
A Refresher in Probability
Calculus

VERSION: March 10, 2010



Contents

1 Facts form Probability and Measure Theory 3
1.1 Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Equivalent Measures and Radon-Nikodým Derivatives . . . . . . 14
1.5 Conditional expectation . . . . . . . . . . . . . . . . . . . . . . . 15
1.6 Modes of Convergence . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Basic Probability Background 25
2.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Convolution and Characteristic Functions . . . . . . . . . . . . . 28
2.3 The Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . 31

3 Statistics Background 35
3.1 Simple Random Sampling . . . . . . . . . . . . . . . . . . . . . . 35
3.2 The sampling distribution of X̄ . . . . . . . . . . . . . . . . . . . 36

3.2.1 Characteristic Functions . . . . . . . . . . . . . . . . . . . 36
3.2.2 Normal Approximation . . . . . . . . . . . . . . . . . . . 36

3.3 Estimation of Parameters . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 The Method of Moments . . . . . . . . . . . . . . . . . . 37
3.3.2 Method of Maximum Likelihood . . . . . . . . . . . . . . 38

3.4 Construction of Maximum Likelihood Estimators . . . . . . . . . 40
3.5 Large Sample Theory for Maximum Likelihood Estimates . . . . 41
3.6 Confidence Intervals for Maximum Likelihood Estimates . . . . . 42
3.7 Efficiency and the Cramer-Rao Lower Bound . . . . . . . . . . . 43
3.8 Sufficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.9 Distributions Derived from the Normal Distribution . . . . . . . 44

3.9.1 The χ2, F, t Distributions . . . . . . . . . . . . . . . . . . 44
3.9.2 Sample Mean and Sample Variance . . . . . . . . . . . . . 46

2



Chapter 1

Facts form Probability and
Measure Theory

We will assume that most readers will be familiar with such things from an
elementary course in probability and statistics; for a clear introduction see, e.g.
[GW86], or the first few chapters of [GS01]; [Ros97], [Res01], [Dur99], [Ros00]
are also useful.

1.1 Measure

The language of modelling financial markets involves that of probability, which
in turn involves that of measure theory. This originated with Henri Lebesgue
(1875-1941), in his thesis, ‘Intégrale, longueur, aire’ [Leb02]. We begin with
defining a measure on IR generalising the intuitive notion of length.
The length µ(I) of an interval I = (a, b), [a, b], [a, b) or (a, b] should be b − a:
µ(I) = b−a. The length of the disjoint union I =

⋃n
r=1 Ir of intervals Ir should

be the sum of their lengths:

µ

(
n⋃
r=1

Ir

)
=

n∑
r=1

µ(Ir) (finite additivity).

Consider now an infinite sequence I1, I2, . . .(ad infinitum) of disjoint intervals.
Letting n tend to ∞ suggests that length should again be additive over disjoint
intervals:

µ

( ∞⋃
r=1

Ir

)
=

∞∑
r=1

µ(Ir) (countable additivity).

For I an interval, A a subset of length µ(A), the length of the complement
I \A := I ∩Ac of A in I should be

µ(I \A) = µ(I)− µ(A) (complementation).

If A ⊆ B and B has length µ(B) = 0, then A should have length 0 also:

A ⊆ B and µ(B) = 0 ⇒ µ(A) = 0 (completeness).
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CHAPTER 1. FACTS FORM PROBABILITY AND MEASURE THEORY 4

The term ‘countable’ here requires comment. We must distinguish first between
finite and infinite sets; then countable sets (like IN = {1, 2, 3, . . .}) are the
‘smallest’, or ‘simplest’, infinite sets, as distinct from uncountable sets such as
IR = (−∞,∞).
Let F be the smallest class of sets A ⊂ IR containing the intervals, closed
under countable disjoint unions and complements, and complete (containing all
subsets of sets of length 0 as sets of length 0). The above suggests – what
Lebesgue showed – that length can be sensibly defined on the sets F on the
line, but on no others. There are others – but they are hard to construct (in
technical language: the axiom of choice, or some variant of it such as Zorn’s
lemma, is needed to demonstrate the existence of non-measurable sets – but all
such proofs are highly non-constructive). So: some but not all subsets of the
line have a length. These are called the Lebesgue-measurable sets, and form the
class F described above; length, defined on F , is called Lebesgue measure µ (on
the real line, IR). Turning now to the general case, we make the above rigorous.
Let Ω be a set.

Definition 1.1.1. A collection A0 of subsets of Ω is called an algebra on Ω if:

(i) Ω ∈ A0,
(ii) A ∈ A0 ⇒ Ac = Ω \A ∈ A0,
(iii) A,B ∈ A0 ⇒ A ∪B ∈ A0.

Using this definition and induction, we can show that an algebra on Ω is a family
of subsets of Ω closed under finitely many set operations.

Definition 1.1.2. An algebra A of subsets of Ω is called a σ-algebra on Ω if
for any sequence An ∈ A, (n ∈ IN), we have

∞⋃
n=1

An ∈ A.

Such a pair (Ω,A) is called a measurable space.

Thus a σ-algebra on Ω is a family of subsets of Ω closed under any countable
collection of set operations.
The main examples of σ-algebras are σ-algebras generated by a class C of subsets
of Ω, i.e. σ(C) is the smallest σ-algebra on Ω containing C.
The Borel σ-algebra B = B(IR) is the σ-algebra of subsets of IR generated by
the open intervals (equivalently, by half-lines such as (−∞, x] as x varies in IR.
As our aim is to define measures on collection of sets we now turn to set func-
tions.

Definition 1.1.3. Let Ω be a set, A0 an algebra on Ω and µ0 a non-negative
set function µ0 : A0 → [0,∞] such that µ0(∅) = 0. µ0 is called:

(i) additive, if A,B ∈ A0, A ∩B = ∅ ⇒ µ0(A ∪B) = µ0(A) + µ0(B),
(ii) countably additive, if whenever (An)n∈IN is a sequence of disjoint sets in
A0 with

⋃
An ∈ A0 then

µ0

( ∞⋃
n=0

An

)
=

∞∑
n=1

µ0(An).
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Definition 1.1.4. Let (Ω,A) be a measurable space. A countably additive map

µ : A → [0,∞]

is called a measure on (Ω,A). The triple (Ω,A, µ) is called a measure space.

Recall that our motivating example was to define a measure on IR consistent
with our geometrical knowledge of length of an interval. That means we have
a suitable definition of measure on a family of subsets of IR and want to ex-
tend it to the generated σ-algebra. The measure-theoretic tool to do so is the
Carathéodory extension theorem, for which the following lemma is an inevitable
prerequisite.

Lemma 1.1.1. Let Ω be a set. Let I be a π-system on Ω, that is, a family
of subsets of Ω closed under finite intersections: I1, I2 ∈ I ⇒ I1 ∩ I2 ∈ I.
Let A = σ(I) and suppose that µ1 and µ2 are finite measures on (Ω,A) (i.e.
µ1(Ω) = µ2(Ω) <∞) and µ1 = µ2 on I. Then

µ1 = µ2 on A.

Theorem 1.1.1 (Carathéodory Extension Theorem). Let Ω be a set, A0 an
algebra on Ω and A = σ(A0). If µ0 is a countably additive set function on A0,
then there exists a measure µ on (Ω,A) such that

µ = µ0 on A0.

If µ0 is finite, then the extension is unique.

For proofs of the above and further discussion, we refer the reader to Chapter
1 and Appendix 1 of [Wil91] and the appendix in [Dur96].
Returning to the motivating example Ω = IR, we say that A ⊂ IR belongs to
the collection of sets A0 if A can be written as

A = (a1, b1] ∪ . . . ∪ (ar, br],

where r ∈ IN, −∞ ≤ a1 < b1 ≤ . . . ≤ ar < br ≤ ∞. It can be shown that A0 is
an algebra and σ(A0) = B. For A as above define

µ0(A) =

r∑
k=1

(bk − ak).

µ0 is well-defined and countably additive on A0. As intervals belong to A0 our
geometric intuition of length is preserved. Now by Carathéodory’s extension
theorem there exists a measure µ on (Ω,B) extending µ0 on (Ω,A0). This µ is
called Lebesgue measure.
With the same approach we can generalise:

(i) the area of rectangles R = (a1, b1) × (a2, b2) – with or without any of its
perimeter included – given by µ(R) = (b1−a1)× (b2−a2) to Lebesgue measure
on Borel sets in IR2;
(ii) the volume of cuboids C = (a1, b1)× (a2, b2)× (a3, b3) given by

µ(C) = (b1 − a1) · (b2 − a2) · (b3 − a3)
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to Lebesgue measure on Borel sets in IR3;
(iii) and similarly in k-dimensional Euclidean space IRk. We start with the
formula for a k-dimensional box,

µ

(
k∏
i=1

(ai, bi)

)
=

k∏
i=1

(bi − ai),

and obtain Lebesgue measure µ, defined on B, in IRk.

We are mostly concerned with a special class of measures:

Definition 1.1.5. A measure IP on a measurable space (Ω,A) is called a prob-
ability measure if

IP (Ω) = 1.

The triple (Ω,A, IP ) is called a probability space.

Observe that the above lemma and Carathéodory’s extension theorem guarantee
uniqueness if we construct a probability measure using the above procedure. For
example the unit cube [0, 1]k in IRk has (Lebesgue) measure 1. Using Ω = [0, 1]k

as the underlying set in the above construction we find a unique probability
(which equals length/area/volume if k = 1/2/3).
If a property holds everywhere except on a set of measure zero, we say it holds
almost everywhere (a.e.). If it holds everywhere except on a set of probability
zero, we say it holds almost surely (a.s.) (or, with probability one).
Roughly speaking, one uses addition in countable (or finite) situations, inte-
gration in uncountable ones. As the key measure-theoretic axiom of countable
additivity above concerns addition, countably infinite situations (such as we
meet in discrete time) fit well with measure theory. By contrast, uncountable
situations (such as we meet in continuous time) do not – or at least, are consid-
erably harder to handle. This is why the discrete-time setting is easier than, and
precedes, the continuous-time setting. Our strategy is to do as much as possible
to introduce the key ideas – economic, financial and mathematical – in discrete
time (which, because we work with a finite time-horizon, the expiry time T , is
actually a finite situation), before treating the harder case of continuous time.

1.2 Integral

Let (Ω,A) be a measurable space. We want to define integration for a suitable
class of real-valued functions.

Definition 1.2.1. Let f : Ω → IR. For A ⊂ IR define f−1(A) = {ω ∈ Ω :
f(ω) ∈ A}. f is called (A-) measurable if

f−1(B) ∈ A for all B ∈ B.

Let µ be a measure on (Ω,A). Our aim now is to define, for suitable measurable
functions, the (Lebesgue) integral with respect to µ. We will denote this integral
by

µ(f) =

∫
Ω

fdµ =

∫
Ω

f(ω)µ(dω).
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We start with the simplest functions. If A ∈ A the indicator function 1A(ω) is
defined by

1A(ω) =

{
1, if ω ∈ A
0, if ω 6∈ A.

Then define µ(1A) = µ(A).
The next step extends the definition to simple functions. A function f is called
simple if it is a finite linear combination of indicators: f =

∑n
i=1 ci1Ai

for
constants ci and indicator functions 1Ai of measurable sets Ai. One then extends
the definition of the integral from indicator functions to simple functions by
linearity:

µ

(
n∑
i=1

ci1Ai

)
:=

n∑
i=1

ciµ(1Ai
) =

n∑
i=1

ciµ(Ai),

for constants ci and indicators of measurable sets Ai.
If f is a non-negative measurable function, we define

µ(f) := sup{µ(f0) : f0 simple, f0 ≤ f}.

