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Abstract
The benchmark theory of mathematical finance is the Black–Scholes–Merton
theory, based on Brownian motion as the driving noise process for asset
prices. Here the distributions of returns of the assets in a portfolio are
multivariate normal. The two most obvious limitations here concern
symmetry and thin tails, neither being consistent with real data. The most
common replacements for the multinormal are parametric—stable,
generalized hyperbolic, variance gamma. In this paper we advocate the use of
semi-parametric models for distributions, where the mean vector µ and
covariance Σ are parametric components and the so-called density generator
(function) g is the non-parametric component. We work mainly within the
family of elliptically contoured distributions, focusing particularly on normal
variance mixtures with self-decomposable mixing distributions. We show
how the parametric cases can be treated in a unified, systematic way within
the non-parametric framework and obtain the density generators for the most
important cases.

1. Introduction
The benchmark theory in mathematical finance—the Black–
Scholes–Merton theory—is based on normal (or Gaussian)
driving noise. This theory leads to Gaussian asset return
distributions—normal models or Gaussian models—and has
much to recommend it, by way of mathematical tractability,
familiarity and completeness of markets (at least in the standard
set-up). Its limitations are equally well known: it commits
one to symmetry and to very thin tails, neither consistent with
the reality of financial data. This has motivated numerous
proposals for alternative models. The first—stable models—
suggests replacing the Gaussian noise (Wiener process) by a
stable process, thereby giving tails that decay like a power
rather than log–quadratic decay. This proposal goes back
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to Mandelbrot (1963); for monograph treatments, see e.g.
Mandelbrot (1997), part IV or Rachev and Mittnik (2000).

The length of the time-interval over which returns are
calculated comes into play here—long intervals lead to the
Gaussian model, at least approximately, by aggregational
Gaussianity. Stable distributions preserve the type of
distribution under time aggregation, a perfectly natural
property from the economic standpoint. However, stable
distributions are so heavy-tailed that the second moment is
infinite, a fact that is inconsistent with empirical findings
for most financial time series. An alternative uses models
based on the generalized hyperbolic distribution, advocated
by Eberlein and others, see e.g. Eberlein (2001) for an
overview. Here a driving Lévy process—hyperbolic Lévy
motion—is constructed with one-period return distributions
from the class of generalized hyperbolic distributions fitted
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to the empirical observed returns. As well as allowing
for heavy-tailed and skewed returns, these models are also
reasonably consistent under time aggregation. Let us mention
that the variance gamma model, proposed by Madan and
Seneta (1990) and extended in Carr et al (2000), where the
driving Brownian motion is time-changed by a gamma process,
can be subsumed within the above framework. All these are
examples of parametric models. These have the advantages
of mathematical tractability, but the drawback that complex
reality cannot be captured accurately by a small number of
parameters.

More generally, one can work non-parametrically, with an
arbitrary infinitely-divisible distribution, and correspondingly,
by the Lévy–Khintchine formula, with an arbitrary Lévy
process as driving noise, in place of the Gaussian noise in the
classical case. This leads to the notion of general Lévy models
for asset returns. The principal drawbacks here are greater
mathematical complexity, and the independent increments
assumption involved in using Lévy processes to model the
driving noise. In reality, the noise terms over contiguous
intervals will certainly be dependent (particularly in periods
of market turbulence, which are atypical but crucial). Lévy
processes are also well adapted to the modelling of stochastic
volatility; for a treatment focusing on the dynamic (time-series)
aspects here, we refer to Barndorff-Nielsen and Shephard
(2001a).

The aim of the paper is to set up a general framework
for Lévy-type models, with particular reference to the
multidimensional case. This is relevant to portfolio theory,
and to questions of asset allocation. We advocate a
semi-parametric approach to combine the advantages of
the parametric and non-parametric approaches. We use
a parametric component, incorporating the mean vector µ

and covariance matrix Σ, and a non-parametric component,
modelling the shape of the distribution, specifically, questions
of tail-decay (kurtosis). Here, shape, which we can think of as
a density on [0, ∞), incorporates what remains when we work
up to location and scatter, that is modulo affine transformations,
while (µ,Σ) represents the affine part. Hodgson et al (2000)
also study semi-parametric modelling in a similar setting, from
the point of view of empirical testing of the capital asset pricing
model (CAPM).

