

Universität Ulm

Prof. Dr. W. Arendt Robin Nittka Wintersemester 2008/09

Gesamt: 20 Punkte

Lösungen zur Funktionalanalysis

Blatt 8

(2)

30. Sei H ein Prähilbertraum. Zeige:

(a) Für $u, v \in H$ gilt genau dann (u|v) = ||u|| ||v||, wenn eine der beiden Eigenschaften v = 0 oder $u = \lambda v$ mit $\lambda \geq 0$ erfüllt ist.

Tipp: Untersuche im Beweis der Cauchy-Schwarz'schen Ungleichung, wann Gleichheit herrscht.

Lösung: Ist v = 0, so ist (u|v) = 0 = ||u|| ||v||. Ist $u = \lambda v$ mit $\lambda \ge 0$, so folgt

$$(u|v) = (u|\lambda u) = \lambda ||u||^2 = ||u|| ||\lambda u|| = ||u|| ||v||.$$

Sei nun umgekehrt (u|v) = ||u|| ||v||. Ist v = 0, so ist nichts mehr zu zeigen. Sei also im Folgenden ||v|| > 0. Wir setzen $\lambda := \frac{||u||}{||v||}$; wenn überhaupt ein $\lambda > 0$ die Gleichung $u = \lambda v$ erfüllt, dann dieses. Dann gilt nach Voraussetzung

$$\begin{aligned} \|u - \lambda v\|^2 &= \|u\|^2 - \lambda (u|v) - \lambda (v|u) + \lambda^2 \|v\|^2 \\ &= \|u\|^2 - 2 \frac{\|u\|}{\|v\|} \|u\| \|v\| + \frac{\|u\|^2}{\|v\|^2} \|v\|^2 = 0, \end{aligned}$$

also $u = \lambda v$.

(b) Sind $u \neq v$ and $u \neq v$

Lösung: Wir zeigen zuerst Re $(u|v) < \|u\| \|v\|$. Nach der Cauchy-Schwarz'schen Ungleichung gilt Re $(u|v) \le |(u|v)| \le \|u\| \|v\|$. Wäre nun Re $(u|v) = \|u\| \|v\|$, so wären beide Abschätzungen Gleichheiten, also insbesondere Re (u|v) = |(u|v)|, woraus (u|v) > 0 folgt. Also wäre $(u|v) = \|u\| \|v\|$. Nach dem letzten Aufgabenteil folgt daraus v = 0, was ausgeschlossen ist, oder $u = \lambda v$ mit $\lambda > 0$. Wegen $\|u\| = \|v\| = 1$ muss dann allerdings $\lambda = 1$, also u = v sein, was ebenfalls ausgeschlossen war. Damit ist die behauptete Ungleichung bewiesen.

Für $\alpha \in (0,1)$ ist natürlich $\alpha(1-\alpha) > 0$. Mit obiger Überlegung folgt daraus

$$\|\alpha u + (1 - \alpha)v\|^2 = \alpha^2 \|u\|^2 + 2\alpha(1 - \alpha) \operatorname{Re}(u|v) + (1 - \alpha)^2 \|v\|^2$$

$$< \alpha^2 \|u\|^2 + 2\alpha(1 - \alpha) \|u\| \|v\| + (1 - \alpha)^2 \|v\|^2$$

$$= (\alpha \|u\| + (1 - \alpha) \|v\|)^2 = 1.$$

Die Behauptung ist damit gezeigt.

Bemerkung: Man kann sich die Aussage auch geometrisch klarmachen. Es genügt, die Aussage im Raum $H_0 := \operatorname{span}\{u,v\} \cong \mathbb{K}^2$ zu zeigen. Nach einer unitären Transformation kann man $u = e_1$ und $v \in \mathbb{R}^2$ annehmen. Für diese Situation ist die Aussage allerdings offensichtlich.