The key result in integration theory, which we must use here to guarantee that
the integral for non-negative measurable functions is well-defined is:

Theorem 1.2.1 (Monotone Convergence Theorem). If (fn) is a sequence of
non-negative measurable functions such that fn is strictly monotonic increasing
to a function f (which is then also measurable), then µ(fn)→ µ(f) ≤ ∞.

We quote that we can construct each non-negative measurable f as the increas-
ing limit of a sequence of simple functions fn:

fn(ω) ↑ f(ω) for all ω ∈ Ω (n→∞), fn simple.

Using the monotone convergence theorem we can thus obtain the integral of f
as

µ(f) := lim
n→∞

µ(fn).

Since fn increases in n, so does µ(fn) (the integral is order-preserving), so either
µ(fn) increases to a finite limit, or diverges to ∞. In the first case, we say f is
(Lebesgue-) integrable with (Lebesgue-) integral µ(f) = limµ(fn).
Finally if f is a measurable function that may change sign, we split it into its
positive and negative parts, f±:

f+(ω) := max(f(ω), 0), f−(ω) := −min(f(ω), 0),
f(ω) = f+(ω)− f−(ω), |f(ω)| = f+(ω) + f−(ω).

If both f+ and f− are integrable, we say that f is too, and define

µ(f) := µ(f+)− µ(f−).

Thus, in particular, |f | is also integrable, and

µ(|f |) = µ(f+) + µ(f−).
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The Lebesgue integral thus defined is, by construction, an absolute integral: f
is integrable iff |f | is integrable. Thus, for instance, the well-known formula

∞∫
0

sinx

x
dx =

π

2

has no meaning for Lebesgue integrals, since
∫∞

1
|sin x|
x dx diverges to +∞ like∫∞

1
1
xdx. It has to be replaced by the limit relation

X∫
0

sinx

x
dx→ π

2
(X →∞).

The class of (Lebesgue-) integrable functions f on Ω is written L(Ω) or (for
reasons explained below) L1(Ω) – abbreviated to L1 or L.
For p ≥ 1, the Lp space Lp(Ω) on Ω is the space of measurable functions f with
Lp-norm

‖f‖p :=

∫
Ω

|f |p dµ

1
p

<∞.

The case p = 2 gives L2, which is particular important as it is a Hilbert space
(Appendix A).
Turning now to the special case Ω = IRk we recall the well-known Riemann
integral. Mathematics undergraduates are taught the Riemann integral (G.B.
Riemann (1826–1866)) as their first rigorous treatment of integration theory –
essentially this is just a rigorisation of the school integral. It is much easier to
set up than the Lebesgue integral, but much harder to manipulate.
For finite intervals [a, b] ,we quote:

(i) for any function f Riemann-integrable on [a, b], it is Lebesgue-integrable to
the same value (but many more functions are Lebesgue integrable);
(ii) f is Riemann-integrable on [a, b] iff it is continuous a.e. on [a, b]. Thus the
question, ‘Which functions are Riemann-integrable?’ cannot be answered with-
out the language of measure theory – which gives one the technically superior
Lebesgue integral anyway.

Suppose that F (x) is a non-decreasing function on IR:

F (x) ≤ F (y) if x ≤ y.

Such functions can have at most countably many discontinuities, which are at
worst jumps. We may without loss redefine F at jumps so as to be right-
continuous. We now generalise the starting points above:

• Measure. We take µ((a, b]) := F (b)− F (a).

• Integral. We have µ(1(a,b]) = µ((a, b]) = F (b)− F (a).

We may now follow through the successive extension procedures used above.
We obtain:

• Lebesgue-Stieltjes measure µF ,
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• Lebesgue-Stieltjes integral µF (f) =
∫
fdµF , or even

∫
fdF .

The approach generalises to higher dimensions; we omit further details.
If instead of being monotone non-decreasing, F is the difference of two such
functions, F = F1 − F2, we can define the integrals

∫
fdF1,

∫
fdF2 as above,

and then define∫
fdF =

∫
fd(F1 − F2) :=

∫
fdF1 −

∫
fdF2.

If [a, b] is a finite interval and F is defined on [a, b], a finite collection of points,
x0, x1, . . . , xn with a = x0 < x1 < · · · < xn = b, is called a partition of [a, b],
P say. The sum

∑n
i=1 |F (xi) − F (xi−1)| is called the variation of F over the

partition. The least upper bound of this over all partitions P is called the
variation of F over the interval [a, b], V ba (F ):

V ba (F ) := sup
P

∑
|F (xi)− F (xi−1)|.

This may be +∞; but if V ba (F ) < ∞, F is said to be of bounded variation on
[a, b], F ∈ BV ba . If F is of bounded variation on all finite intervals, F is said to
be locally of bounded variation, F ∈ BVloc; if F is of bounded variation on the
real line IR, F is of bounded variation, F ∈ BV .
We quote that the following two properties are equivalent:

(i) F is locally of bounded variation,
(ii) F can be written as the difference F = F1−F2 of two monotone functions.

So the above procedure defines the integral
∫
fdF when the integrator F is of

bounded variation.

Remark 1.2.1. (i) When we pass from discrete to continuous time, we will
need to handle both ‘smooth’ paths and paths that vary by jumps – of bounded
variation – and ‘rough’ ones – of unbounded variation but bounded quadratic
variation;
(ii) The Lebesgue-Stieltjes integral

∫
g(x)dF (x) is needed to express the expec-

tation IEg(X), where X is random variable with distribution function F and g
a suitable function.

1.3 Probability

As we remarked in the introduction of this chapter, the mathematical theory
of probability can be traced to 1654, to correspondence between Pascal (1623–
1662) and Fermat (1601–1665). However, the theory remained both incomplete
and non-rigorous until the 20th century. It turns out that the Lebesgue theory
of measure and integral sketched above is exactly the machinery needed to
construct a rigorous theory of probability adequate for modelling reality (option
pricing, etc.) for us. This was realised by Kolmogorov (1903-1987), whose classic
book of 1933, Grundbegriffe der Wahrscheinlichkeitsrechnung (Foundations of
Probability Theory), [Kol33], inaugurated the modern era in probability.
Recall from your first course on probability that, to describe a random experi-
ment mathematically, we begin with the sample space Ω, the set of all possible
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outcomes. Each point ω of Ω, or sample point, represents a possible – random
– outcome of performing the random experiment. For a set A ⊆ Ω of points ω
we want to know the probability IP (A) (or Pr(A),pr(A)). We clearly want

(i) IP (∅) = 0, IP (Ω) = 1,

(ii) IP (A) ≥ 0 for all A,

(iii) If A1, A2, . . . , An are disjoint, IP (
⋃n
i=1Ai) =

∑n
i=1 IP (Ai) (finite addi-

tivity), which, as above we will strengthen to

(iii)* If A1, A2 . . . (ad inf.) are disjoint,

IP

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

IP (Ai) (countable additivity).

(iv) If B ⊆ A and IP (A) = 0, then IP (B) = 0 (completeness).

Then by (i) and (iii) (with A = A1, Ω \A = A2),

IP (Ac) = IP (Ω \A) = 1− IP (A).

So the class F of subsets of Ω whose probabilities IP (A) are defined (call such
A events) should be closed under countable, disjoint unions and complements,
and contain the empty set ∅ and the whole space Ω. Therefore F should be a σ-
algebra and IP should be defined on F according to Definition 2.1.5. Repeating
this:

Definition 1.3.1. A probability space, or Kolmogorov triple, is a triple (Ω,F , IP )
satisfying Kolmogorov axioms (i),(ii),(iii)*, (iv) above.

A probability space is a mathematical model of a random experiment.
Often we quantify outcomes ω of random experiments by defining a real-valued
function X on Ω, i.e. X : Ω → IR. If such a function is measurable it is called
a random variable.

Definition 1.3.2. Let (Ω,F , IP ) be a probability space. A random variable
(vector) X is a function X : Ω→ IR (X : Ω→ IRk) such that X−1(B) = {ω ∈
Ω : X(ω) ∈ B} ∈ F for all Borel sets B ∈ B(IR) (B ∈ B(IRk)).

In particular we have for a random variable X that {ω ∈ Ω : X(ω) ≤ x} ∈ F
for all x ∈ IR. Hence we can define the distribution function FX of X by

FX(x) := IP ({ω : X(ω) ≤ x}).

The smallest σ-algebra containing all the sets {ω : X(ω) ≤ x} for all real x
(equivalently, {X < x}, {X ≥ x}, {X > x}) is called the σ-algebra generated
by X, written σ(X). Thus,

X is F −measurable (is a random variable) iff σ(X) ⊆ F .

The events in the σ-algebra generated by X are the events {ω : X(ω) ∈ B},
where B runs through the Borel σ-algebra on the line. When the (random)
value X(ω) is known, we know which of these events have happened.
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Interpretation.

Think of σ(X) as representing what we know when we know X, or in other words
the information contained in X (or in knowledge of X). This is reflected in the
following result, due to J.L. Doob, which we quote:

σ(X) ⊆ σ(Y ) if and only if X = g(Y )

for some measurable function g. For, knowing Y means we know X := g(Y )
– but not vice versa, unless the function g is one-to-one (injective), when the
inverse function g−1 exists, and we can go back via Y = g−1(X).

Note.

An extended discussion of generated σ-algebras in the finite case is given in
Dothan’s book [Dot90], Chapter 3. Although technically avoidable, this is useful
preparation for the general case, needed for continuous time.
A measure determines an integral. A probability measure IP , being a special
kind of measure (a measure of total mass one) determines a special kind of
integral, called an expectation.

Definition 1.3.3. The expectation IE of a random variable X on (Ω,F , IP ) is
defined by

IEX :=

∫
Ω

XdIP, or

∫
Ω

X(ω)dIP (ω).

The expectation – also called the mean – describes the location of a distribu-
tion (and so is called a location parameter). Information about the scale of a
distribution (the corresponding scale parameter) is obtained by considering the
variance

Var(X) := IE
[
(X − IE(X))2

]
= IE

(
X2
)
− (IEX)2.

If X is real-valued, say, with distribution function F , recall that IEX is defined
in your first course on probability by

IEX :=

∫
xf(x)dx if X has a density f

or if X is discrete, taking values xn(n = 1, 2, . . .) with probability function
f(xn)(≥ 0) (

∑
xn
f(xn) = 1),

IEX :=
∑

xnf(xn).

These two formulae are the special cases (for the density and discrete cases) of
the general formula

IEX :=

∞∫
−∞

xdF (x)

where the integral on the right is a Lebesgue-Stieltjes integral. This in turn
agrees with the definition above, since if F is the distribution function of X,∫

Ω

XdIP =

∞∫
−∞

xdF (x)
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follows by the change of variable formula for the measure-theoretic integral, on
applying the map X : Ω→ IR (we quote this: see any book on measure theory,
e.g. [Dud89]).
Clearly the expectation operator IE is linear. It even becomes multiplicative if
we consider independent random variables.

Definition 1.3.4. Random variables X1, . . . , Xn are independent if whenever
Ai ∈ B for i = 1, . . . n we have

IP

(
n⋂
i=1

{Xi ∈ Ai}

)
=

n∏
i=1

IP ({Xi ∈ Ai}).

Using Lemma 1.1.1 we can give a more tractable condition for independence:

Lemma 1.3.1. In order for X1, . . . , Xn to be independent it is necessary and
sufficient that for all x1, . . . xn ∈ (−∞,∞],

IP

(
n⋂
i=1

{Xi ≤ xi}

)
=

n∏
i=1

IP ({Xi ≤ xi}).

