

## Universität Ulm

Donnerstag, 16.12.2010

Prof. Dr. W. Arendt Robin Nittka Wintersemester 2010/11

(2)

Punktzahl: 20

## Lösungen Funktionalanalysis: Blatt 8

**32.** Sei H ein Hilbertraum,  $x \in H$  und  $(x_n)$  eine Folge in H mit  $||x_n|| \to ||x||$  und  $(x_n | y) \to (x | y)$  für jedes  $y \in H$ . Zeige, dass dann  $(x_n)$  gegen x konvergiert! (2)

Lösung: Dies folgt unmittelbar aus der nachfolgenden Aufgabe, ergibt sich aber auch aus

$$||x_n - x||^2 = ||x_n||^2 - 2\operatorname{Re}(x_n \mid x) + ||x||^2 \to ||x||^2 - 2\operatorname{Re}(x \mid x) + ||x||^2 = 0.$$

- **33.** Ein Banachraum X heißt  $gleichmä\beta ig konvex$ , falls es zu jedem  $\varepsilon > 0$  ein  $\delta_{\varepsilon} > 0$  gibt mit der Eigenschaft, dass für alle  $x,y \in \overline{B_X(0,1)}$  mit  $\|x-y\| \ge \varepsilon$  stets  $\|\frac{x+y}{2}\| \le 1 \delta_{\varepsilon}$  gilt. Zeige:
  - (a) Sei X ein gleichmäßig konvexer Banachraum. Eine Folge  $(x_n)$  in X konvergiert genau dann gegen  $x \in X$ , wenn  $x_n \rightharpoonup x$  und  $||x_n|| \rightarrow ||x||$  gilt! (2)

**Lösung:** Die eine Implikation ist klar, und der Fall x=0 ist klar. Sei nun also  $x\neq 0$  und  $(x_n)$  eine Folge mit  $x_n \rightharpoonup x$  und  $\|x_n\| \to \|x\|$ . Ohne Einschränkung sei  $\|x\|=1$ , da wir dies durch Reskalierung erreichen können. Wir nehmen an, dass  $(x_n)$  nicht gegen x konvergiert. Nach Übergang zu einer Teilfolge können wir dann  $\|x_n-x\|\geq \varepsilon$  für ein  $\varepsilon>0$  annehmen. Sei  $\delta:=\delta_{\varepsilon/2}\in(0,1]$  wie in der Definition der gleichmäßigen Konvexität gewählt. Dann gilt  $\|\frac{x_n}{1+\delta}-\frac{x}{1+\delta}\|\geq \frac{\varepsilon}{1+\delta}\geq \frac{\varepsilon}{2}$ , und für hinreichend große n ist  $\|\frac{x_n}{1+\delta}\|\leq 1$ . Nach dem Satz von Hahn-Banach gibt es  $\varphi\in X'$  mit  $\|\varphi\|=1$  und  $\varphi(x)=\|x\|$ . Aus diesen Überlegungen erhalten wir

$$1 = ||x|| = \varphi(x) \leftarrow \frac{\varphi(x_n) + \varphi(x)}{2} = \frac{\varphi(x_n + x)}{2} \le \frac{||x_n + x||}{2}$$
$$= (1 + \delta) \left\| \frac{\frac{x_n}{1 + \delta} + \frac{x}{1 + \delta}}{2} \right\| \le (1 + \delta)(1 - \delta) = 1 - \delta^2 < 1$$

für große n, einen Widerspruch.

(b) Jeder Hilbertraum ist gleichmäßig konvex.

Lösung: Nach der Parallelogrammgleichung gilt

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2,$$

woraus für  $x, y \in \overline{B_H(0, 1)}$  mit  $||x - y|| \ge \varepsilon$ 

$$\left\| \frac{x+y}{2} \right\|^2 = \frac{1}{2} (\|x\|^2 + \|y\|^2) - \frac{1}{4} \|x-y\|^2 \le 1 - \frac{\varepsilon^2}{4} =: (1-\delta)^2$$

folgt mit einem  $\delta > 0$ .