31. (a) Berechne die Fourierreihe der Funktion $f \in C_{2\pi}$, $f(x) := |x - \pi|$ für $x \in [0, 2\pi]!$ (2)

Lösung: Für k = 0 ist

$$c_0 = \frac{1}{2\pi} \int_0^{2\pi} f(x) dx = \frac{1}{2\pi} \cdot \frac{2\pi \cdot \pi}{2} = \frac{\pi}{2}.$$

Für $k \neq 0$ ist $G(x) = \frac{i}{k} x e^{-ikx} + \frac{1}{k^2} e^{-ikx}$ eine Stammfunktion von $g(x) = x e^{-ikx}$. Es ist $G(-\pi) = \frac{-\pi i(-1)^k}{k} + \frac{(-1)^k}{k^2}$, $G(0) = \frac{1}{k^2}$ und $G(\pi) = \frac{\pi i(-1)^k}{k} + \frac{(-1)^k}{k^2}$. Damit ist für $k \neq 0$

$$c_k = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-ikx} dx = \frac{1}{2\pi} \left(\int_0^{\pi} (\pi - x) e^{-ikx} dx + \int_{\pi}^{2\pi} (x - \pi) e^{-ikx} dx \right)$$

$$= \frac{1}{2\pi} \left(-\int_{-\pi}^0 y e^{-iky} e^{-ik\pi} dy + \int_0^{\pi} y e^{-iky} e^{-ik\pi} dy \right)$$

$$= \frac{(-1)^k}{2\pi} \left(G(-\pi) - 2G(0) + G(\pi) \right) = \frac{1}{2\pi} \left(\frac{-\pi i}{k} + \frac{1}{k^2} + \frac{\pi i}{k} + \frac{1}{k^2} \right) - \frac{(-1)^k}{\pi k^2}$$

$$= \frac{1}{\pi k^2} - \frac{(-1)^k}{\pi k^2}.$$

Daher ist $c_k=0$ für gerade $k\neq 0$ und $c_k=\frac{2}{\pi k^2}$ für ungerade k. Die Fourierreihe ist also

$$f(x) = \frac{\pi}{2} + \sum_{k \in \mathbb{Z}} \frac{2}{\pi (2k+1)^2} e^{i(2k+1)x}.$$

(b) Zeige folgende Identität: $\sum_{k=0}^{\infty} \frac{1}{(2k+1)^4} = \frac{\pi^4}{96}$ (1) **Tipp:** Man kann die Parseval'sche Gleichung nutzen.

Lösung: Sei f und c_k wie im ersten Aufgabenteil. Dann ist

$$\frac{1}{2\pi} \int_0^{2\pi} |f(x)|^2 dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(y+\pi)|^2 dy = \frac{1}{2\pi} \int_{-\pi}^{\pi} y^2 dy = \frac{\pi^2}{3}$$

und nach der Parseval'schen Gleichung also

$$\frac{\pi^2}{3} = \sum_{k=-\infty}^{\infty} |c_k|^2 = |c_0|^2 + 2\sum_{k=0}^{\infty} |c_{2k+1}|^2 = \frac{\pi^2}{4} + \frac{8}{\pi^2} \sum_{k=0}^{\infty} \frac{1}{(2k+1)^4}.$$

Löst man nach der Reihe auf, ergibt sich die gesuchte Identität.

(c) Folgere hieraus:
$$\zeta(4) := \sum_{k=1}^{\infty} \frac{1}{k^4} = \frac{\pi^4}{90}$$
 (2)

Lösung: Durch Zerlegen in gerade und ungerade Summanden ergibt sich

$$\sum_{k=1}^{\infty} \frac{1}{k^4} = \sum_{k=1}^{\infty} \frac{1}{(2k)^4} + \sum_{k=0}^{\infty} \frac{1}{(2k+1)^4} = \frac{1}{16} \sum_{k=1}^{\infty} \frac{1}{k^4} + \frac{\pi^4}{96}.$$