Now using the usual measure-theoretic steps (going from simple to integrable
functions) it is easy to show:

Theorem 1.3.1 (Multiplication Theorem). If X1, . . . , Xn are independent and
IE |Xi| <∞, i = 1, . . . , n, then

IE

(
n∏
i=1

Xi

)
=

n∏
i=1

IE(Xi).

We now review the distributions we will mainly use in our models of financial
markets.

Examples.

(i) Bernoulli distribution. Recall our arbitrage-pricing example from §1.4. There
we were given a stock with price S(0) at time t = 0. We assumed that after
a period of time ∆t the stock price could have only one of two values, either
S(∆t) = euS(0) with probability p or S(∆t) = edS(0) with probability 1 − p
(u, d ∈ IR). Let R(∆t) = r(1) be a random variable modelling the logarithm of
the stock return over the period [0,∆t]; then

IP (r(1) = u) = p and IP (r(1) = d) = 1− p.

We say that r(1) is distributed according to a Bernoulli distribution. Clearly
IE(r(1)) = up+ d(1− p) and Var(r(1)) = u2p+ d2(1− p)− (IEX)2.
The standard case of a Bernoulli distribution is given by choosing u = 1, d = 0
(which is not a very useful choice in financial modelling).
(ii) Binomial distribution. If we consider the logarithm of the stock return over
n periods (of equal length), say over [0, T ], then subdividing into the periods
1, . . . , n we have

R(T ) = log

[
S(T )

S(0)

]
= log

[
S(T )

S(T −∆t)
· · · S(∆t)

S(0)

]
= log

[
S(T )

S(T −∆t)

]
+ . . .+ log

[
S(∆t)

S(0)

]
= r(n) + . . .+ r(1).
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Assuming that r(i), i = 1, . . . , n are independent and each r(i) is Bernoulli dis-
tributed as above we have that R(T ) =

∑n
i=1 r(i) is binomially distributed. Lin-

earity of the expectation operator and independence yield IE(R(T )) =
∑n
i=1 IE(r(i))

and Var(R(T )) =
∑n
i=1 Var(r(i)).

Again for the standard case one would use u = 1, d = 0. The shorthand notation
for a binomial random variable X is then X ∼ B(n, p) and we can compute

IP (X = k) =

(
n

k

)
pk(1− p)(n−k), IE(X) = np, Var(X) = np(1− p).

(iii) Normal distribution. As we will show in the sequel the limit of a sequence
of appropriate normalised binomial distributions is the (standard) normal dis-
tribution. We say a random variable X is normally distributed with parameters
µ, σ2, in short X ∼ N(µ, σ2), if X has density function

fµ,σ2(x) =
1√
2πσ

exp

{
−1

2

(
x− µ
σ

)2}
.

One can show that IE(X) = µ and Var(X) = σ2, and thus a normally dis-
tributed random variable is fully described by knowledge of its mean and vari-
ance.
Returning to the above example, one of the key results of this text will be
that the limiting model of a sequence of financial markets with one-period asset
returns modelled by a Bernoulli distribution is a model where the distribu-
tion of the logarithms of instantaneous asset returns is normal. That means
S(t+ ∆t)/S(t) is lognormally distributed (i.e. log(S(t+ ∆t)/S(t)) is normally
distributed). Although rejected by many empirical studies (see [EK95] for a
recent overview), such a model seems to be the standard in use among financial
practitioners (and we will call it the standard model in the following). The
main arguments against using normally distributed random variables for mod-
elling log-returns (i.e. log-normal distributions for returns) are asymmetry and
(semi-) heavy tails. We know that distributions of financial asset returns are
generally rather close to being symmetric around zero, but there is a definite
tendency towards asymmetry. This may be explained by the fact that the mar-
kets react differently to positive as opposed to negative information (see [She96]
§1.3.4). Since the normal distribution is symmetric it is not possible to incorpo-
rate this empirical fact in the standard model. Financial time series also suggest
modelling by probability distributions whose densities behave for x→ ±∞ as

|x|ρ exp{−σ |x|}

with ρ ∈ IR, σ > 0. This means that we should replace the normal distribution
with a distribution with heavier tails. Such a model like this would exhibit
higher probabilities of extreme events and the passage from ordinary observa-
tions (around the mean) to extreme observations would be more sudden. Among
suggested (classes of) distributions to be used to address these facts is the class
of hyperbolic distributions (see [EK95] and §2.12 below), and more general distri-
butions of normal inverse Gaussian type (see [BN98], [Ryd99], [Ryd97]) appear
to be very promising.
(iv) Poisson distribution. Sometimes we want to incorporate in our model of
financial markets the possibility of sudden jumps. Using the standard model
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we model the asset price process by a continuous stochastic process, so we need
an additional process generating the jumps. To do this we use point processes
in general and the Poisson process in particular. For a Poisson process the
probability of a jump (and no jump respectively) during a small interval ∆t are
approximately

IP (ν(1) = 1) ≈ λ∆t and IP (ν(1) = 0) ≈ 1− λ∆t,

where λ is a positive constant called the rate or intensity. Modelling small
intervals in such a way we get for the number of jumps N(T ) = ν(1)+ . . .+ν(n)
in the interval [0, T ] the probability function

IP (N(T ) = k) =
e−λT (λT )k

k!
, k = 0, 1, . . .

and we say the process N(T ) has a Poisson distribution with parameter λT .
We can show IE(N(T )) = λT and Var(N(T )) = λT .

Glossary.

Table 1.1 summarises the two parallel languages, measure-theoretic and proba-
bilistic, which we have established.

Measure Probability

Integral Expectation
Measurable set Event
Measurable function Random variable
Almost-everywhere (a.e.) Almost-surely (a.s.)

Table 1.1: Measure-theoretic and probabilistic languages

1.4 Equivalent Measures and Radon-Nikodým
Derivatives

Given two measures IP and QQ defined on the same σ-algebra F , we say that IP
is absolutely continuous with respect to QQ, written

IP << QQ

if IP (A) = 0, whenever QQ(A) = 0, A ∈ F . We quote from measure theory the
vitally important Radon-Nikodým theorem:

Theorem 1.4.1 (Radon-Nikodým). IP << QQ iff there exists a (F-) measurable
function f such that

IP (A) =

∫
A

fdQQ ∀A ∈ F .
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(Note that since the integral of anything over a null set is zero, any IP so
representable is certainly absolutely continuous with respect to QQ – the point
is that the converse holds.)
Since IP (A) =

∫
A
dIP , this says that

∫
A
dIP =

∫
A
fdQQ for all A ∈ F . By analogy

with the chain rule of ordinary calculus, we write dIP/dQQ for f ; then∫
A

dIP =

∫
A

dIP

dQQ
dQQ ∀A ∈ F .

Symbolically,

if IP << QQ, dIP =
dIP

dQQ
dQQ.

The measurable function (random variable) dIP/dQQ is called the Radon-Nikodým
derivative (RN-derivative) of IP with respect to QQ.
If IP << QQ and also QQ << IP , we call IP and QQ equivalent measures, written
IP ∼ QQ. Then dIP/dQQ and dQQ/dIP both exist, and

dIP

dQQ
= 1/

dQQ

dIP
.

For IP ∼ QQ, IP (A) = 0 iff QQ(A) = 0: IP and QQ have the same null sets. Taking
negations: IP ∼ QQ iff IP,QQ have the same sets of positive measure. Taking
complements: IP ∼ QQ iff IP,QQ have the same sets of probability one (the same
a.s. sets). Thus the following are equivalent:

IP ∼ QQ iff IP,QQ have the same null sets,
iff IP,QQ have the same a.s. sets,
iff IP,QQ have the same sets of positive measure.

Far from being an abstract theoretical result, the Radon-Nikodým theorem is
of key practical importance, in two ways:

(a) It is the key to the concept of conditioning, which is of central importance
throughout,
(b) The concept of equivalent measures is central to the key idea of mathe-
matical finance, risk-neutrality, and hence to its main results, the Black-Scholes
formula, fundamental theorem of asset pricing, etc. The key to all this is that
prices should be the discounted expected values under an equivalent martingale
measure. Thus equivalent measures, and the operation of change of measure,
are of central economic and financial importance. We shall return to this later in
connection with the main mathematical result on change of measure, Girsanov’s
theorem.

1.5 Conditional expectation

For basic events define

IP (A|B) := IP (A ∩B)/IP (B) if IP (B) > 0. (1.1)

From this definition, we get the multiplication rule

IP (A ∩B) = IP (A|B)IP (B).
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Using the partition equation IP (B) =
∑
n IP (B|An)IP (An) with (An) a finite or

countable partition of Ω, we get the Bayes rule

IP (Ai|B) =
IP (Ai)IP (B|Ai)∑
j IP (Aj)IP (B|Aj)

.

We can always write IP (A) = IE(1A) with 1A(ω) = 1 if ω ∈ A and 1A(ω) = 0
otherwise. Then the above can be written

IE(1A|B) =
IE(1A1B)

IP (B)
(1.2)

This suggest defining, for suitable random variables X, the IP -average of X over
B as

IE(X|B) =
IE(X1B)

IP (B)
. (1.3)

Consider now discrete random variables X and Y . Assume X takes values
x1, . . . , xm with probabilities f1(xi) > 0, Y takes values y1, . . . , yn with proba-
bilities f2(yj) > 0, while the vector (X,Y ) takes values (xi, yj) with probabilities
f(xi, yj) > 0. Then the marginal distributions are

f1(xi) =

n∑
j=1

f(xi, yj) and f2(yj) =

m∑
i=1

f(xi, yj).

We can use the standard definition above for the events {Y = yj} and {X = xi}
to get

IP (Y = yj |X = xi) =
IP (X = xi, Y = yj)

IP (X = xi)
=
f(xi, yj)

f1(xi)
.

Thus conditional on X = xi (given the information X = xi), Y takes on the
values y1, . . . , yn with (conditional) probabilities

fY |X(yj |xi) =
f(xi, yj)

f1(xi)
.

So we can compute its expectation as usual:

IE(Y |X = xi) =
∑
j

yjfY |X(yj |xi) =

∑
j yjf(xi, yj)

f1(xi)
.

Now define the random variable Z = IE(Y |X), the conditional expectation of
Y given X, as follows:

if X(ω) = xi, then Z(ω) = IE(Y |X = xi) = zi (say)

Observe that in this case Z is given by a ’nice’ function of X. However, a more
abstract property also holds true. Since Z is constant on the the sets {X = xi}
it is σ(X)-measurable (these sets generate the σ-algebra). Furthermore∫

{X=xi}

ZdIP = ziIP (X = xi) =
∑
j

yjfY |X(yj |xi)IP (X = xi)

=
∑
j

yjIP (Y = yj ;X = xi) =

∫
{X=xi}

Y dIP.
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Since the {X = xi} generate σ(X), this implies∫
G

ZdIP =

∫
G

Y dIP ∀ G ∈ σ(X).

Density case. If the random vector (X,Y ) has density f(x, y), then X has
(marginal) density f1(x) :=

∫∞
−∞ f(x, y)dy, Y has (marginal) density f2(y) :=∫∞

−∞ f(x, y)dx. The conditional density of Y given X = x is:

fY |X(y|x) :=
f(x, y)

f1(x)
.

Its expectation is

IE(Y |X = x) =

∞∫
−∞

yfY |X(y|x)dy =

∫∞
−∞ yf(x, y)dy

f1(x)
.

