

Universität Ulm

Besprechung: Freitag, 12.06.15

Gesamtpunktzahl: 12

Prof. Dr. Wolfgang Arendt Dr. Manfred Sauter Sommersemester 2015

Übungen Partielle Differentialgleichungen: Blatt 8

Die Mathematik ist eine Art Spielzeug, welches die Natur uns zuwarf, um uns in diesem Jammertal zu trösten und zu unterhalten.

— Jean-Baptist le Rond d'Alembert (1717–1783)

- 1. Es sei $\Omega \subset \mathbb{R}^d$ offen und $u \in C(\Omega)$. Zeige, dass u genau dann die Mittelwerteigenschaft für Bälle hat, wenn u die Mittelwerteigenschaft für Sphären hat; d.h. zeige die Äquivalenz folgender beider Aussagen:
 - (i) Für alle $x \in \Omega$ und $\overline{B(x,r)} \subset \Omega$ gilt

$$f_{B(x,r)} u(y) \, \mathrm{d}y = u(x).$$

(ii) Für alle $x \in \Omega$ und $\overline{B(x,r)} \subset \Omega$ gilt

$$\oint_{\partial B(x,r)} u(z) \, \mathrm{d}\sigma(z) = u(x).$$

2. Es sei $\Omega \subset \mathbb{R}^d$ offen und K liege kompakt in Ω . Zeige, dass es ein $f \in \mathcal{D}(\Omega)$ gibt mit $0 \le f \le 1$ und f(x) = 1 für alle $x \in K$.

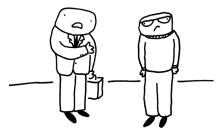
Hinweis: Betrachte die Faltung einer geeigneten Indikatorfuntion mit ρ_n .

3. Sei $1 \le p \le \infty$, $f \in L^1(\mathbb{R}^d)$ und $g \in L^p(\mathbb{R}^d)$. Zeige, dass $f * g \in L^p(\mathbb{R}^d)$ und (4)

$$||f * g||_p \le ||f||_1 ||g||_p.$$

Hinweis: Betrachte $|f(x-y)g(y)| = |f(x-y)|^{1/p} |g(y)| |f(x-y)|^{1-1/p}$.

i don't care if you're a mathematician or not...
the judge is going to need more proof than "a.E.D."



Toothpaste For Dinner.

http://www.toothpastefordinner.com/060312/