In section 2 we discuss normal variance-mean mixtures
as a general class for the underlying return distributions. We
show that all parametric classes of distributions used to set up
the above-mentioned Lévy models fall within this class.

In section 3 we turn to the framework of elliptical models
or of elliptically contoured distributions (Bickel et al 1998,
sections 4.2, 6.3, 7.2, 7.8, Fang et al 1990, ch 2, 3, see
section 3). This has a number of important advantages.

(1) The roles of µ and Σ are preserved, and the shape
component is flexible enough to handle anisotropy (though
not general asymmetry) and any desired tail decay.

(2) The benchmark normal/Gaussian theory, and the major
special case (β = 0, section 2) of its principal competitor,
the hyperbolic/normal inverse Gaussian (NIG) theory, are
conveniently contained and extensively generalized.

(3) Adaptive estimation is possible, that is ignorance of one
of the parametric and non-parametric components need
extract no price in efficiency when estimating the other
(Bickel et al 1998).

(4) Elliptical models have linear regression (Fang et al
1990, Embrechts et al 2001). This enables the methods
and results of classical statistics—the linear model and
regression—to be brought to bear.

Elliptic models are well adapted to incorporate infinite
divisibility, a concept which we discuss in section 4. Both
the normal/Gaussian and hyperbolic/NIG models are infinitely
divisible. Infinite divisibility is the key feature of a distribution
that allows the introduction of Lévy processes to model
the driving noise, generalizing the r -dimensional Brownian
motion in the Black–Scholes–Merton model (albeit at the
cost of market completeness). Within the family of infinitely
divisible laws, the self-decomposable laws are particularly
important. Our main focus is on self-decomposable elliptic
distributions; both the normal/Gaussian and hyperbolic/NIG
families (for β = 0—see below) are included here (Halgreen
1979). Self-decomposable distributions are also important
in the time-series (dynamic) aspects, rather than the static
distributional aspects studied here. We turn in section 5 to the
important class of distributions generated as normal variance
mixtures and characterize those distributions which can be
used to construct Lévy-type models. In section 6 we discuss
the class of generalized hyperbolic distributions within our
framework and obtain an explicit expression for the density
generator of distributions within this class. We also provide the
decay rate for the density generator, an important quantity for
value-at-risk (VaR) considerations. We close in section 7 with
an outline of how to implement and apply the semi-parametric
model. A detailed analysis of the econometric properties
and applications to risk management will be contained in a
forthcoming paper (Bingham et al 2002).

2. Normal variance-mean mixtures
If U is a random variable on [0, ∞) with law F , and

X|(U = u) ∼ Nr (µ + uβ, u�),

where � is a symmetric positive definite r × r matrix with
determinant one and µ, β are r vectors, then the distribution
of X is called a normal variance-mean mixture with position
µ, drift β, structure matrix � (|�| = 1 is imposed to ensure
identifiability) and mixing distribution F . If β = 0, a case
studied in more detail later, X is a normal variance mixture.
The density fX(x) of X is

exp{(x − µ)T �−1β}
×

∫ ∞

0

1

(2πu)
1
2 r

exp

{
−1

2
(x − µ)T (u�)−1(x − µ)

− 1

2
uβT �−1β

}
dF(u),
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and its characteristic function (CF) is

ψX(t) =
∫

Rr
exp{itT x} fX(x) dx

=
∫

Rr

dx exp{itT x}
∫ ∞

0
fX|U (x|u) dF(u)

=
∫ ∞

0
dF(u) exp{itT µ + itT βu − 1

2 tT �ut},

interchanging the order of integration and using X|(U = u) ∼
Nr (µ + uβ, u�). Thus if

φ(s) :=
∫ ∞

0
e−sudF(u) (s > 0)

is the Laplace–Stieltjes transform of U ,

ψX(t) = exp{itT µ}φ( 1
2 tT �t − itT β). (NVMM)

The distribution is isotropic iff β = 0 and � = I .
We see immediately that ψ is infinitely divisible iff φ is.

Self-decomposability transfers from F , φ to ψ only for β = 0
in general.