So we define

c(x) =

{
IE(Y |X = x) if f1(x) > 0

0 if f1(x) = 0,

and call c(X) the conditional expectation of Y given X, denoted by IE(Y |X).
Observe that on sets with probability zero (i.e {ω : X(ω) = x; f1(x) = 0})
the choice of c(x) is arbitrary, hence IE(Y |X) is only defined up to a set of
probability zero; we speak of different versions in such cases. With this definition
we again find ∫

G

c(X)dIP =

∫
G

Y dIP ∀ G ∈ σ(X).

Indeed, for sets G with G = {ω : X(ω) ∈ B} with B a Borel set, we find by
Fubini’s theorem

∫
G

c(X)dIP =

∞∫
−∞

1B(x)c(x)f1(x)dx

=

∞∫
−∞

1B(x)f1(x)

∞∫
−∞

yfY |X(y|x)dydx

=

∞∫
−∞

∞∫
−∞

1B(x)yf(x, y)dydx =

∫
G

Y dIP.

Now these sets G generate σ(X) and by a standard technique (the π-systems
lemma, see [Wil01], §2.3) the claim is true for all G ∈ σ(X).

Example. Bivariate Normal Distribution,

N(µ1, µ2, σ
2
1 , σ

2
2 , ρ).

IE(Y |X = x) = µ2 + ρ
σ2

σ1
(x− µ1),
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the familiar regression line of statistics (linear model).
General case. Here, we follow Kolmogorov’s construction using the Radon-
Nikodým theorem. Suppose that G is a sub-σ-algebra of F , G ⊂ F . If Y is a
non-negative random variable with IEY <∞, then

QQ(G) :=

∫
G

Y dIP (G ∈ G)

is non-negative, σ-additive – because∫
G

Y dIP =
∑
n

∫
Gn

Y dIP

if G = ∪nGn, Gn disjoint – and defined on the σ-algebra G, so it is a measure
on G.
If IP (G) = 0, then QQ(G) = 0 also (the integral of anything over a null set is
zero), so QQ << IP .
By the Radon-Nikodým theorem, there exists a Radon-Nikodým derivative of
QQ with respect to IP on G, which is G-measurable. Following Kolmogorov, we
call this Radon-Nikodým derivative the conditional expectation of Y given (or
conditional on) G, IE(Y |G), whose existence we now have established. For Y
that changes sign, split into Y = Y + − Y −, and define IE(Y |G) := IE(Y +|G)−
IE(Y −|G). We summarize:

Definition 1.5.1. Let Y be a random variable with IE(|Y |) < ∞ and G be a
sub-σ-algebra of F . We call a random variable Z a version of the conditional
expectation IE(Y |G) of Y given G, and write Z = IE(Y |G), a.s., if

(i) Z is G-measurable;

(ii) IE(|Z|) <∞;

(iii) for every set G in G, we have∫
G

Y dIP =

∫
G

ZdIP ∀G ∈ G. (1.4)

Notation. Suppose G = σ(X1, . . . , Xn). Then

IE(Y |G) = IE (Y |σ(X1, . . . , Xn)) =: IE(Y |X1, . . . , Xn),

and one can compare the general case with the motivating examples above.
To see the intuition behind conditional expectation, consider the following situ-
ation. Assume an experiment has been performed, i.e. ω ∈ Ω has been realized.
However, the only information we have is the set of values X(ω) for every G-
measurable random variable X. Then Z(ω) = IE(Y |G)(ω) is the expected value
of Y (ω) given this information.
We used the traditional approach to define conditional expectation via the
Radon-Nikodým theorem. Alternatively, one can use Hilbert space projection
theory ([Nev75] and [JP00] follow this route). Indeed, for Y ∈ L2(Ω,F , IP ) one
can show that the conditional expectation Z = IE(Y |G) is the least-squares-
best G-measurable predictor of Y : amongst all G-measurable random variables
it minimises the quadratic distance, i.e.

IE[(Y − IE(Y |G))2] = min{IE[(Y −X)2] : X G −measurable}.
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Note.

1. To check that something is a conditional expectation: we have to check that
it integrates the right way over the right sets (i.e., as in (1.4)).
2. From (1.4): if two things integrate the same way over all sets B ∈ G, they
have the same conditional expectation given G.
3. For notational convenience, we shall pass between IE(Y |G) and IEGY at will.
4. The conditional expectation thus defined coincides with any we may have
already encountered – in regression or multivariate analysis, for example. How-
ever, this may not be immediately obvious. The conditional expectation defined
above – via σ-algebras and the Radon-Nikodým theorem – is rightly called by
Williams ([Wil91], p.84) ‘the central definition of modern probability’. It may
take a little getting used to. As with all important but non-obvious definitions,
it proves its worth in action!
We now discuss the fundamental properties of conditional expectation. From
the definition linearity of conditional expectation follows from the linearity of
the integral. Further properties are given by

Proposition 1.5.1. 1. G = {∅,Ω}, IE(Y |{∅,Ω}) = IEY.

2. If G = F , IE(Y |F) = Y IP − a.s..

3. If Y is G-measurable, IE(Y |G) = Y IP − a.s..

4. Positivity. If X ≥ 0, then IE(X|G) ≥ 0 IP − a.s..

5. Taking out what is known. If Y is G-measurable and bounded, IE(Y Z|G) =
Y IE(Z|G) IP − a.s..

6. Tower property. If G0 ⊂ G, IE[IE(Y |G)|G0] = IE[Y |G0] a.s..

7. Conditional mean formula. IE[IE(Y |G)] = IEY IP − a.s.

8. Role of independence. If Y is independent of G, IE(Y |G) = IEY a.s.

9. Conditional Jensen formula. If c : IR→ IR is convex, and IE|c(X)| <∞,
then

IE(c(X)|G) ≥ c (IE(X|G)) .

Proof. 1. Here G = {∅,Ω} is the smallest possible σ-algebra (any σ-algebra of
subsets of Ω contains ∅ and Ω), and represents ‘knowing nothing’. We have to
check (1.4) for G = ∅ and G = Ω. For G = ∅ both sides are zero; for G = Ω
both sides are IEY .
2. Here G = F is the largest possible σ-algebra, and represents ‘knowing ev-
erything’. We have to check (1.4) for all sets G ∈ F . The only integrand that
integrates like Y over all sets is Y itself, or a function agreeing with Y except
on a set of measure zero.
Note. When we condition on F (‘knowing everything’), we know Y (because
we know everything). There is thus no uncertainty left in Y to average out, so
taking the conditional expectation (averaging out remaining randomness) has
no effect, and leaves Y unaltered.
3. Recall that Y is always F-measurable (this is the definition of Y being a
random variable). For G ⊂ F , Y may not be G-measurable, but if it is, the
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proof above applies with G in place of F .
Note. To say that Y is G-measurable is to say that Y is known given G – that is,
when we are conditioning on G. Then Y is no longer random (being known when
G is given), and so counts as a constant when the conditioning is performed.
4. Let Z be a version of IE(X|G). If IP (Z < 0) > 0, then for some n, the set

G := {Z < −n−1} ∈ G and IP ({Z < −n−1}) > 0.

Thus
0 ≤ IE(X1G) = IE(Z1G) < −n−1IP (G) < 0,

which contradicts the positivity of X.
5. First, consider the case when Y is discrete. Then Y can be written as

Y =

N∑
n=1

bn1Bn ,

for constants bn and events Bn ∈ G. Then for any B ∈ G, B ∩ Bn ∈ G also (as
G is a σ-algebra), and using linearity and (1.4):∫
B

Y IE(Z|G)dIP =

∫
B

(
N∑
n=1

bn1Bn

)
IE(Z|G)dIP =

N∑
n=1

bn

∫
B∩Bn

IE(Z|G)dIP

=

N∑
n=1

bn

∫
B∩Bn

ZdIP =

∫
B

N∑
n=1

bn1Bn
ZdIP

=

∫
B

Y ZdIP.

Since this holds for all B ∈ G, the result holds by (1.4).
For the general case, we approximate to a general random variable Y by a
sequence of discrete random variables Yn, for each of which the result holds
as just proved. We omit details of the proof here, which involves the standard
approximation steps based on the monotone convergence theorem from measure
theory (see e.g. [Wil91], p.90, proof of (j)). We are thus left to show the
IE(|ZY |) < ∞, which follows from the assumption that Y is bounded and
Z ∈ L1.
6. IEG0IEGY is G0-measurable, and for C ∈ G0 ⊂ G, using the definition of
IEG0 , IEG : ∫

C

IEG0 [IEGY ]dIP =

∫
C

IEGY dIP =

∫
C

Y dIP.

So IEG0 [IEGY ] satisfies the defining relation for IEG0Y . Being also G0-measur-
able, it is IEG0Y (a.s.).
We also have:
6‘. If G0 ⊂ G, IE[IE(Y |G0)|G] = IE[Y |G0] a.s..
Proof. IE[Y |G0] is G0-measurable, so G-measurable as G0 ⊂ G, so IE[.|G] has no
effect on it, by 3.
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Note.

6, 6‘ are the two forms of the iterated conditional expectations property. When
conditioning on two σ-algebras, one larger (finer), one smaller (coarser), the
coarser rubs out the effect of the finer, either way round. This may be thought
of as the coarse-averaging property: we shall use this term interchangeably with
the iterated conditional expectations property ([Wil91] uses the term tower prop-
erty).

7. Take G0 = {∅,Ω} in 6. and use 1.
8. If Y is independent of G, Y is independent of 1B for every B ∈ G. So by
(1.4) and linearity,∫

B

IE(Y |G)dIP =

∫
B

Y dIP =

∫
Ω

1BY dIP

= IE(1BY ) = IE(1B)IE(Y ) =

∫
B

IEY dIP,

using the multiplication theorem for independent random variables. Since this
holds for all B ∈ G, the result follows by (1.4).
9. Recall (see e.g. [Wil91], §6.6a, §9.7h, §9.8h), that for every convex function
there exists a countable sequence ((an, bn)) of points in IR2 such that

c(x) = sup
n

(anx+ bn), x ∈ IR.

For each fixed n we use 4. to see from c(X) ≥ anX + bn that

IE[c(X)|G] ≥ anIE(X|G) + bn.

So,
IE[c(X)|G] ≥ sup

n
(anIE(X|G) + bn) = c (IE(X|G)) .

Remark 1.5.1. If in 6, 6′ we take G = G0, we obtain:

IE[IE(X|G)|G] = IE(X|G).

Thus the map X → IE(X|G) is idempotent: applying it twice is the same as
applying it once. Hence we may identify the conditional expectation operator as
a projection.

1.6 Modes of Convergence

So far, we have dealt with one probability measure – or its expectation opera-
tor – at a time. We shall, however, have many occasions to consider a whole
sequence of them, converging (in a suitable sense) to some limiting probability
measure. Such situations arise, for example, whenever we approximate a finan-
cial model in continuous time (such as the continuous-time Black-Scholes model)
by a sequence of models in discrete time (such as the discrete-time Black-Scholes
model).
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In the stochastic-process setting – such as the passage from discrete to continu-
ous Black-Scholes models mentioned above – we need concepts beyond those we
have to hand, which we develop later. We confine ourselves here to setting out
what we need to discuss convergence of random variables, in the various senses
that are useful.
The first idea that occurs to one is to use the ordinary convergence concept in
this new setting, of random variables: then if Xn, X are random variables,

Xn → X (n→∞)

would be taken literally – as if the Xn, X were non-random. For instance, if Xn

is the observed frequency of heads in a long series of n independent tosses of a
fair coin, X = 1/2 the expected frequency, then the above in this case would
be the man-in-the-street’s idea of the ‘law of averages’. It turns out that the
above statement is false in this case, taken literally: some qualification is needed.
However, the qualification needed is absolutely the minimal one imaginable: one
merely needs to exclude a set of probability zero – that is, to assert convergence
on a set of probability one (‘almost surely’), rather than everywhere.