Löst man wiederum auf, ergibt sich

$$\sum_{k=1}^{\infty} \frac{1}{k^4} = \frac{16}{15} \cdot \frac{\pi^4}{96} = \frac{\pi^4}{90}.$$

32. (a) Sei H ein Prähilbertraum, X ein Vektorraum und $U: H \to X$ linear und bijektiv. Zeige, dass dann $(x|y)_X := (U^{-1}x|U^{-1}y)_H$ ein Skalarprodukt auf X definiert und dass bezüglich dieses Skalarprodukts U ein unitärer Isomorphismus von H nach X ist! (3)

Lösung: Weil U^{-1} linear ist, ist $(\cdot|\cdot)_X$ eine positive, symmetrische Sesquilinearform. Ist $(x|x)_X=0$, so bedeutet dies gerade $\|U^{-1}x\|_H^2=0$, also $U^{-1}x=0$ und damit x=0. Dies zeigt, dass $(\cdot|\cdot)_X$ ein Skalarprodukt ist.

Nach Voraussetzung ist U bijektiv und nach Definition gilt $(Ux|Uy)_X = (x|y)_H$ für alle $x, y \in H$, was zeigt, dass U ein unitärer Isomorphismus ist.

(b) Sei $w = (w_n)$ eine reelle Folge mit $w_n \in (0, \infty)$ für alle $n \in \mathbb{N}$. Definiere

$$\ell_w^2 := \left\{ (x_n) : x_n \in \mathbb{C} \text{ für alle } n \in \mathbb{N}, \sum_{n=1}^{\infty} w_n |x_n|^2 < \infty \right\}$$

und $(x|y)_w := \sum_{n=1}^{\infty} w_n x_n \overline{y}_n$. Zeige, dass ℓ_w^2 mittels $(\cdot|\cdot)_w$ zu einem separablen Hilbertraum wird, und gib einen unitären Operator $U : \ell^2 \to \ell_w^2$ an!

(4)

(4)

Tipp: Findet man zuerst ein passendes U, so kann man darauf den ersten Aufgabenteil anwenden, statt alle Eigenschaften von ℓ_w^2 direkt nachzurechnen.

Lösung: Zuerst beobachtet man, dass $x = (x_n)$ nach Definition genau dann in ℓ^2 liegt, wenn die Folge $Ux := (\frac{x_n}{\sqrt{w_n}})$ in ℓ^2_w liegt. Hierbei kann man U zuerst einmal als eine Abbildung auf dem Raum aller K-wertigen Folgen verstehen. Weil U linear ist, zeigt diese Überlegung bereits, dass $\ell^2_w = U(\ell^2)$ ein Vektorraum ist und $U: \ell^2 \to \ell^2_w$ eine Bijektion. Nach dem ersten Aufgabenteil ist also

$$\left(U^{-1}x\middle|U^{-1}y\right) = \sum_{n=1}^{\infty} \sqrt{w_n} x_n \overline{\sqrt{w_n} y_n} = \sum_{n=1}^{\infty} w_n x_n \overline{y}_n = (x|y)_w$$

für $x,y\in\ell^2_w$ ein Skalarprodukt auf ℓ^2_w und $U\colon\ell^2\to\ell^2_w$ unitärer Isomorphismus. Nach Aufgabe 18 folgt daraus insbesondere, dass ℓ^2_w vollständig und separabel ist.

33. Es sei $(\ell^2, \|\cdot\|_2)$ wie üblich definiert, also $\|x\|_2^2 = \sum_{n=1}^{\infty} |x_n|^2$. Sei $\|\cdot\|$ eine weitere Norm auf ℓ^2 mit den Eigenschaften, dass $(\ell^2, \|\cdot\|)$ ein Banachraum ist und dass die Zuordnung $\varphi_m \colon \ell^2 \to \mathbb{K}, x = (x_n)_{n \in \mathbb{N}} \mapsto x_m$ für jedes $m \in \mathbb{N}$ stetig bezüglich $\|\cdot\|$ ist. Zeige, dass die Normen $\|\cdot\|_2$ und $\|\cdot\|$ dann bereits äquivalent sind!