For β = 0, the distribution has elliptical symmetry, as with
the multivariate normal. This is very convenient technically;
see below. However, this comes at the price of being able to
model asymmetry.

One prime example is that of F the generalized inverse
Gaussian (GIG) distribution. Recall the Bessel function Kλ

of the third kind (or Macdonald function) and its integral
representation

Kλ(x) = 1

2

∫ ∞

0
uλ−1 exp

{
−1

2
x

(
u +

1

u

)}
du (x > 0)

(Watson 1944, sections 3.7 and 6.22, (8)). Observe that Kλ =
K−λ, on writing 1/u for u; also K± 1

2
(x) = √

π/(2x) e−x .
Then for λ ∈ R, δ, γ > 0

f (x) = (γ /δ)λ

2Kλ(δγ )
xλ−1 exp

{
−1

2

(
γ 2x +

δ2

x

)}
(x > 0)

is a probability density on R+. Its Laplace transform is

ζ(s) =
(

δ2

γ 2 + 2s

) 1
2 λ Kλ

(
δ
√

γ 2 + 2s
)

Kλ(δγ )
(s > 0), (Kλ)

which we shall refer to as the (Kλ)-formula. Of course,
this functional form is to be expected since f belongs to
an exponential family; see e.g. Barndorff-Nielsen (1978),
section 8.1. This law is called the GIG or GIGλ,δ,γ (and we
use dG I G(x; λ, δ, γ ) as notation for its density). The inverse
Gaussian case is λ = 1: I Gδ,γ = GIG1,δ,γ . The name
arises because these are the first hitting-time distributions for
drifting Brownian motion; see Barndorff-Nielsen et al (1978)
for hitting times, Jørgensen (1982) for a monograph treatment
of statistical aspects. It was shown by Barndorff-Nielsen
and Halgreen (1977) that GIG is infinitely divisible, and by
Halgreen (1979) that GIG is self-decomposable.

We now form normal mean-variance mixtures, using the
GIG laws as mixing distributions. The resulting normal mean-
variance mixture has density

f (x) = (γ /δ)λ

(2π)
1
2 r αλ− r

2 Kλ(δγ )

× (δ2 + (x − µ)T �−1(x − µ))(λ− r
2 )/2

× Kλ− 1
2 r

(
α
√

δ2 + (x − µ)T �−1(x − µ)

)

× exp{βT (x − µ)}
where

α2 := γ 2 + βT �−1β.

The class of distributions with these densities is called the
generalized hyperbolic distributions. In the univariate case
(r = 1) the densities depend on five parameters (recall
|�| = 1) with the following interpretation: α > 0 determines
the shape; 0 < |β| < α is a skewness parameter; µ ∈ R

determines the location; δ is a scaling parameter comparable
to σ ; λ ∈ R describes some subclasses. Affine-invariant (no
change under change of location and scale) parametrizations
are given by

ζ = δ
√

α2 − β2, ρ = β

α
,

and

ξ = (1 + ζ )−
1
2 , χ = ξρ.

Since 0 � |χ | < ξ < 1 the distribution parametrized by χ

and ξ can be represented by points of a triangle, the so-called
shape triangle (see Shiryaev (1999) for further discussion).
The simplest case is the univariate case r = 1 with λ = 1.
Then as K 1

2
(x) = √

π/(2x)e−x , f simplifies to

f (x) = γ

2αδK1(δγ )
exp

{−α
√

δ2 + (x − µ)2 + β(x − µ)
}
.

The log-density has graph

y = c − α
√

δ2 + (x − µ)2 + β(x − µ)

for some constant c, which is the lower branch of a hyperbola,
with asymptotes

y − c = (β ± α)(x − µ).

Note that β �= 0 is needed to obtain asymptotes with
asymmetric slopes, that is not of the form ±α.

Now the empirical findings of Bagnold (1941) were that,
for the distribution of sizes of particles of sand, if log-density
is plotted against log-size, one obtains an approximation to
a smooth unimodal curve approaching two linear asymptotes
(with asymmetric slopes in general) at ±∞. The simplest such
curve is the lower branch of a hyperbola, and this motivates
the definition of the generalized hyperbolic distribution above
and its interpretation as a normal variance-mean mixture.
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A further important case is the NIG, where λ = −1/2 and
the density is

dN I G(x) = α

π
exp

{
δ
√

α2 − β2 + β(x − µ)

}

×
K1

(
αδ

√
1 +

( x−µ

δ

)2
)

√
1 +

( x−µ

δ

)2
.