Definition 1.6.1. If Xn, X are random variables, we say Xn converges to X
almost surely –

Xn → X (n→∞) a.s.

– if Xn → X with probability one – that is, if

IP ({ω : Xn(ω)→ X(ω) as n→∞}) = 1.

The loose idea of the ‘law of averages’ has as its precise form a statement on
convergence almost surely. This is Kolmogorov’s strong law of large numbers
(see e.g. [Wil91], §12.10), which is quite difficult to prove.
Weaker convergence concepts are also useful: they may hold under weaker con-
ditions, or they may be easier to prove.

Definition 1.6.2. If Xn, X are random variables, we say that Xn converges
to X in probability -

Xn → X (n→∞) in probability

- if, for all ε > 0,

IP ({ω : |Xn(ω)−X(ω)| > ε})→ 0 (n→∞).

It turns out that convergence almost surely implies convergence in probability,
but not in general conversely. Thus almost-sure convergence is a stronger con-
vergence concept than convergence in probability. This comparison is reflected
in the form the ‘law of averages’ takes for convergence in probability: this is
called the weak law of large numbers, which as its name implies is a weaker form
of the strong law of large numbers. It is correspondingly much easier to prove:
indeed, we shall prove it below.
Recall the Lp-spaces of pth-power integrable functions. We similarly define the
Lp-spaces of pth-power integrable random variables: if p ≥ 1 and X is a random
variable with

‖X‖p := (IE|X|p)1/p <∞,
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we say that X ∈ Lp (or Lp(Ω,F , IP ) to be precise). For Xn, X ∈ Lp, there is
a natural convergence concept: we say that Xn converges to X in Lp, or in pth
mean,

Xn → X in Lp,

if
‖Xn −X‖p → 0 (n→∞),

that is, if
IE(|Xn −X|p)→ 0 (n→∞).

The cases p = 1, 2 are particularly important: if Xn → X in L1, we say that
Xn → X in mean; if Xn → X in L2 we say that Xn → X in mean square.
Convergence in pth mean is not directly comparable with convergence almost
surely (of course, we have to restrict to random variables in Lp for the compar-
ison even to be meaningful): neither implies the other. Both, however, imply
convergence in probability.
All the modes of convergence discussed so far involve the values of random
variables. Often, however, it is only the distributions of random variables that
matter. In such cases, the natural mode of convergence is the following:

Definition 1.6.3. We say that random variables Xn converge to X in distri-
bution if the distribution functions of Xn converge to that of X at all points of
continuity of the latter:

Xn → X in distribution

if
IP ({Xn ≤ x})→ IP ({X ≤ x}) (n→∞)

for all points x at which the right-hand side is continuous.

The restriction to continuity points x of the limit seems awkward at first, but
it is both natural and necessary. It is also quite weak: note that the function
x 7→ IP ({X ≤ x}), being monotone in x, is continuous except for at most
countably many jumps. The set of continuity points is thus uncountable: ‘most’
points are continuity points.
Convergence in distribution is (by far) the weakest of the modes of convergence
introduced so far: convergence in probability implies convergence in distribu-
tion, but not conversely. There is, however, a partial converse: if the limit X
is constant (non-random), convergence in probability and in distribution are
equivalent.

Weak Convergence.

If IPn, IP are probability measures, we say that

IPn → IP (n→∞) weakly

if ∫
fdIPn →

∫
fdIP (n→∞) (1.5)

for all bounded continuous functions f . This definition is given a full-length
book treatment in [Bil68], and we refer to this for background and details. For
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ordinary (real-valued) random variables, weak convergence of their probability
measures is the same as convergence in distribution of their distribution func-
tions. However, the weak-convergence definition above applies equally, not just
to this one-dimensional case, or to the finite-dimensional (vector-valued) setting,
but also to infinite-dimensional settings such as arise in convergence of stochas-
tic processes. We shall need such a framework in the passage from discrete- to
continuous-time Black-Scholes models.



Chapter 2

Basic Probability
Background

2.1 Fundamentals

To describe a random experiment we use a sample space Ω, the set of all possible
outcomes. Each point ω of Ω, or sample point, represents a possible random
outcome of performing the random experiment.
Examples. Write down Ω for experiments such as flip a coin three times, roll
two dice.
For a set A ⊆ Ω we want to know the probability IP (A). The class F of subsets
of Ω whose probabilities IP (A) are defined (call such A events) should be a
σ-algebra , i.e.

(i) ∅,Ω ∈ F .

(ii) F ∈ F implies F c ∈ F .

(iii) F1, F2, . . . ∈ F then
⋃
n Fn ∈ F .

We want a probability measure defined on F

(i) IP (∅) = 0, IP (Ω) = 1,

(ii) IP (A) ≥ 0 for all A,

(iii) If A1, A2, . . . , are disjoint, IP (
⋃
iAi) =

∑
i IP (Ai) countable additivity.

Definition 2.1.1. A probability space, or Kolmogorov triple, is a triple (Ω,F , IP )
satisfying Kolmogorov axioms (i),(ii) and (iii) above.

A probability space is a mathematical model of a random experiment.
Examples. Assign probabilities for the above experiments.

Definition 2.1.2. Let (Ω,F , IP ) be a probability space. A random variable
(vector) X is a function X : Ω→ IR(IRk) such that X−1(B) = {ω ∈ Ω : X(ω) ∈
B} ∈ F for all Borel sets B ∈ B(B(IRk)).

25
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For a random variable X

{ω ∈ Ω : X(ω) ≤ x} ∈ F

for all x ∈ IR. So define the distribution function FX of X by

FX(x) := IP ({ω : X(ω) ≤ x}).

Recall: σ(X), the σ-algebra generated by X.

Some important probability distributions

• Binomial distribution: Number of successes

IP (Sn = k) =

(
n

k

)
pk(1− p)n−k.

• Geometric distribution: Waiting time

IP (N = n) = p(1− p)n−1.

• Poisson distribution:

IP (X = k) = e−λ
λk

k!
.

• Density of Uniform distribution:

f(x) =
1

b− a
1{(a,b)}.

• Density of Exponential distribution:

f(x) = λe−λx1{[0,∞)}.

• Density of standard Normal distribution:

f(x) =
1√
2π
e−x

2/2.

Definition 2.1.3. The expectation IE of a random variable X on (Ω,F , IP ) is
defined by

IEX :=

∫
Ω

XdIP, or

∫
Ω

X(ω)dIP (ω).

The variance of a random variable is defined as

Var(X) := IE
[
(X − IE(X))2

]
= IE

(
X2
)
− (IEX)2.

If X is real-valued with density f (i.e f(x) ≥ 0 :
∫
f(x)dx = 1),

IEX :=

∫
xf(x)dx

or if X is discrete, taking values xn(n = 1, 2, . . .) with probability function
f(xn)(≥ 0),

IEX :=
∑

xnf(xn).

Examples. Calculate moments for some of the above distributions.
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Definition 2.1.4. Random variables X1, . . . , Xn are independent if whenever
Ai ∈ B (the Borel σ-algebra) for i = 1, . . . n we have

IP

(
n⋂
i=1

{Xi ∈ Ai}

)
=

n∏
i=1

IP ({Xi ∈ Ai}).

Lemma 2.1.1. In order for X1, . . . , Xn to be independent it is necessary and
sufficient that for all x1, . . . xn ∈ (−∞,∞],

IP

(
n⋂
i=1

{Xi ≤ xi}

)
=

n∏
i=1

IP ({Xi ≤ xi}).

Theorem 2.1.1 (Multiplication Theorem). If X1, . . . , Xn are independent and
IE |Xi| <∞, i = 1, . . . , n, then

IE

(
n∏
i=1

Xi

)
=

n∏
i=1

IE(Xi).

If X, Y are independent, with distribution functions F , G, define Z := X + Y
with distribution function H. We call H the convolution of F and G, written
H = F ∗G.
Suppose X, Y have densities f , g, then Z has a density h with

h(z) =

∞∫
−∞

f(z − y)g(y)dy =

∞∫
−∞

f(x)g(z − x)dx.

Example. Assume t1, . . . , tn are independent random variables that have an
exponential distribution with parameter λ. Then T = t1 + . . . + tn has the
Gamma(n, λ) density function

f(x) =
λnxn−1

(n− 1)!
e−λx.

Definition 2.1.5. If X is a random variable with distribution function F , its
moment generating function φX is

φ(t) := IE(etX) =

∞∫
−∞

etxdF (x).

The mgf takes convolution into multiplication: if X, Y are independent,

φX+Y (t) = φX(t)φY (t).

Observe φ(k)(t) = IE(XketX) and φ(0) = IE(Xk).
For X on nonnegative integers use the generating function

γX(z) = IE(zX) =

∞∑
k=0

zkIP (Z = k).
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2.2 Convolution and Characteristic Functions

The most basic operation on numbers is addition; the most basic operation on
random variables is addition of independent random variables. If X, Y are
independent, with distribution functions F , G, and

Z := X + Y,

let Z have distribution function H. Then since X + Y = Y + X (addition is
commutative), H depends on F and G symmetrically. We call H the convolution
(German: Faltung) of F and G, written

H = F ∗G.

Suppose first that X, Y have densities f , g. Then

H(z) = IP (Z ≤ z) = IP (X + Y ≤ z) =

∫
{(x,y):x+y≤z}

f(x)g(y)dxdy,

since by independence of X and Y the joint density of X and Y is the product
f(x)g(y) of their separate (marginal) densities, and to find probabilities in the
density case we integrate the joint density over the relevant region. Thus

H(z) =

∞∫
−∞

f(x)


z−x∫
−∞

g(y)dy

 dx =

∞∫
−∞

f(x)G(z − x)dx.

If

h(z) :=

∞∫
−∞

f(x)g(z − x)dx,

(and of course symmetrically with f and g interchanged), then integrating we
recover the equation above (after interchanging the order of integration. This
is legitimate, as the integrals are non-negative, by Fubini’s theorem, which we
quote from measure theory, see e.g. [Wil91], §8.2). This shows that if X, Y are
independent with densities f , g, and Z = X + Y , then Z has density h, where

h(x) =

∞∫
−∞

f(x− y)g(y)dy.

We write
h = f ∗ g,

and call the density h the convolution of the densities f and g.
If X, Y do not have densities, the argument above may still be taken as far as

H(z) = IP (Z ≤ z) = IP (X + Y ≤ z) =

∞∫
−∞

F (x− y)dG(y)

(and, again, symmetrically with F and G interchanged), where the integral on
the right is the Lebesgue-Stieltjes integral. We again write

H = F ∗G,
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and call the distribution function H the convolution of the distribution functions
F and G.
In sum: addition of independent random variables corresponds to convolution of
distribution functions or densities.
Now we frequently need to add (or average) lots of independent random vari-
ables: for example, when forming sample means in statistics – when the bigger
the sample size is, the better. But convolution involves integration, so adding n
independent random variables involves n− 1 integrations, and this is awkward
to do for large n. One thus seeks a way to transform distributions so as to
make the awkward operation of convolution as easy to handle as the operation
of addition of independent random variables that gives rise to it.

Definition 2.2.1. If X is a random variable with distribution function F , its
characteristic function φ (or φX if we need to emphasise X) is

φ(t) := IE(eitX) =

∞∫
−∞

eitxdF (x), (t ∈ IR).

