

Universität Ulm

Prof. Dr. W. Arendt Robin Nittka Wintersemester 2008/09

Gesamt: 20 Punkte

Lösungen zur Funktionalanalysis

Blatt 4

13. Sei $A = (a_{ij}) \in \mathbb{R}^{m \times n}$. Man kann A dann mittels Matrixmultiplikation als Operator von $(\mathbb{R}^n, \|\cdot\|_1)$ nach $(\mathbb{R}^m, \|\cdot\|_1)$ auffassen. Zeige, dass $\|A\| = \max_{j=1,\dots,n} \sum_{i=1}^m |a_{ij}|$ gilt! (2)

Lösung: Sei $c := \max_{j=1,\dots,n} \sum_{i=1}^m |a_{ij}|$. Wegen

$$||Ax||_1 = \sum_{i=1}^m \left| \sum_{j=1}^n a_{ij} x_j \right| \le \sum_{j=1}^n \left(\sum_{i=1}^m |a_{ij}| \right) |x_j| \le c \sum_{j=1}^n |x_j| = c ||x||_1$$

ist $||A|| \le c$. Sei nun j_0 so gewählt, dass $\sum_{i=1}^m |a_{ij_0}| = c$ ist. Dann ist

$$||Ae_{j_0}||_1 = \sum_{i=1}^m |a_{ij_0}| = c$$

und $||e_{j_0}||_1 = 1$, woraus laut Vorlesung $||A|| \ge c$ folgt. Insgesamt ist also ||A|| = c gezeigt.

- **14.** Sei $C_0(0,1] := \{f : [0,1] \to \mathbb{R} \text{ stetig}, f(0) = 0\}$. Zeige:
 - (a) $C_0(0,1]$ ist eine abgeschlossene Unteralgebra von C[0,1].

Lösung: Natürlich ist die Nullfunktion in $C_0(0,1]$. Sind $f,g \in C_0(0,1]$, so sind offenbar auch wieder αf , f+g und fg stetig und nehmen bei 0 den Wert 0 an. Die Menge ist also eine Unteralgebra.

Sei $x \in [0,1]$ beliebig. Die Punktauswertung A_x : $C[0,1] \to \mathbb{R}$, $f \mapsto f(x)$ ist offenbar linear und erfüllt $|A_x f| = |f(x)| \le ||f||_{\infty}$, ist also in $\mathscr{L}(C[0,1],\mathbb{R})$ und damit stetig. Daher sind die Mengen $A_x^{-1}(\{0\})$ als Urbilder abgeschlossener Mengen unter einer stetigen Funktion wieder abgeschlossen, und daher auch die Menge $C_0(0,1] = A_0^{-1}(\{0\})$.

(b) Es gibt eine Funktion $u \in C[0,1] \setminus C_0(0,1]$ mit $C_0(0,1] \oplus \text{span}\{u\} = C[0,1]$. Man sagt auch, $C_0(0,1]$ habe *Kodimension* 1 in C[0,1]. (1)

Lösung: Wähle u(x) := 1. Es ist nur zu zeigen, dass sich jedes $g \in C[0,1]$ in der Form $g = f + \alpha u$ mit $f \in C_0(0,1]$ schreiben lässt. Dies erreicht man mit $\alpha := g(0)$ und $f := g - \alpha u$ wie man leicht nachrechnet.

- (c) Sei \mathcal{A} eine Unteralgebra von $C_0(0,1]$ mit folgenden beiden Eigenschaften:
 - (1) Zu allen Paaren $x, y \in (0, 1]$ mit $x \neq y$ gibt es ein $f \in \mathcal{A}$ mit $f(x) \neq f(y)$.
 - (2) Zu jedem $x \in (0,1]$ gibt es ein $f \in \mathcal{A}$ mit $f(x) \neq 0$.

Dann ist \mathcal{A} dicht in $C_0(0,1]$.

(4)

(1)

Bemerkung: Dies ist eine Variante des Satzes von Stone-Weierstraß für $C_0(0,1]$. Tipp: Wende den Satz von Stone-Weierstraß in C[0,1] auf eine passend konstruierte Algebra an!

Lösung: Sei wieder u gegeben durch u(x) := 1. Die Menge $\tilde{\mathcal{A}} := \mathcal{A} \oplus \operatorname{span}\{u\}$ ist ein Unterraum von C[0, 1]. Sie ist sogar eine Unteralgebra, denn zu $g_1, g_2 \in \tilde{\mathcal{A}}$ gibt es Darstellungen $g_1 = f_1 + \alpha_1 u$ und $g_2 = f_2 + \alpha_2 u$ mit $f_1, f_2 \in \mathcal{A}$ und $\alpha_1, \alpha_2 \in \mathbb{R}$. Dann ist aber $g_1g_2 = f_1f_2 + \alpha_1f_2 + \alpha_2f_1 + \alpha_1\alpha_2u$ dank der Algebrastruktur von \mathcal{A} wieder in $\tilde{\mathcal{A}}$. Nach Konstruktion ist $u = 1 \in \tilde{\mathcal{A}}$.

