

Universität Ulm

Donnerstag, 04.11.2010

Prof. Dr. W. Arendt Robin Nittka Wintersemester 2010/11

Punktzahl: 20

Funktionalanalysis: Blatt 2

- 5. Seien E und F normierte Räume und $T: E \to F$ linear und bijektiv. Zeige, dass die Abbildung T^{-1} ist genau dann stetig ist, wenn es ein $\alpha > 0$ mit $||Tx|| \ge \alpha ||x||$ für alle $x \in E$ gibt. (2)
- **6.** Seien X, Y und Z normierte Räume, $S \in \mathcal{L}(Y, Z), T \in \mathcal{L}(X, Y), x \in X$ und $(S_n) \subset \mathcal{L}(Y, Z), (T_n) \subset \mathcal{L}(X, Y)$ und $(x_n) \subset X$ beschränkte Folgen. Zeige:

(a)
$$S_n \to S, T_n \to T \Rightarrow S_n T_n \to ST$$

(b) $S_n \to_s S$, $T_n \to_s T \Rightarrow S_n T_n \to_s ST$ **Hinweis:** Wir schreiben $T_n \to_s T$, falls (T_n) stark gegen T konvergiert, also falls $T_n x \to T x$ für alle $x \in X$ gilt, und analog für (S_n) .

(c)
$$T_n \to_s T, x_n \to x \Rightarrow T_n x_n \to Tx$$

- 7. Sei X ein normierter Raum und D ein dichter Unterraum, der mit der induzierten Norm versehen wird. Zeige, dass der Einschränkungsoperator $R \colon X' \to D', \varphi \mapsto \varphi|_D$ ein isometrischer Isomorphismus ist, also bijektiv mit $||R\varphi|| = ||\varphi||$ für alle $\varphi \in X'$. (2)
- 8. Zeige, dass der Raum c_0 der (komplexwertigen) Nullfolgen und der Raum c der (komplexwertigen) konvergenten Folgen isomorph sind. (2)
- **9.** Sei $1 , <math>\frac{1}{p} + \frac{1}{p'} = 1$. Zeige:
 - (a) Ist $y \in \ell^{p'}$, so definiert $\varphi_y(x) := \sum_{n=1}^{\infty} \overline{y}_n x_n$ ein Funktional $\varphi_y \in (\ell^p)'$ mit Norm $\|\varphi_y\| = \|y\|_{p'}$. (3)
 - (b) Ist $\varphi \in (\ell^p)'$, so gibt es genau ein $y \in \ell^{p'}$ mit $\varphi = \varphi_y$. (5)

Bemerkung: Wir haben hier einen natürlichen isometrischen Isomorphismus zwischen $\ell^{p'}$ und $(\ell^p)'$ gefunden, nämlich $y \mapsto \varphi_{\overline{y}}$; beachte, dass $y \mapsto \varphi_y$ nicht linear ist! Man schreibt daher auch $(\ell^p)' = \ell^{p'}$ und identifiziert Funktionale auf ℓ^p mit Elementen von $\ell^{p'}$.

Information: Die Aussage bleibt für p=1 richtig. Für $p=\infty$ ist sie allerdings falsch, wie wir im Laufe der Vorlesung noch sehen werden.