Note.

Here i :=
√
−1. All other numbers – t, x etc. – are real; all expressions involving

i such as eitx, φ(t) = IE(eitx) are complex numbers.
The characteristic function takes convolution into multiplication: if X, Y are
independent,

φX+Y (t) = φX(t)φY (t).

For, as X, Y are independent, so are eitX and eitY for any t, so by the multi-
plication theorem (Theorem 1.3.1),

IE(eit(X+Y )) = IE(eitX · eitY ) = IE(eitX) · IE(eitY ),

as required.
We list some properties of characteristic functions that we shall need.

1. φ(0) = 1. For, φ(0) = IE(ei·0·X) = IE(e0) = IE(1) = 1.
2. |φ(t)| ≤ 1 for all t ∈ IR.

Proof. |φ(t)| =
∣∣∣∫∞−∞ eitxdF (x)

∣∣∣ ≤ ∫∞−∞ ∣∣eitx∣∣ dF (x) =
∫∞
−∞ 1dF (x) = 1.

Thus in particular the characteristic function always exists (the integral defining
it is always absolutely convergent). This is a crucial advantage, far outweighing
the disadvantage of having to work with complex rather than real numbers (the
nuisance value of which is in fact slight).
3. φ is continuous (indeed, φ is uniformly continuous).
Proof.

|φ(t+ u)− φ(t)| =

∣∣∣∣∣∣
∞∫
−∞

{ei(t+u)x − eitx}dF (x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∫
−∞

eitx(eiux − 1)dF (x)

∣∣∣∣∣∣ ≤
∞∫
−∞

∣∣eiux − 1
∣∣ dF (x),
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for all t. Now as u → 0,
∣∣eiux − 1

∣∣ → 0, and
∣∣eiux − 1

∣∣ ≤ 2. The bound on
the right tends to zero as u→ 0 by Lebesgue’s dominated convergence theorem
(which we quote from measure theory: see e.g. [Wil91], §5.9), giving continuity;
the uniformity follows as the bound holds uniformly in t.
4. (Uniqueness theorem): φ determines the distribution function F uniquely.
Technically, φ is the Fourier-Stieltjes transform of F , and here we are quoting
the uniqueness property of this transform. Were uniqueness not to hold, we
would lose information on taking characteristic functions, and so φ would not
be useful.
5. (Continuity theorem): If Xn, X are random variables with distribution func-
tions Fn, F and characteristic functions φn, φ, then convergence of φn to φ,

φn(t)→ φ(t) (n→∞) for all t ∈ IR

is equivalent to convergence in distribution of Xn to X. This result is due to
Lévy; see e.g. [Wil91], §18.1.
6. Moments. Suppose X has kth moment: IE|X|k < ∞. Take the Taylor
(power-series) expansion of eitx as far as the kth power term:

eitx = 1 + itx+ · · ·+ (itx)k/k! + o
(
tk
)
,

where ‘o
(
tk
)
’ denotes an error term of smaller order than tk for small k. Now

replace x by X, and take expectations. By linearity, we obtain

φ(t) = IE(eitX) = 1 + itIEX + · · ·+ (it)k

k!
IE(Xk) + e(t),

where the error term e(t) is the expectation of the error terms (now random, as
X is random) obtained above (one for each value X(ω) of X). It is not obvious,
but it is true, that e(t) is still of smaller order than tk for t→ 0:

if IE
(
|X|k

)
<∞, φ(t) = 1 + itIE(X) + . . .+

(it)k

k!
IE
(
Xk
)

+o
(
tk
)

(t→ 0).

We shall need the case k = 2 in dealing with the central limit theorem below.

Examples

1. Standard Normal Distribution,

N(0, 1). For the standard normal density f(x) = 1√
2π

exp{− 1
2x

2}, one has, by

the process of ‘completing the square’ (familiar from when one first learns to
solve quadratic equations!),

∞∫
−∞

etxf(x)dx =
1√
2π

∞∫
−∞

exp

{
tx− 1

2
x2

}
dx

=
1√
2π

∞∫
−∞

exp

{
−1

2
(x− t)2 +

1

2
t2
}
dx

= exp

{
1

2
t2
}
· 1√

2π

∞∫
−∞

exp

{
−1

2
(x− t)2

}
dx.



CHAPTER 2. BASIC PROBABILITY BACKGROUND 31

The second factor on the right is 1 (it has the form of a normal integral). This
gives the integral on the left as exp{ 1

2 t
2}.

Now replace t by it (legitimate by analytic continuation, which we quote from
complex analysis, see e.g. [BB70]). The right becomes exp{− 1

2 t
2}. The integral

on the left becomes the characteristic function of the standard normal density
– which we have thus now identified (and will need below in §2.8).

2. General Normal Distribution,

N(µ, σ). Consider the transformation x 7→ µ+σx. Applied to a random variable
X, this adds µ to the mean (a change of location), and multiplies the variance
by σ2 (a change of scale). One can check that if X has the standard normal
density above, then µ+ σX has density

f(x) =
1

σ
√

2π
exp

{
−1

2
(x− µ)2/σ2

}
,

and characteristic function

IEeit(µ+σX) = exp{iµt}IE
(
e(iσt)X

)
= exp{iµt} exp

{
−1

2
(σt)2

}
= exp

{
iµt− 1

2
σ2t2

}
.

Thus the general normal density and its characteristic function are

f(x) =
1

σ
√

2π
exp

{
−1

2
(x− µ)2/σ2

}
, φ(t) = exp

{
iµt− 1

2
σ2t2

}
.

3. Poisson Distribution,

P (λ). Here, the probability mass function is

f(k) := IP (X = k) = e−λλk/k!, (k = 0, 1, 2, . . .).

The characteristic function is thus

φ(t) = IE
(
eitX

)
=

∞∑
k=0

e−λλk

k!
· eitk

= e−λ
∞∑
k=0

(λeit)k/k! = e−λ exp{λeit} = exp{−λ(1− eit)}.

2.3 The Central Limit Theorem

You will be well aware that(
1 +

x

n

)n
→ ex (n→∞) ∀x ∈ IR.

This is the formula governing the passage from discrete to continuous compound
interest. Invest one pound (or dollar) for one year at 100x% p.a.; with interest
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compounded n times p.a., our capital after one year is (1 + x
n )n. With continu-

ous compounding, our capital after one year is the exponential ex: exponential
growth corresponds to continuously compounded interest.
We need two extensions: the formula still holds with x ∈ IR replaced by a
complex number z ∈ IC:(

1 +
z

n

)n
→ ez (n→∞) ∀z ∈ IC,

and if zn ∈ IC, zn → z,(
1 +

zn
n

)n
→ ez (n→∞) (zn → z ∈ IC).

As a first illustration of the power of transform methods, we prove the weak law
of large numbers:

Theorem 2.3.1 (Weak Law of Large Numbers). If X1, X2, . . . are independent
and identically distributed with mean µ, then

1

n

n∑
i=1

Xi → µ (n→∞) in probability.

Proof. If the Xi have characteristic function φ, then by the moment property
of §2.8 with k = 1,

φ(t) = 1 + iµt+ o (t) (t→ 0).

Now using the i.i.d. assumption, 1
n

∑n
i=1Xi has characteristic function

IE

(
exp

{
it · 1

n

n∑
1

Xj

})
= IE

(
n∏
i=1

exp

{
it · 1

n
Xj

})

=

n∏
i=1

IE

(
exp

{
it

n
Xj

})
= (φ(t/n))n

=

(
1 +

iµt

n
+ o (1/n)

)n
→ eiµt (n→∞),

and eiµt is the characteristic function of the constant µ (for fixed t, o (1/n) is
an error term of smaller order than 1/n as n→∞). By the continuity theorem,

1

n

n∑
i=1

Xi → µ in distribution,

and as µ is constant, this says (see §2.6) that

1

n

n∑
1

Xi → µ in probability.

The main result of this section is the same argument carried one stage further.
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Theorem 2.3.2 (Central Limit Theorem). If X1, X2, . . . are independent and
identically distributed with mean µ and variance σ2, then with N(0, 1) the stan-
dard normal distribution,
√
n

σ

1

n

n∑
i=1

(Xi − µ) =
1√
n

n∑
i=1

(Xi − µ)/σ → N(0, 1) (n→∞) in distribution.

That is, for all x ∈ IR,

IP

(
1√
n

n∑
i=1

(Xi − µ)/σ ≤ x

)
→ Φ(x) :=

1√
2π

x∫
−∞

e−
1
2y

2

dy (n→∞).

Proof. We first centre at the mean. If Xi has characteristic function φ, let
Xi − µ have characteristic function φ0. Since Xi − µ has mean 0 and second
moment σ2 = Var(Xi) = IE[(Xi − IEXi)

2] = IE[(Xi − µ)2], the case k = 2 of
the moment property of §2.7 gives

φ0(t) = 1− 1

2
σ2t2 + o

(
t2
)

(t→ 0).

Now
√
n( 1

n

∑n
i=1Xi − µ)/σ has characteristic function

IE

exp

it ·
√
n

σ

 1

n

n∑
j=1

Xj − µ




= IE

 n∏
j=1

exp

{
it(Xj − µ)

σ
√
n

} =

n∏
j=1

IE

(
exp

{
it

σ
√
n

(Xj − µ)

})

=

(
φ0

(
t

σ
√
n

))n
=

(
1−

1
2σ

2t2

σ2n
+ o

(
1

n

))n
→ e−

1
2 t

2

(n→∞),

and e−
1
2 t

2

is the characteristic function of the standard normal distribution
N(0, 1). The result follows by the continuity theorem.

Note.

In Theorem 2.3.2, we:

(i) centre the Xi by subtracting the mean (to get mean 0);
(ii) scale the resulting Xi − µ by dividing by the standard deviation σ (to get
variance 1). Then if Yi := (Xi − µ)/σ are the resulting standardised variables,

1√
n

∑n
1Yi converges in distribution to standard normal.

Example: the Binomial Case.

If each Xi is Bernoulli distributed with parameter p ∈ (0, 1),

IP (Xi = 1) = p, IP (Xi = 0) = q := 1− p

– so Xi has mean p and variance pq - Sn :=
∑n
i=1Xi is binomially distributed

with parameters n and p:

IP

(
n∑
i=1

Xi = k

)
=

(
n

k

)
pkqn−k =

n!

(n− k)!k!
pkqn−k.



CHAPTER 2. BASIC PROBABILITY BACKGROUND 34

A direct attack on the distribution of 1√
n

∑n
i=1(Xi − p)/

√
pq can be made via

IP

(
a ≤

n∑
i=1

Xi ≤ b

)
=

∑
k:np+a

√
npq≤k≤np+b√npq

n!

(n− k)!k!
pkqn−k.

Since n, k and n − k will all be large here, one needs an approximation to the
factorials. The required result is Stirling’s formula of 1730:

n! ∼
√

2πe−nnn+ 1
2 (n→∞)

(the symbol ∼ indicates that the ratio of the two sides tends to 1). The
argument can be carried through to obtain the sum on the right as a Riemann

sum (in the sense of the Riemann integral: §2.2) for
∫ b
a

1√
2π
e−

1
2x

2

dx, whence

the result. This, the earliest form of the central limit theorem, is the de Moivre-
Laplace limit theorem (Abraham de Moivre, 1667–1754; P.S. de Laplace, 1749–
1827). The proof of the de-Moivre-Laplace limit theorem sketched above is
closely analogous to the passage from the discrete to the continuous Black-
Scholes formula.

Local Limit Theorems.