Um den Satz von Stone-Weierstraß auf \mathcal{A} anwenden zu können, ist also nur noch zu zeigen, dass $\tilde{\mathcal{A}}$ punktetrennend ist. Seien dazu $x, y \in [0, 1], x \neq y$. Sind $x, y \in (0, 1]$,

so gibt es nach Voraussetzung $f \in \mathcal{A} \subset \tilde{\mathcal{A}}$ mit $f(x) \neq f(y)$. Ist aber x = 0, so gibt es nach Voraussetzung $f \in \mathcal{A} \subset \tilde{\mathcal{A}}$ mit $f(x) = 0 \neq f(y)$. Der Fall y = 0 ist analog. Also trennt $\tilde{\mathcal{A}}$ (genauer sogar bereits \mathcal{A}) die Punkte von [0,1]. Es folgt aus dem Satz von Stone-Weierstraß, dass $\tilde{\mathcal{A}}$ in C[0,1] dicht ist.

Wir zeigen nun, dass \mathcal{A} in $C_0(0,1]$ dicht ist. Sei dazu $g \in C_0(0,1] \subset C[0,1]$ beliebig. Nach dem soeben gezeigten gibt es eine Folge (g_n) mit $g_n = f_n + \alpha_n u$, $f_n \in \mathcal{A}$, $\alpha_n \in \mathbb{R}$, mit $||g_n - g||_{\infty} \to 0$. Insbesondere gilt dann $\alpha_n = g_n(0) \to g(0) = 0$. Daraus folgt aber

$$||f_n - g||_{\infty} \le ||f_n + \alpha_n u - g||_{\infty} + ||\alpha_n u||_{\infty} = ||g_n - g||_{\infty} + |\alpha_n| \to 0.$$

Dies zeigt, dass es eine Folge in \mathcal{A} gibt, nämlich (f_n) , die gegen g konvergiert. Weil g beliebig war, folgt die Behauptung.

(d) Die Folge $(f_n)_{n\in\mathbb{N}}$ mit $f_n(x) := x^n$ ist total in $C_0(0,1]$. (1)

Lösung: Es ist sehr leicht zu prüfen, dass der aufgepannte Unterraum, der sich auch als $\{\sum_{k=1}^{n} \alpha_k x^k : n \in \mathbb{N}\}$ schreiben lässt, eine Algebra ist. Für die Kriterien aus (c) kann man jeweils f mit f(x) = x wählen. Es folgt also mit dem soeben Bewiesenen die Behauptung.

- **15.** Betrachte $M_{\alpha}: c_0 \to c_0$ definiert durch $M_{\alpha}x := (\alpha_n x_n)_{n \in \mathbb{N}}$ mit einer beschränkten Folge $\alpha = (\alpha_n) \in \ell^{\infty}$. Zeige:
 - (a) M_{α} ist wohldefiniert, d.h. M_{α} bildet c_0 tatsächlich nach c_0 ab. (1)

Lösung: Es ist offenbar $|\alpha_n x_n| \leq ||\alpha||_{\infty} |x_n|$ für alle $n \in \mathbb{N}$. Weil die rechte Seite gegen 0 geht, ist offenbar $M_{\alpha}x$ eine Nullfolge.

(b) M_{α} ist stetig. (1)

Lösung: Bildet man bei obiger Abschätzung auf beiden Seiten das Supremum bezüglich n, so erhält man $||M_{\alpha}x|| \leq ||\alpha||_{\infty} ||x||_{\infty}$. Laut Vorlesung zeigt dies die Stetigkeit von M_{α} . Zudem folgt $||M|| \leq ||\alpha||_{\infty}$.

 $(c) \quad ||M_{\alpha}|| = ||\alpha||_{\infty}. \tag{1}$

Lösung: Es wurde bereits $||M|| \leq ||\alpha||_{\infty}$ gezeigt. Sei $m := ||\alpha||_{\infty}$ und $\varepsilon > 0$. Dann gibt es ein $n_0 \in \mathbb{N}$ mit $|\alpha_{n_0}| \geq m - \varepsilon$. Wählt man den Einheitsvektor $e_{n_0} \in c_0$, so zeigt sich $||M_{\alpha}e_{n_0}|| = ||\alpha_{n_0}e_{n_0}|| = |\alpha_{n_0}| \geq m - \varepsilon$. Nach Vorlesung gilt also $||M_{\alpha}|| \geq m - \varepsilon$. Weil $\varepsilon > 0$ beliebig war, ist $||M_{\alpha}|| \geq m = ||\alpha||_{\infty}$ Dies beweist die Behauptung.