The NIG distributions form the only subclass of the generalized
hyperbolic laws which are closed under convolution:

NIG(α, β, δ1, µ1) ∗ NIG(α, β, δ2, µ2)

= NIG(α, β, δ1 + δ2, µ1 + µ2).

Finally let us mention the variance gamma distribution
obtained by using a gamma distribution as its mixing
distribution, which is the special case λ > 0, δ = 0 and γ > 0
in the above framework:

d�(x) =
(

γ 2

2

)λ 1

�(λ)
xλ−1 exp

{
−1

2
γ 2x

}
, x > 0.

These distributions have been used in the context of variance-
gamma models in Madan and Seneta (1990), Carr et al (1998).

We now have some choice as to how to proceed. We can
use normal mean-variance mixtures (general β). This gives
a semi-parametric model, extending the hyperbolic model of
Bagnold, Barndorff-Nielsen, Eberlein and others above. This
allows us to model asymmetry, but complicates the estimation
theory. Alternatively, we can specialize to β = 0, that is
to normal variance mixtures. This restricts us to ellipsoidal
symmetry (as with the multivariate normal)—though not to
isotropy. However, because the distribution is now elliptically
contoured, it is much easier to handle and the estimation is
much simplified.

We restrict attention to the elliptically contoured case
β = 0 below. Here we can give a fairly complete treatment.
The case of general β—as in the extension of Korsholm (2000)
to higher dimensions, and the dynamic aspects, we propose to
discuss elsewhere.

3. Elliptical models
An r -dimensional distribution is spherically symmetric if it is
invariant under the action of the orthogonal group O(r). The
density f is then a function of x := ‖x‖ rather than of x, and
similarly the CF ψ is a function of t := ‖t‖ rather than of t.

An r -dimensional distribution is elliptically contoured if
it is the image of a spherically symmetric distribution under
an affine transformation. We shall confine attention, for
simplicity, to the absolutely continuous, full-rank, L2 case.
Then the mean vector µand covariance matrixΣ are defined,Σ
is non-singular, and the density f is a function of the quadratic
form Q := (x − µ)T Σ−1(x − µ):

f (x) = |Σ|− 1
2 g(Q) = |Σ|− 1

2 g((x−µ)T Σ−1(x−µ)). (EC)

We write f ∼ ECr (µ,Σ; g), and call g : R+ → R+ the
density generator of f , or ‘shape’. Then θ := (µ,Σ) is

the parameter, or parametric part, of the model, g the non-
parametric part. The CF ψ of f is of the form

ψX(t) := E exp{itT X} = exp{itT µ}φ(tT Σt) (EC′)

for some scalar function φ called the characteristic generator
of ψ , or f (Fang et al 1990 ch 2, Cambanis et al 1981). It is
convenient to write here f ∼ ECr (µ,Σ; φ) also.

To see the link between g in (EC) and φ in (EC′), pass
to the standardized variable Y := Σ− 1

2 (X − µ) with mean
vector 0 and covariance matrix I . Then

φ(t2) = φ(tT t) = ψY (t) =
∫

Rr

exp{itT y}g(yT y) dy

=
∫

Rr

exp{itT y}g(y2) dy.

Thus g(y2) is the density fY (y) of Y , which being a function
of y only we can write as fY (y). The density generator thus
satisfies

g(y2) = fY (y) = fY (y). (DG)

One has the stochastic representation

x = µ + R AT u, AT A = Σ, (SR)

where u is uniformly distributed on the unit r sphere and R > 0
is a scalar random variable with

Q(x) = (x − µ)T Σ−1(x − µ) = R2 = ‖y‖2 = y2, (QF)

in terms of the standardized variables above. Thus (EC) says
that the quadratic form Q = R2 is what matters. Its density h
is given in terms of the density generator g by

h(u) = π r/2

�(r/2)
ur/2−1g(u). (hg)

Scaling and identifiability. In (EC), one can absorb a
scale-factor c > 0 in the quadratic form Q on the right,
adjusting g accordingly. If one passes from one representation
(µ,Σ, g) of f to another, say (µ∗,Σ∗, g∗), in this way, the
transformation formulae are

µ∗ = µ, Σ∗ = cΣ,

φ∗(.) = φ(./c), g∗(.) = c
1
2 r g(c.).