- **34.** Sei  $e_n$  der n.te Einheitsvektor in  $c_0 \subset \ell^{\infty}$ , und definiere  $s_n := \sum_{k=1}^n e_k$ . Zeige:
  - (a) Die Folge  $(s_n)$  ist eine schwache Cauchy-Folge in  $\ell^{\infty}$ , d.h. für jedes  $\varphi \in (\ell^{\infty})'$  ist  $(\varphi(s_n))_{n \in \mathbb{N}}$  eine Cauchy-Folge. (2)

**Lösung:** Sei  $\varphi \in c_0'$ . Es gibt  $y \in \ell^1$  mit  $\varphi(x) = \sum_{k=1}^{\infty} x_k y_k$ . Daher ist  $\varphi(s_n) = \sum_{k=1}^{n} y_k$ , was wegen (absoluter) Konvergenz der Reihe  $\sum_{k=1}^{\infty} y_k$  die Behauptung für  $\varphi \in c_0'$  zeigt. Für beliebiges  $\varphi \in (\ell^{\infty})'$  ist aber  $\varphi|_{c_0} \in c_0'$ , woraus die Behauptung folgt.

(b) Die Folge  $(s_n)$  ist nicht schwach konvergent in  $\ell^{\infty}$ .

**Lösung:** Falls  $(s_n)$  in  $\ell^{\infty}$  schwach gegen ein  $s \in \ell^{\infty}$  konvergiert, so hat man insbesondere koordinatenweise Konvergenz, da die Koordinatenauswertungen stetige Funktionale sind, woraus s = 1 folgt. Ist aber  $\varphi \in (\ell^{\infty})'$  eine stetige Fortsetzung des Funktionals  $\lim \varepsilon$  auf  $\ell^{\infty}$ , so erhält man daraus  $0 = \varphi(s_n) \to \varphi(1) = 1$ , also einen Widerspruch.

(2)

(2)

Man hätte alternativ auch benutzen können, dass abgeschlossene, konvexe Mengen schwach abgeschlossen sind, also  $(s_n)$  bereits in  $c_0$  schwach konvergieren müsste.

**35.** (a) Sei  $1 . Zeige, dass eine Folge <math>(x_n)_{n \in \mathbb{N}} \subset \ell^p$  genau dann schwach gegen ein  $x \in \ell^p$  konvergiert, wenn  $(x_n)$  in  $\ell^p$  beschränkt ist und die Komponentenfolgen  $(x_{n,k})_{n \in \mathbb{N}}$  für jedes  $k \in \mathbb{N}$  gegen  $x_k$  konvergieren.

**Lösung:** Die eine Implikation ist wegen der Stetigkeit der Koordinatenfunktionale klar. Sei nun also  $(x_n)$  eine in  $\ell^p$  beschränkte Folge, die komponentenweise gegen  $x \in \ell^p$  konvergiert. Angenommen, es gilt nicht  $x_n \to x$ . Nach Übergang zu einer Teilfolge darf man dann annehmen, dass es  $\varphi \in (\ell^p)'$  gibt mit  $\varphi(x_n) \not\to \varphi(x)$ . Weil  $\ell^p$  reflexiv ist, können wir nach nochmaligem Übergang zu einer Teilfolge annehmen, dass  $(x_n)$  schwach gegen ein y konvergiert. Insbesondere gilt dann  $x_{n,k} \to y_k$ , woraus x = y folgt, im Widerspruch zur Annahme.

**Bemerkung:** Mit diesem Argument kann man auch zeigen, dass der punktweise Grenzwert einer beschränkten Folge in  $\ell^p$  wiederum in  $\ell^p$  liegt.

(b) Ist die Aussage des ersten Aufgabenteils auch für  $\ell^1$  richtig? (2)

**Lösung:** Nein. Ein Gegenbeispiel sind die Einheitsvektoren  $(e_n)$ . Die Folge ist beschränkt und konvergiert komponentenweise gegen 0. Aber für das Funktional  $\varphi$ , das durch  $\varphi(y) := \sum_{k=1}^{\infty} y_k$  gegeben ist, gilt  $\varphi(e_n) = 1 \not\to 0$ .

