Prof. Dr. Rico Zacher Institut für Angewandte Analysis Universität Ulm SoSe 2014

Nichtlineare Funktionalanalysis

Übungsblatt 4

Aufgabe 1. Sei $X = c_0$ der Raum der reellen Nullfolgen (versehen mit der l^{∞} -Norm). Sei $F: X \to X$ definiert durch $(Fx)_j = (x_j)^2, j \in \mathbb{N}, x = (x_i)_{i \in \mathbb{N}} \in X$ (gliedweises Quadrieren). Man zeige: $F \in C^1(X,X), F'(x) \in \mathcal{K}(X)$ für alle $x \in X$, aber F ist nicht kompakt.

Aufgabe 2. Sei X ein B-Raum, r > 0 und $F \in \mathcal{K}(\overline{B_r(0)}, X)$. Es existiere ein kompakter Operator $L \in \mathcal{B}(X)$ mit ||Fx - Lx|| < ||x - Lx|| für alle $x \in \partial B_r(0)$. Man zeige, dass $D(I - F, B_r(0), 0)$ ungerade ist.

Aufgabe 3. Sei $X = l^2$ (versehen mit der kanonischen Norm) und D die abgeschlossene Einheitskugel in X. Sei $F: D \to X$ definiert durch

$$F(x) := (\sqrt{1 - ||x||_{l^2}^2}, x_1, x_2, \dots), \quad \text{für } x = (x_n)_{n \in \mathbb{N}} \in D.$$

Zeigen Sie, dass F stetig ist und $F(D) \subset D$ gilt, dass aber F keinen Fixpunkt besitzt. Was geht schief im Hinblick auf den Schauderschen Fixpunktsatz?

Aufgabe 4. Zeigen Sie, dass die Gleichung

$$u(t) = \frac{1}{3} \left(t + u(t)^2 + \int_0^1 \sqrt{|u(s) - s|} \, ds \right), \quad t \in [0, 1]$$

mindestens eine Lösung $u \in C([0,1])$ mit $0 \le u(t) \le 1$ für alle $t \in [0,1]$ besitzt.

Besprechung der Aufgaben: in der Übung am 14.07.2014.