

Universität Ulm

Abgabe: Mittwoch, 07.02.2018

Prof. Dr. Rico Zacher Dr. Jochen Glück Wintersemester 2017/18 Punktzahl: 20

Übungen Maßtheorie: Blatt 14

39. Seien $(\Omega_1, \mathcal{A}_1)$ und $(\Omega_2, \mathcal{A}_2)$ messbare Räume. Für jedes $j \in \{1, 2\}$ sei $\mathcal{E}_j \subseteq \mathcal{A}_j$ ein Erzeuger der σ -Algebra \mathcal{A}_j . Zudem gebe es für jedes $j \in \{1, 2\}$ eine Folge von Mengen $(E_n^{(j)})_{n \in \mathbb{N}} \subseteq \mathcal{E}_j$ mit der Eigenschaft $\bigcup_{n \in \mathbb{N}} E_n^{(j)} = \Omega_j$.

Zeigen Sie, dass $\sigma(\mathcal{E}_1 \times \mathcal{E}_2) = \mathcal{A}_1 \otimes \mathcal{A}_2$ gilt (wobei wir $\mathcal{E}_1 \times \mathcal{E}_2 := \{E_1 \times E_2 : E_1 \in \mathcal{E}_1, E_2 \in \mathcal{E}_2\}$ setzen).

Hinweis: Es ist sehr hilfreich der Reihe nach die folgenden Aussagen zu beweisen:

- (i) Für jedes $A_1 \in \mathcal{E}_1$ ist das Mengensystem $\mathcal{B}_{A_1} := \{A_2 \in \mathcal{A}_2 : A_1 \times A_2 \in \sigma(\mathcal{E}_1 \times \mathcal{E}_2)\}$ eine σ -Algebra auf Ω_2 .
- (ii) Das Mengensystem $\mathcal{B}_{\Omega_1} := \{A_2 \in \mathcal{A}_2 : \Omega_1 \times A_2 \in \sigma(\mathcal{E}_1 \times \mathcal{E}_2)\}$ ist eine σ -Algebra auf Ω_2 .
- (iii) Für jedes $A_2 \in \mathcal{A}_2$ ist das Mengensystem $\mathcal{C}_{A_2} := \{A_1 \in \mathcal{A}_1 : A_1 \times A_2 \in \sigma(\mathcal{E}_1 \times \mathcal{E}_2)\}$ eine σ -Algebra auf Ω_1 .
- **40.** Für jedes $k \in \mathbb{N}$ bezeichne $\lambda^k : \mathcal{B}(\mathbb{R}^k) \to [0, \infty]$ das k-dimensionale Lebesgue-Maß. (4) Seien $m, n \in \mathbb{N}$. Zeigen Sie, dass $\mathcal{B}(\mathbb{R}^m) \otimes \mathcal{B}(\mathbb{R}^n) = \mathcal{B}(\mathbb{R}^{m+n})$ und $\lambda^m \otimes \lambda^n = \lambda^{m+n}$ gilt.
- **41.** Sei $f: \mathbb{R}^2 \to \mathbb{R}$ durch $f(x,y) = e^{-x|y|} \frac{y}{1+y^2} \mathbb{1}_{[0,\infty)}(x) \mathbb{1}_{[-1,\infty)}(y)$ gegeben.
 - (a) Zeigen Sie, dass $f \in \mathcal{L}_1(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2), \lambda^2)$ gilt. (4)
 - (b) Berechnen Sie $\int_{\mathbb{R}} \int_{\mathbb{R}} f(x, y) d\lambda^{1}(y) d\lambda^{1}(x)$. (3)