The covariance matrix and the matrix parameter Σ are linked
by

cov(x) = −2φ′(0)Σ = E(R2)

r
Σ = E(Q)

r
Σ.

One thus has some choice as to scaling. Because we wish
to maintain the direct link to the Markowitz mean-variance
theory, the natural choice of scale for us is to take, throughout,

cov(x) = Σ

(or E(R2) = r ) and we shall do this. The above ambiguity
of scale then disappears, and the model (EC) becomes
identifiable.

The elliptically contoured framework applies more
generally than above (densities need not exist, nor need means
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and covariances, Σ may be singular). We restrict as above
for convenience and interpretability; see Fang et al (1990)
section 2.5 for further detail and references.

Curse of dimensionality. The dimensionality in which we
work is the number of different assets in our portfolio, which
may be large. Even reducing from individual stocks to equity
indices may still leave the dimensionality high. For instance,
work on asset allocation for a world equity portfolio, Bodie
et al (1999) considers 48 equity indices. One of the principal
advantages of our elliptically contoured model is that,although
our insistence on retaining the Markowitzian interpretations of
µ and Σ dictates the dimensionality of the parametric part,
the harder—non-parametric—part g of our model, being a
scalar function, escapes the curse of dimensionality. This
is extremely convenient from a computational viewpoint; see
the simulation studies in Bingham and Kiesel (2001a) and the
treatment of real financial data in Bingham et al (2002).

Radial characteristic functions. There are two ways to
handle the vector u in (SR) uniformly distributed on the unit
sphere. One way is to use uT u = 1, leading to (QF) and (DG)
above. The other, to which we now turn, is to integrate over
the unit sphere.

In the presence of radial symmetry, the r -dimensional
Fourier transform above decomposes into two parts, the radial
part, which carries the information, and the spherical part. This
decomposition gives rise to a variant on the Hankel transform,
an integral transform with kernel the modified Bessel function

�ν(u) := Jν(u)�(ν + 1)

( 1
2 u)ν

, ν := 1
2 (r − 2).

Then (see Bochner and Chandrasekharan 1949 IV.5, Kingman
1963) the CF is

E�ν(tY ) =
∫ ∞

0
�ν(t y) dH(y),

where H is the distribution function of Y . This is called the
radial CF, �(t) say, of the radial distribution H :

�(t) =
∫ ∞

0
�ν(t y) dH(y).

Then

�(t) = φ(t2) =
∫

Rr
exp{itT y}g(y2) dy

=
∫ ∞

0
�ν(t y) dH(y).

Unimodality. We are interested here in modelling densities
fX(x) that have a unique mode at x = µ. This is ensured
by restricting the density generator g in (EC) to be decreasing
on [0, ∞), and we shall do this throughout (equivalently, we
restrict to fY (y) decreasing in y).
Decomposition. The elliptically contoured form (EC)
conveniently splits the functional form of f into two parts,
which behave differently with respect to affine transformations.
The density generator g—the non-parametric part—governs
the shape of f , which is what remains when we work modulo
affine transformations. The parametric part θ = (µ,Σ)

may be thought of as the affine part of the model, and a

desirable property of estimators of it is affine equivariance,
that is commutability with affine transformations, or changes
of location and scatter. For background, see e.g. Lopuhaä and
Rousseeuw (1991), Lopuhaä (1999).

Examples.

(1) The normal/Gaussian case. The density generator of the
multivariate normal distribution is given by

g(u) = (2π)− 1
2 r exp{− 1

2 u}.

The CF is

ψ(t) = exp{itT µ − 1
2 tT Σt},

so
φ(u) = exp{− 1

2 u}.