(d) Ist $\alpha_n = \frac{n-1}{n}$, so ist $||M_{\alpha}|| = 1$. Es gibt aber keinen Vektor $x \in c_0$ mit $||x||_{\infty} \le 1$ und $||M_{\alpha}x||_{\infty} = 1$. (2)

Lösung: Offenbar ist $||M_{\alpha}|| = ||\alpha||_{\infty} = 1$. Sei nun $x \in c_0$ mit $||x||_{\infty} \le 1$. Wähle $n_0 \in \mathbb{N}$ mit $|x_n| \le \frac{1}{2}$ für $n \ge n_0$. Dann ist für $n \le n_0$

$$|\alpha_n x_n| \le \frac{n_0 - 1}{n_0} ||x||_{\infty} \le \frac{n_0 - 1}{n_0},$$

wie man daran sieht, dass α_n monoton wachsend ist. Andererseits ist

$$|\alpha_n x_n| \le \frac{1}{2} \|\alpha\|_{\infty} \le \frac{1}{2}$$

für $n \ge n_0$ nach Wahl von n_0 . Insgesamt ist also $||M_{\alpha}x||_{\infty} \le \max\{\frac{1}{2}, \frac{n_0-1}{n_0}\} < 1$. Also ist $||M_{\alpha}x||_{\infty} = 1$ nicht möglich für $x \in c_0$ mit $||x||_{\infty} = 1$.

Bemerkung: Diese Aufgabe zeigt, dass das Supremum in der aus der Vorlesung bekannten Gleichung $||T|| = \sup\{||Tx|| : x \in E, ||x|| \le 1\}$ im Allgemeinen kein Maximum ist.

16. Zeige:

(a) Für jedes $a \in \ell^1$ definiert $\varphi_a \colon c_0 \to \mathbb{R}$, $\varphi_a(x) := \sum_{n=1}^{\infty} a_n x_n$ eine lineare, stetige Funktion. (1)

Lösung: Wegen $\sum_{n=1}^{\infty} |a_n x_n| \leq ||a||_1 ||x||_{\infty}$ konvergiert die Reihe (sogar absolut), und es gilt $|\varphi_a(x)| \leq ||a||_1 ||x||_{\infty}$. Weil φ_a offenbar linear ist, zeigt dies auch die Stetigkeit von φ_a und $||\varphi_a|| \leq ||a||_1$.

(b) Für jedes $a \in \ell^1$ gilt $\|\varphi_a\| = \|a\|_1$. (2)

Lösung: Die Abschätzung $\|\varphi_a\| \leq \|a\|_1$ wurde schon gezeigt. Wähle $n_0 \in \mathbb{N}$ beliebig und betrachte nun speziell die Folge $x \in c_0$ mit $x_n = \operatorname{sgn} a_n$ für $n \leq n_0$ und $x_n = 0$ für $n > n_0$. Dann ist $\|x\|_{\infty} \leq 1$ und

$$\varphi_a(x) = \sum_{n=1}^{n_0} a_n \operatorname{sgn} a_n = \sum_{n=1}^{n_0} |a_n| \to ||a||_1. \quad (n_0 \to \infty)$$

Mit dem Supremum über $n_0 \in \mathbb{N}$ zeigt dies also

$$\|\varphi_a\| = \sup\{\|\varphi_a(x)\| : x \in c_0, \|x\|_{\infty} \le 1\} \ge \|a\|_1,$$

was insgesamt $\|\varphi_a\| = \|a\|_1$ zeigt.

(c) Zu jeder linearen, stetigen Funktion $\varphi \colon c_0 \to \mathbb{R}$ existiert genau ein $a \in \ell^1$ mit $\varphi = \varphi_a$. (3)

Lösung: Die Eindeutigkeit sieht man leicht: Seien a und b aus ℓ^1 mit $\varphi_a = \varphi_b$. Dann gilt $a_n = \varphi_a(e_n) = \varphi_b(e_n) = b_n$ für alle $n \in \mathbb{N}$, was a = b zeigt.

Zum Beweis der Existenz definiere $a_n := \varphi(e_n)$. Es ist zu zeigen, dass $a := (a_n)$ in ℓ^1 liegt und dass $\varphi_a = \varphi$ gilt. Mit $\alpha_n := \operatorname{sgn} a_n$ ist allerdings

$$\sum_{n=1}^{n_0} |a_n| = \sum_{n=1}^{n_0} \alpha_n \varphi(e_n) = \varphi\left(\sum_{n=1}^{n_0} \alpha_n e_n\right) \le \|\varphi\|,$$

da $y:=\sum_{n=1}^{n_0}\alpha_ne_n$ in c_0 liegt und $\|y\|_\infty\leq 1$ erfüllt. Da ihre Partialsummen beschränkt sind, konvergiert also die Reihe $\sum_{n=1}^\infty |a_n|$, was $a\in\ell^1$ beweist. Zudem gilt nach Definition $\varphi(e_n)=a_n=\varphi_a(e_n)$. Wegen Linearität stimmen φ und φ_a daher auf der Menge span $\{e_n\}$ überein. Da diese Menge in c_0 dicht ist und ein stetiger Operator laut Vorlesung eine eindeutige Fortsetzung auf den Abschluss seines Definitionsbereichs besitzt, stimmen φ und φ_a also auf ganz c_0 überein. Damit ist die Behauptung bewiesen.