The central limit theorem as proved above is a global limit theorem: it relates
to distributions and convergence thereof. The de Moivre-Laplace limit theorem
above, however, deals directly with individual probabilities in the discrete case
(the sum of a large number of which is shown to approximate an integral). A
limit theorem dealing with densities and convergence thereof in the density case,
or with the discrete analogues of densities – such as the individual probabilities
IP (Sn = k) in the binomial case above – is called a local limit theorem.

Poisson Limit Theorem.

The de Moivre-Laplace limit theorem – convergence of binomial to normal – is
only one possible limiting regime for binomial models. The next most important
one has a Poisson limit in place of a normal one.
Suppose we have a sequence of binomial models B(n, p), where the success
probability p = pn varies with n, in such a way that

npn → λ > 0, (n→∞). (2.1)

Thus pn → 0 – indeed, pn ∼ λ/n. This models a situation where we have a
large number n of Bernoulli trials, each with small probability pn of success,
but such that npn, the expected total number of successes, is ‘neither large nor
small, but intermediate’. Binomial models satisfying condition (2.1) converge
to the Poisson model P (λ) with parameter λ > 0.
This result is sometimes called the law of small numbers. The Poisson dis-
tribution is widely used to model statistics of accidents, insurance claims and
the like, where one has a large number n of individuals at risk, each with a
small probability pn of generating an accident, insurance claim etc. (‘success
probability’ seems a strange usage here!).
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Statistics Background

3.1 Simple Random Sampling

Each particular sample of size n has the same probability of occurrence (and
each member of the population appears at most once).

Definition 3.1.1. The random variables X1, . . . , Xn are called a random sam-
ple of size n from the population f(x) if X1, . . . Xn are mutually independent
rvs and the probability density (mass) function is the same function f(x).

We can compute the joint pdf of X1, . . . Xn.

f(x1, . . . , Xn) = f(x1) · . . . · f(xn) =

n∏
i=1

f(xi).

We are interested in summaries of the values of X1 = x1, . . . Xn = xn. Any such
summary may be expressed as a suitable function T (x1, . . . xn).

Definition 3.1.2. Let X1, . . . , Xn be a random sample of size n from a popu-
lation and let T (x1, . . . , xn) be a real-valued (or vector-valued) function whose
domain includes the sample space of (X1, . . . Xn). Then the random variable
Y = T (X1, . . . Xn) is called a statistic. The probability distribution of a statistic
Y is called the sampling distribution of Y .

Definition 3.1.3. The sample mean is the arithmetic average of the values in
a random sample. It is denoted by

X̄ =
1

n

n∑
i=1

Xi.

Definition 3.1.4. The sample variance is the statistic defined by

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2.

The sample deviation is the statistic defined by

S =
√
S2.

35
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Theorem 3.1.1. Let X1, . . . Xn be a random sample from a population with
mean µ and variance σ2 <∞. Then

(i) IE(X̄) = µ,

(ii) Var(X̄) = σ2

n ,

(iii) IE(S2) = σ2.

The relationships (i) and (iii) mean that X̄ is an unbiased estimator of µ and
S2 is an unbiased estimator of σ2.

3.2 The sampling distribution of X̄

3.2.1 Characteristic Functions

First note the following useful relationship for characteristic functions:

φX̄(t) = (φX1
(t/n))n.

This relation can be used to derive the sampling distribution of X̄ from the
uniqueness theorem
Example. Let X1, . . . Xn be a random sample from a N(µ, σ2) distribution,
then X̄ has a N(µ, σ2/n) distribution.

3.2.2 Normal Approximation

In the general case, i.e. distribution of Xi unknown, we can use the Central
Limit Theorem to obtain an approximation of the distribution of X̄. By the
CLT we have for a fixed number z

IP

(
X̄ − µ
σ/
√
n
≤ z
)
→ Φ(z) (n→∞).

We use the CLT to approximate the probability that the error made by esti-
mating µ by X̄ is less than some constant δ:

IP (
∣∣X̄ − µ∣∣ ≤ δ) = IP

(
−δ ≤ X̄ − µ ≤ δ

)
= IP

(
− δ

σX̄
≤ X̄ − µ

σX̄
≤ δ

σX̄

)
≈ Φ

(
δ

σX̄

)
− Φ

(
− δ

σX̄

)
= 2Φ

(
δ

σX̄

)
− 1.

We can now derive a confidence interval for the population mean µ. A confidence
interval for a population parameter, θ, is a random interval, calculated from
the sample, that contains θ with a specified probability. For example, a 95 %
confidence interval for µ is a random interval that contains µ with probability
0.95.
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For 0 ≤ α ≤ 1, let z(α) be that number such that the area under the standard
normal density function to the right of z(α) is α. By symmetry z(1−α) = z(α).
So

IP (−z(α/2) ≤ Z ≤ z(α/2)) = 1− α.
Using the CLT we get

IP (−z(α/2) ≤ X̄ − µ
σX̄

≤ z(α/2)) ≈ 1− α

or
IP (X̄ − z(α/2)σX̄ ≤ µ ≤ X̄ + z(α/2)σX̄) ≈ 1− α

3.3 Estimation of Parameters

Many families of probability laws depend only on a small number of parameters
(Poisson, Normal, Gamma, ..). These parameters must be estimated from data
in order to fit the probability law. After parameters have chosen the model
should be compared to the actual data to see if the fit is reasonable. We present
two methods of finding such parameters and evaluate their properties.
The model setting is as follows: Observed data will be regarded as realisations
of random variables X1, X2, . . . , Xn, whose joint distribution depends on an
unknown parameter θ. The Xi will be modeled as independent random variables
all having the same distribution f(x|θ). An estimate of θ will be a statistic and
as such be a random variable with a probability distribution called its sampling
distribution. We will use the standard deviation (called standard error) of
the sampling distribution to assess the variability of our estimate.

3.3.1 The Method of Moments

Let X ∼ f , the kth moment of the probability law f is defined as

µk = IE(Xk).

Then the kth sample moment is defined as

µ̂k =
1

n

n∑
i=1

Xk
i .

We view µ̂k as an estimate of µk. The method of moments estimates parameters
by finding expressions for them in terms of the lowest possible order moments
and then substituting sample moments into the expressions.
For example: θ = (θ1, θ2) and

θ1 = h1(µ1, µ2) θ2 = h2(µ1, µ2)

then the method of moments estimates are

θ̂1 = h1(µ̂1, µ̂2) θ̂2 = h2(µ̂1, µ̂2).

Poisson Distribution. X ∼ Po(λ). Now IE(X) = λ, so

λ̂ = µ̂1 = X̄ =
1

n

n∑
i=1

Xi.
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What is the sampling distribution? From Xi ∼ Po(λ) we know
∑
Xi ∼ Po(nλ).

So

IE(λ̂) =
1

n
nλ = λ; Var(λ̂) =

1

n2
Var(

∑
Xi) =

1

n
λ.

The standard error of λ̂ is σλ̂ =
√
λ/n. Since we do not know λ we can only

calculate an estimated standard error as

sλ̂ =

√
λ̂

n
.

If n is large the CLT yields λ̂ ∼ N(λ, λ/n).
Normal Distribution. The first and second moments are

µ1 = IE(X) = µ

µ2 = IE(X2) = µ2 + σ2.

Therefore
µ = µ1

σ2 = µ2 − µ2
1.

The estimates from the sample moments are

µ̂ = X̄

σ̂2 =
1

n

n∑
i=1

X2
i − X̄2 =

1

n

n∑
i=1

(Xi − X̄)2.

We know X̄ ∼ N(µ, σ2/n), nσ̂2/σ2 ∼ χ2
n−1. (See §2.5.2.)

Method of moment estimates can be proved to be consistent if the functions
relating the estimates to the sample moments are continuous.

Definition 3.3.1. Let θ̂n be an estimate of a parameter θ based on a sample of
size n. Then θ̂n is said to be consistent in probability if for any ε > 0,

IP (|θ̂ − θ| > ε)→ 0, (n→∞).

Consistency of θ̂n justifies the approximation of the standard error with sθ̂ =

σ(θ̂)/
√
n.

3.3.2 Method of Maximum Likelihood

Construction of Maximum Likelihood Estimators

Suppose that random variables X1, . . . , Xn have a joint density or frequency
function f(x1, . . . , xn|θ). Given observed values X1 = x1, . . . , Xn = xn the
likelihood of θ as a function of x1, . . . , xn is defined as

L(θ) = f(x1, . . . , xn|θ).

So L is a function of θ. If the distribution is discrete the likelihood function
gives the probability of observing the given data as a function of θ. The maxi-
mum likelihood estimate (MLE) of θ is that value of θ that maximises the
likelihood – that is, makes the observed data most probable or most likely.
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The statistics is under i.i.d. assumptions

L(θ) =

n∏
i=1

f(Xi|θ)

and the log likelihood is

l(θ) = log(L(θ)) =

n∑
i=1

log(f(Xi|θ)).

Poisson Distribution. X ∼ Po(λ) so

IP (X = x) =
λxe−λ

x!

and (under i.i.d.)

l(θ) =

n∑
i=1

(Xi log λ− λ− log(Xi!))

= log λ

n∑
i=1

Xi − nλ−
n∑
i=1

log(Xi!).

To find the MLE we have to solve

l′(λ) =
1

λ

n∑
i=1

Xi − n = 0

so again
λ̂ = X̄.

Normal Distribution. Here

f(x1, . . . , xn|µ, σ) =

n∏
i=1

1

σ
√

2π
exp

{
−1

2

[
xi − µ
σ

]2
}
.

So the likelihood function is

l(µ, σ) = −n log σ − n

2
log 2π − 1

2σ2

n∑
i=1

(Xi − µ)2.

We have to solve

∂l

∂µ
=

1

σ2

n∑
i=1

(Xi − µ) = 0

∂l

∂σ
= −n

σ
+ σ−3

n∑
i=1

(Xi − µ)2 = 0.

We obtain for the MLE

µ̂ = X̄ σ̂ =

√√√√ 1

n

n∑
i=1

(Xi − X̄)2.
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Large Sample Theory for Maximum Likelihood Estimates

We consider i.i.d. samples, then the log likelihood is

l(θ) =

n∑
i=1

f(Xi|θ).

The true value of θ is θ0. We assume throughout this section that the function
f satisfies technical smoothness conditions.
We now develop approximations to the sampling distribution of MLEs by using
limiting arguments as the sample size increases.

Theorem 3.3.1. The MLE from an i.i.d. sample is consistent.

Lemma 3.3.1. Define I(θ) by

I(θ) = IE

[
∂

∂θ
log f(X|θ)

]2

.

I(θ) may also be expressed as

I(θ) = −IE
[
∂2

∂θ2
log f(X|θ)

]
.

The large sample distribution of a maximum likelihood estimate is approxi-
mately normal with mean θ0 and variance 1/nI(θ0). We say that the MLE
is asymptotically unbiased and refer to the variance of the limiting normal
distribution as the asymptotic variance of the MLE. Formally

Theorem 3.3.2. The probability distribution of
√
nI(θ0)(θ̂ − θ0) tends to the

normal distribution.

3.4 Construction of Maximum Likelihood Esti-
mators

Suppose that random variables X1, . . . , Xn have a joint density or frequency
function f(x1, . . . , xn|θ). Given observed values X1 = x1, . . . , Xn = xn the
likelihood of θ as a function of x1, . . . , xn is defined as

L(θ) = f(x1, . . . , xn|θ).