(c) Ist die Aussage des ersten Aufgabenteils auch für  $c_0$  richtig? (2)

**Lösung:** Die koordinatenweise Konvergenz kann man auch als  $\langle e_k, x_n \rangle \to \langle e_k, x \rangle$  für alle  $k \in \mathbb{N}$  schreiben, wobei  $e_k$  den k.ten Einheitsvektor in  $\ell^1$  bezeichnet. Das bedeutet, dass  $(x_n)$  als Folge in  $\ell^{\infty} = (\ell^1)'$  auf einer Menge mit dichtem Aufspann konvergiert. Weil die Folge beschränkt ist, konvergiert sie dann in jedem Punkt von  $\ell^1$ , also  $x_n \rightharpoonup^* x$  in  $\ell^{\infty}$ , was gerade  $x_n \rightharpoonup x$  in  $c_0$  bedeutet. Die andere Implikation ist auch in diesem Fall wieder trivial.

**Bemerkung:** In diesem Fall ist es im Gegensatz zu  $\ell^p$  wesentlich, dass wir  $x \in c_0$  bereits voraussetzen, weswegen wir auch nicht das gleiche Argument wie im ersten Aufgabenteil verwenden können. Ohne diese Bedingung wird die Aussage nämlich falsch, wie die Folge  $(s_n)$  aus der vorigen Aufgabe zeigt.

(d) Ist die Aussage des ersten Aufgabenteils auch für  $\ell^{\infty}$  richtig? (2)

**Lösung:** Nein. Wir haben in der vorigen Aufgabe mit der Folge  $(s_n)$  ein Gegenbeispiel kennengelernt.

**36.** Sei  $(\Omega, \Sigma, \mu)$  ein endlicher Maßraum. Zeige, dass es zu jedem  $\varphi \in L^1(\Omega)'$  ein  $h \in L^{\infty}(\Omega)$  mit  $||h||_{\infty} = ||\varphi||$  gibt, für das  $\varphi(f) = \int_{\Omega} f h \, d\mu$  für alle  $f \in L^1(\Omega)$  gilt! (2)

**Lösung:** Definiere  $\lambda(A) := \varphi(\mathbb{1}_A)$ . Dann ist  $\lambda$  nach dem Satz von Lebesgue ein  $\sigma$ -additives Funktional auf  $\Sigma$  und es gilt  $\lambda(\emptyset) = 0$ . Zudem ist  $\lambda(A) = 0$  für  $\mu(A) = 0$ . Nach dem Satz von Radon-Nikodym gibt es also ein  $h \in L^1(\Omega)$  mit

$$\varphi(\mathbb{1}_A) = \lambda(A) = \int_A h \, \mathrm{d}\mu = \int_\Omega h \, \mathbb{1}_A \, \mathrm{d}\mu$$

für alle  $A \in \Sigma$ . Wegen Linearität ist dann  $\varphi(f) = \int_{\Omega} hf \,d\mu$  für alle einfachen Funktionen f und wegen Stetigkeit somit für alle  $f \in L^{\infty}(\Omega)$ .

Für  $c \geq 0$ sei  $A_c \coloneqq \{|h| \geq c\}$  und  $f_c \coloneqq \overline{\mathrm{sgn}(h)} \, \mathbbm{1}_{A_c}.$  Dann ist

$$c\mu(A_c) \le \int_{A_c} |h| = \int_{\Omega} hf = \varphi(f) \le \|\varphi\| \|f\|_1 = \|\varphi\| \, \mu(A_c).$$

Dies zeigt  $\mu(A_c) = 0$  für  $c > \|\varphi\|$ , also  $\|h\|_{\infty} \le \|\varphi\|$ .

Also ist  $f \mapsto \int_{\Omega} hf$  stetig auf  $L^1(\Omega)$ . Weil  $L^{\infty}(\Omega)$  dicht in  $L^1(\Omega)$  ist, zeigt dies  $\varphi(f) = \int_{\Omega} hf$  für alle  $f \in L^1(\Omega)$ . Die Abschätzung  $\|\varphi\| \leq \|h\|_{\infty}$  ist nun trivial.