Tipp: Man kann den Satz über den abgeschlossenen Graphen anwenden.

Lösung: Wir zeigen, dass die Identität $I: (\ell^2, \|\cdot\|_2) \to (\ell^2, \|\cdot\|)$ einen abgeschlossenen Graphen hat. Sei also (x^n) eine Folge in ℓ^2 mit der Eigenschaft, dass (x^n) bezüglich $\|\cdot\|_2$ gegen ein $x \in \ell^2$ konvergiert und (y^n) mit $y^n := Ix^n = x^n$ bezüglich $\|\cdot\|$ gegen ein $y \in \ell^2$. Wir müssen nur zeigen, dass y = Ix = x gilt. Dies folgt aber aus der Stetigkeit von φ_m bezüglich beider Normen, da $y_m \leftarrow \varphi_m(y^n) = \varphi_m(x^n) \to x_m$ für alle $m \in \mathbb{N}$ gilt.

Nach dem Satz vom abgeschlossenen Graphen ist I stetig. Es gibt also c>0 mit der Eigenschaft, dass $||x|| \le c||x||_2$ für alle $x \in \ell^2$ gilt. Laut Aufgabe 24 sind die beiden Normen dann aber bereits äquivalent.

Bonusaufgabe: (5 Punkte)

Seien H_1 und H_2 reelle Prähilberträume und $\varphi \colon H_1 \to H_2$ eine (möglicherweise nicht-lineare) isometrische Abbildung, also $\|\varphi(x) - \varphi(y)\| = \|x - y\|$ für $x, y \in H_1$. Zeige, dass es dann $z \in H_2$ und einen isometrischen linearen Operator $U \colon H_1 \to H_2$ mit $\varphi(x) = z + Ux$ für $x \in H_1$ gibt! **Tipp:** Definiere $z := \varphi(0)$ und $\psi(x) := \varphi(x) - z$. Zeige $(x|y) = \frac{1}{2}(\|x\|^2 + \|y\|^2 - \|x - y\|^2)$ und schlussfolgere daraus $(\psi(x)|\psi(y)) = (x|y)$. Benutze dies, um zu zeigen, dass ψ linear ist.

Lösung: Sei ψ wie im Tipp. Offenbar gilt $\|\psi(x) - \psi(y)\| = \|x - y\|$ und $\psi(0) = 0$. Also folgt für y = 0 insbesondere auch $\|\psi(x)\| = \|x\|$. Es genügt nun, die Linearität von ψ zu zeigen. Die angegebene Gleichung für das Skalarprodukt rechnet man leicht nach. Aus den bereits angestellten Überlegungen ergibt sich dann

$$(\psi(x)|\psi(y)) = \frac{1}{2} (\|\psi(x)\|^2 + \|\psi(y)\|^2 - \|\psi(x) - \psi(y)\|^2) = \frac{1}{2} (\|x\|^2 + \|y\|^2 - \|x - y\|^2) = (x|y).$$

Ist nun aber $x, y \in H_1$ und $\lambda \in \mathbb{K}$, so folgt

$$\|\psi(\lambda x + y) - \lambda \psi(x) - \psi(y)\|^2 = \dots = \|(\lambda x + y) - \lambda x - y\|^2 = 0,$$

wobei man die hier abgekürzte Gleichheit sieht, indem man die Normen als Summe von Skalarprodukten ausdrückt, bei denen man ψ wie eben gezeigt "weglassen" kann. Aus dieser Rechnung folgt dann $\psi(\lambda x + y) = \lambda \psi(x) + \psi(y)$, also die Linearität von ψ .