So L is a function of θ. If the distribution is discrete the likelihood function
gives the probability of observing the given data as a function of θ. The maxi-
mum likelihood estimate (MLE) of θ is that value of θ that maximises the
likelihood – that is, makes the observed data most probable or most likely.
The statistics is under i.i.d. assumptions

L(θ) =

n∏
i=1

f(Xi|θ)

and the log likelihood is

l(θ) = log(L(θ)) =

n∑
i=1

log(f(Xi|θ)).



CHAPTER 3. STATISTICS BACKGROUND 41

Poisson Distribution. X ∼ Po(λ) so

IP (X = x) =
λxe−λ

x!

and (under i.i.d.)

l(θ) =

n∑
i=1

(Xi log λ− λ− log(Xi!))

= log λ

n∑
i=1

Xi − nλ−
n∑
i=1

log(Xi!).

To find the MLE we have to solve

l′(λ) =
1

λ

n∑
i=1

Xi − n = 0

so again
λ̂ = X̄.

Normal Distribution. Here

f(x1, . . . , xn|µ, σ) =

n∏
i=1

1

σ
√

2π
exp

{
−1

2

[
xi − µ
σ

]2
}
.

So the likelihood function is

l(µ, σ) = −n log σ − n

2
log 2π − 1

2σ2

n∑
i=1

(Xi − µ)2.

We have to solve

∂l

∂µ
=

1

σ2

n∑
i=1

(Xi − µ) = 0

∂l

∂σ
= −n

σ
+ σ−3

n∑
i=1

(Xi − µ)2 = 0.

We obtain for the MLE

µ̂ = X̄ σ̂ =

√√√√ 1

n

n∑
i=1

(Xi − X̄)2.

3.5 Large Sample Theory for Maximum Likeli-
hood Estimates

We consider i.i.d. samples, then the log likelihood is

l(θ) =

n∑
i=1

f(Xi|θ).
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The true value of θ is θ0. We assume throughout this section that the function
f satisfies technical smoothness conditions.
We now develop approximations to the sampling distribution of MLEs by using
limiting arguments as the sample size increases.

Theorem 3.5.1. The MLE from an i.i.d. sample is consistent.

Lemma 3.5.1. Define I(θ) by

I(θ) = IE

[
∂

∂θ
log f(X|θ)

]2

.

I(θ) may also be expressed as

I(θ) = −IE
[
∂2

∂θ2
log f(X|θ)

]
.

The large sample distribution of a maximum likelihood estimate is approxi-
mately normal with mean θ0 and variance 1/nI(θ0). We say that the MLE
is asymptotically unbiased and refer to the variance of the limiting normal
distribution as the asymptotic variance of the MLE. Formally

Theorem 3.5.2. The probability distribution of
√
nI(θ0)(θ̂ − θ0) tends to the

normal distribution.

3.6 Confidence Intervals for Maximum Likeli-
hood Estimates

Normal Sample. Based on §2.5.2 we have

√
n(X̄ − µ)

S
∼ tn−1.

Let tn−1(α/2) denote the point beyond which the t distribution with n − 1
degrees of freedom has probability α/2. Since the t distribution is symmetric
about 0, the probability to the left of −tn−1(α/2) is also α/2. So

IP

(
−tn−1(α/2) ≤

√
n(X̄ − µ)

S
≤ tn−1(α/2)

)
= 1− α.

From this we find

IP

(
X̄ − tn−1(α/2)

S√
n
≤ µ ≤ X̄ + tn−1(α/2)

S√
n

)
= 1− α.

A confidence interval for σ2 can be constructed using (§2.5.2)

nσ̂2

σ2
∼ χ2

n−1.

So

IP

(
χ2
n−1(1− α/2) ≤ nσ̂2

σ2
≤ χ2

n−1(α/2)

)
= 1− α.
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Manipulation of the inequalities yield

IP

(
nσ̂2

χ2
n−1(α/2)

≤ σ2 ≤ nσ̂2

χ2
n−1(1− α/2)

)
= 1− α.

General i.i.d. Case. We use the large sample theory outlines above:

√
nI(θ̂)(θ̂−

θ) is approximately normal distributed. So

IP

(
−z(α/2) ≤

√
nI(θ̂)(θ̂ − θ) ≤ z(α/2)

)
= 1− α.

So

θ̂ ± z(α/2)
1√
nI(θ̂)

is an approximate 100(1− α)% confidence interval.

3.7 Efficiency and the Cramer-Rao Lower Bound

In general the above methods do not lead to the same estimator, so the question
arises how to evaluate estimators. Qualitatively, it would be sensible to choose
that estimate whose sampling distribution was most highly concentrated about
the true parameter value. Quantitatively we use the Mean Squared Error as
a measure of concentration

MSE(θ̂) = IE(θ̂ − θ0)2 = Var(θ̂)− (IE(θ̂)− θ0)2.

If θ̂ is unbiased, them MSE(θ̂) = Var(θ̂).

Given two estimates, θ̂ and θ̃, the efficiency of θ̂ relative to θ̃ is defined to be

eff(θ̂, θ̃) =
Var(θ̃)

Var(θ̂)
.

In searching for an optimal estimate, we might ask whether there is a lower
bound for the MSE of any estimate. An estimate achieving such a lower bound
could not be improved on. The Cramer-Rao inequality provides such a lower
bound for unbiased estimators.

Theorem 3.7.1 (Cramer-Rao Inequality). Let X1, . . . , Xn be i.i.d. with density
f(x|θ) and T an unbiased estimate of θ. Then

Var(T ) ≥ 1

nI(θ)
.

An unbiased estimate whose variance ac hieves the lower bound is said to be
efficient. Since the asymptotic variance of a maximum likelihood estimate is
equal to the lower bound, maximum likelihood estimates are said to be asymp-
totically efficient.
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3.8 Sufficiency

The concept of sufficiency arises as an attempt to answer the following question:
Is there a statistic T (X1, . . . Xn), which contains all the information in the
sample about θ? If so a reduction of the original data to this statistic without
loss of information is possible.

Definition 3.8.1. A statistic T (X1, . . . , Xn) is said to be sufficient for θ if
the conditional distribution of X1, . . . , Xn, given T = t, does not depend on θ
for any t.

So, given the value of a sufficient statistic T , we can gain no more knowledge
about θ from knowing more about the probability distribution of X1, . . . , Xn.
Sufficient statistics can be identified more easily by

Theorem 3.8.1 (Factorisation Theorem). A necessary and sufficient condition
for T (X1, . . . , Xn) to be sufficient for a parameter θ is that the joint probability
density (mass) function factors in the form

f(x1, . . . , xn|θ) = g[T (x1, . . . , xn), θ]h(x1, . . . , xn).

Recall that one-parameter exponential families have density functions of the
form

f(x|θ) = h(x)c(θ) exp (ω(θ)T (x)) 1A(x).

So an i.i.d. sample from such a family has joint distribution function

f(x1, . . . , xn|θ) =

n∏
i=1

h(xi)c(θ) exp (ω(θ)T (xi)) 1A(xi)

= exp

{
ω(θ)

n∑
i=1

T (xi) + n log c(θ)

}
exp

{
n∑
i=1

log h(xi)

}
n∏
i=1

1A(xi).

So by the factorisation theorem
∑n
i=1 T (xi) is a sufficient statistic for θ.

Corollary 3.8.1. If T is sufficient for θ, the maximum likelihood estimate is a
function of T .

If an estimator is not a function of a sufficient statistic it can be improved!

Theorem 3.8.2 (Rao-Blackwell Theorem). Let θ̂ be an estimator of θ with

IE(θ̂2) < ∞ for all θ. Suppose that T is sufficient for θ, and let θ̃ = IE(θ̂|T ).
Then, for all θ,

IE(θ̃ − θ)2 ≤ IE(θ̂ − θ)2.

The inequality is strict unless θ̂ = θ̃.

3.9 Distributions Derived from the Normal Dis-
tribution

3.9.1 The χ2, F, t Distributions

Definition 3.9.1. Given X1, . . . , Xn independent N(0, 1) distributed random
variables. The distribution of the sum

Y = X2
1 + . . .+X2

n
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is called χ2-distribution with n degrees of freedom, χ2
n.

Theorem 3.9.1. The χ2
n distribution has the density

gn(y) =
1

2n/2Γ(n/2)
yn/2−1 exp{−y/2}, y > 0

and gn(y) = 0 elsewhere.

• If X ∼ χ2
n then IE[X] = n,Var [X] = 2n.

• If X ∼ χ2
n and Y ∼ χ2

m, then X + Y ∼ χ2
n+m (convolution property).

Definition 3.9.2. Let X ∼ χ2
n and Y ∼ χ2

m be independent. Then the distri-
bution of the quotient

Y/m

X/n

is called a F -distribution with (m,n) degrees of freedom, Fm,n.

Theorem 3.9.2. The density of the F -distribution is given by

fm,n(y) =
Γ((m+ n)/2)

Γ(m/2)Γ(n/2)
mm/2nn/2

ym/2−1

(n+my)(m+n)/2
, y > 0

and fm,n = 0 elsewhere.

SinceX ∼ Fm,n implies 1/X ∼ Fn,m we have for the quantile-function F−1
n,m(q) =

1/F−1
m,n(1− q).

Definition 3.9.3. Let X and Y be independent random variables with X ∼
N(0, 1) and Y ∼ χ2

n distributed. The distribution of

X√
Y/n

is called t distribution with n degrees of freedom, tn.

Theorem 3.9.3. The tn distribution has density

hn(y) =
Γ((m+ 1)/2)

Γ(n/2)
√
πn

(
1 +

y2

n

)−(n+1)/2

, y > 0

and hn = 0 elsewhere

We also need the non-central versions of the above distributions

Definition 3.9.4. (i) Given X1, . . . , Xn independent N(µi, 1), i = 1, . . . n
distributed random variables. The distribution of the sum

Y = X2
1 + . . .+X2

n

is called non-central χ2-distribution with n degrees of freedom and non-
centrality parameter λ =

∑n
i=1 µ

2
i , χ

2
n,λ.
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(ii) Let X ∼ χ2
n and Y ∼ χ2

m,λ be independent. Then the distribution of the
quotient

Y/m

X/n

is called a non-central F -distribution with (m,n) degrees of freedom and
the non-centrality parameter λ, Fm,n,λ.

(iii) Let X and Y be independent random variables with X ∼ N(λ, 1) and
Y ∼ χ2

n distributed. The distribution of

X√
Y/n

is called non-central t distribution with n degrees of freedom and non-
centrality parameter λ, tn,λ.

Proposition 3.9.1. (i) If X ∼ χ2
n,λ then IE[X] = n + λ and Var [X] =

2n+ 4λ.

(ii) If T ∼ tn,λ, then IE[T ] = λ
√
n/2Γ((n−1)/2)/Γ(n/2), n > 1 and Var(T ) =

n(1 + λ2)/(n− 2)− (IE[T ])2, n > 2.

(iii) If F ∼ Fm,n,λ, then IE[F ] = n(m+λ)
m(n−2) , n > 2.

3.9.2 Sample Mean and Sample Variance

Given a set of i.i.d. N(µ, σ2) distributed random variables X1, . . . Xn we com-
pute the distribution of the sample mean

X̄n =
1

n

n∑
i=1

Xi

and of the sample variance

S2
n =

1

n− 1

n∑
i=1

(Xi − X̄n)2

and of (X̄n, S
2
n).

Theorem 3.9.4. (i) X̄n and S2
n are independent;

(ii) (n− 1)S2
n/σ

2 is χ2
n−1 distributed;

(iii) X̄n is N(µ, σ2/n) distributed;

(iv)
√
n(X̄n − µ)/Sn is tn−1 distributed.
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