

Universität Ulm

Mittwoch, 30.06.2010

Prof. Dr. W. Arendt Robin Nittka Sommersemester 2010 Punktzahl: 20+2

(2)

(2)

Elementare Funktionentheorie: Blatt 3

7. Berechne das Kurvenintegral $\int_{\gamma} f(z) dz$ für folgende Kurven γ und Funktionen f:

(a)
$$\gamma(t) := e^{it}, t \in [0, 2\pi], f(z) := \operatorname{Re} z;$$
 (2)

(b)
$$\gamma(t) := it, t \in [-1, 1], f(z) := z^7;$$
 (2)

(c)
$$\gamma(t) := e^{it}, t \in [-\pi, \pi], f(z) := z^m \text{ mit } m \in \mathbb{Z} \setminus \{-1\};$$
 (2)

(d)
$$\gamma(t) := e^t + i\sin(t), \ t \in [0, 1], \ f(z) := \frac{1}{z^2};$$
 (2)

(e)
$$\gamma(t) := t + i(1-t), t \in [0,1], f(z) := \frac{1}{z};$$
 (2)

- (f) $\gamma(t) := e^{it}, t \in [0, \varphi], f(z) := \frac{1}{z} \text{ mit } \varphi \ge 0 \text{ beliebig.}$ (2)
- 8. Sei $\Omega \subset \mathbb{C}$ ein Gebiet und $f : \Omega \to \mathbb{C}$ holomorph. Es gelte $f(z) \in \mathbb{R}$ für alle $z \in \Omega$. Zeige, dass f konstant ist! (2)
- 9. Hauptsatz der Algebra: Zeige:
 - (a) Sei $f: \mathbb{C} \to \mathbb{C}$ eine holomorphe Funktion. Zu jedem $M \geq 0$ gebe es ein $R \geq 0$ mit $|f(z)| \geq M$ für alle $z \in \partial B(0, R)$. Dann besitzt f eine Nullstelle.

Tipp: Besäße f keine Nullstelle, so wäre $\frac{1}{f}$ holomorph. Verwende für diese Funktion nun die Cauchy-Integralformel mit einem beliebigen Radius.

- (b) Jedes nicht-konstante komplexe Polynom besitzt eine Nullstelle. (2)
- **10.** Sei $g: \partial B(0,1) \to \mathbb{C}$ stetig. Zeige, dass

$$f(z) := \int_{\partial B(0,1)} \frac{g(w)}{w - z} \, \mathrm{d}w$$

eine auf B(0,1) holomorphe Funktion f definiert!

Ist
$$f$$
 im Allgemeinen auch auf $\mathbb{C} \setminus \overline{B(0,1)}$ holomorph? $(+2)$