

Universität Ulm

Abgabe: Donnerstag, 09.07.09

Jun.-Prof. Dr. D. Mugnolo Manfred Sauter

Sommersemester 2009

Gesamtpunktzahl: 16+4*

Übungen Elemente der Funktionalanalysis: Blatt 9

Die Beschäftigung mit der Mathematik, sage ich, ist das beste Mittel gegen die Kupidität.

— Thomas Mann (1875–1955), Der Zauberberg

Die Mathematik ist dem Liebestrieb nicht abträglich.

— Paul Möbius (1853–1907), Irrenarzt

28. Zu den Sobolevräumen in einer Dimension.

(6+4*)

Sei $I \subset \mathbb{R}$ ein offenes Intervall. Wir betrachten der Übersichtlichkeit halber nur reellwertige Funktionen.

- (a) Zeige, dass $C_c^1(I)$ dicht in $L^2(I)$ ist. Folgere daraus, dass die schwache Ableitung (2) eindeutig ist.
- (b) Zeige, dass es ein $f \in C^1(0,1) \cap L^2(0,1)$ gibt, welches nicht in $H^1(0,1)$ liegt. (1)
- (c) Sei $\psi \in C_c^1(I)$ mit $\int_I \psi = 1$. Zeige, dass für jedes $w \in C_c^1(I)$ ein $v \in C_c^1(I)$ existiert, (1) welches

$$v'(x) = w(x) - \psi(x) \int_{I} w(y) \,dy$$

erfüllt.

- (d) Sei $f \in H^1(I)$ mit f' = 0. Zeige, dass $c \in \mathbb{R}$ existiert mit f(x) = c fast überall. (2)
- (e)* Sei $u \in H^1(I)$. Zeige, dass es ein eindeutiges $\tilde{u} \in C(\bar{I})$ gibt, welches fast überall mit u übereinstimmt. Zeige zudem, dass dieses für alle $s, t \in I$ die Gleichung

$$\tilde{u}(t) - \tilde{u}(s) = \int_{s}^{t} u'(r) dr$$

erfüllt.

(f)★ Sei I = (0,1) und $f \in L^2(I)$. Zeige, dass die eindeutige schwache Lösung von $(1\star)$

$$\begin{cases} u - u'' = f, \\ u(0) = u(1) = 0, \end{cases}$$

bereits in $H^2(I)$ liegt.

29. Zur Hilbertraum-Adjungierten.

(10)

Im folgenden seien H,K,L Hilberträume. Ein Operator $N\in\mathcal{L}(H)$ heißt normal, wenn $N^*N=NN^*.$

(a) Seien $S \in \mathcal{L}(H, K)$ und $T \in \mathcal{L}(K, L)$. Zeige: $(TS)^* = S^*T^*$. (1)

- (b) Sei $T \in \mathcal{L}(H, K)$. Zeige: T is genau dann invertierbar, wenn T^* invertierbar ist, und in diesem Fall gilt $(T^{-1})^* = (T^*)^{-1}$.
- (c) Zeige, dass ein Operator $T \in \mathcal{L}(H)$ genau dann normal ist, wenn $||Tx|| = ||T^*x||$ (1) für alle $x \in H$ gilt.
- (d) Sei H ein komplexer Hilbertraum und $T \in \mathcal{L}(H)$. Zeige, T ist genau dann selbstadjungiert, wenn $(Tx \mid x) \in \mathbb{R}$ für alle $x \in H$. Gilt dies auch ohne die Forderung, dass H ein komplexer Hilbertraum ist?
- (e) Sei $T \in \mathcal{L}(H,K)$ isometrisch und surjektiv. Zeige: Dann existiert T^{-1} , $T^{-1} = T^*$ und es gilt $(Tx \mid Ty)_K = (x \mid y)_H$ für alle $x, y \in H$.
- (f) Zeige, dass ein normaler Operator $T \in \mathcal{L}(H)$ für alle $k \in \mathbb{N}_0$ die Gleichung (2)

$$\|T^{2^k}\|^2 = \|T^*T\|^{2^k}$$

erfüllt.

(g) Sei $T \in \mathcal{L}(H)$. Dann gilt $(\ker T)^{\perp} = \overline{\operatorname{rg} T^*}$ und $(\ker T^*)^{\perp} = \overline{\operatorname{rg} T}$. (2)