalent: (2*)

(i) C is totally bounded.
(ii) For each ε > 0 there exists finitely many numbers x1, . . . , xn ∈M such that

⋃n
k=1Bε(xk) ⊇

C

(d) Prove that if C is totally bounded, then so is its closure C. (2*)

(e) Show that the following assertions are equivalent: (5*)

(i) C is relatively compact, i.e. the closure of C is compact.
(ii) C is totally bounded and C is complete.
(iii) Every sequence in C has a subsequence which converges to an element of M .
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