The multivariate normal is a member (the N = s = 1, t =
1
2 case) of the class of symmetric Kotz-type distributions,
which are characterized by exponentially decaying density
generators of form

g(u) = Cr uN−1 exp{−tus}, s, t > 0, 2N + r > 2,

where Cr is a constant.
(2) The multivariate t distribution. For the multivariate

t distribution with m degrees of freedom the density
generator exhibits power decay. It is a member (the
N = 1

2 (r +m), m an integer case) of the class of symmetric
multivariate Pearson type VII distributions with density
generators

g(u) = (πm)− 1
2 r �(N )

�(N − r/2)

(
1 +

u

m

)−N

,

N > r/2, m > 0.

Limitations. We point out three limitations of the elliptical
model.

(1) No real data will be exactly elliptical (though we can test
for ellipsoidal symmetry: Beran (1979), Li et al (1997)).
Within the family of all distributions, any neighbourhood
of an elliptical distribution will contain non-elliptical ones.
Because of this, Hampel et al (1986, remark 2, p 273)
go so far as to describe the generalization beyond the
parametric case as ‘spurious’. This criticism could, in
principle, be levelled against any semi-parametric model.
We prefer to make use of the modelling advantages of the
elliptical approach, while bearing robustness questions in
mind when estimating the component parts of the model.

(2) Elliptical distributions have linear regression. While
this is technically very convenient, and reasonable for
portfolios of stocks, it is less suitable for portfolios
containing options. Since options have value—they
convey rights, but not obligations (and so are examples
of ‘contingent claims’)—they are assets in their own
right and can be traded. Indeed, the prices at which
options are traded in the market provide us with the
means to estimate the ‘implied volatility’ of the underlying

5
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stocks. However, the pay-off functions of options are
highly nonlinear: (S − K )+, (K − S)+ in the commonest
cases, of European calls and puts. The Black–Scholes
value of an option, being a smoothed version of the pay-
off after suitable expectation, inherits this pronounced
nonlinearity. Consequently the theory presented here is
not suitable for use with portfolios containing a significant
proportion of options rather than stocks.

(3) As noted earlier, in the important special case of normal
variance-mean mixtures, only the special case β = 0
of normal variance mixtures is elliptically contoured, but
only the case β �= 0, for the prototypical example of the
hyperbolic case, can model asymmetry.

4. Infinite divisibility and
self-decomposability
We recall that infinitely divisible distributions are characterized
through their CFs via the Lévy–Khintchine formula, and are
the marginal laws of Lévy processes, i.e. stochastic processes
with stationary independent increments. For a full account of
both aspects, we refer to the monographs of Bertoin (1996)
and Sato (1999).

Infinitely divisible laws are those obtained as limit laws
of asymptotically negligible triangular arrays. Consequently,
infinite divisibility is preserved under affine transformations.
Thus in testing an elliptically contoured distribution for infinite
divisibility, we may without loss take µ = 0, Σ = I ,
which reduces matters to g or φ. So an elliptically contoured
distribution is infinitely divisible iff, for each k = 1, 2, . . . , its
characteristic generator satisfies

φ = φk
k

with φk also a characteristic generator (example: the normal
case, with φk = exp(− 1

2 u/k)).
Unfortunately, we have no such way of testing for infinite

divisibility using the density generator g, although this is of
more direct concern from the modelling point of view and more
accessible statistically. Indeed, we know from the form of the
Lévy–Khintchine formula that describing the class of infinite
divisible laws requires transform language.

A subclass of the infinitely divisible laws is obtained
by specializing the two-index triangular array to one index,
arising from a single sequence of affine transformations. Such
infinitely divisible laws are called self-decomposable (or of
Lévy’s class L). They may be characterized alternatively by
the property that, for each ρ ∈ (0, 1),

ψ(t) = ψ(ρt)ψρ(t),

with ψρ again a CF (here ψρ is uniquely determined, and also
infinitely divisible). For details, see Sato (1999), section 15,
17, 53, Feller (1971), XVII 8.

For elliptically contoured distributions, the self-decompos-
ability condition becomes, for characteristic generators,

φ(u) = φ(ρu)φρ(u) (SD)

for each ρ ∈ (0, 1), with φρ again a characteristic generator
(example: the normal case, with φρ(u) = exp(− 1

2 (1 − ρ)u)).
We restrict attention to self-decomposable distributions

here, for four reasons.

(1) Self-decomposable distributions are absolutely continu-
ous and unimodal (Sato 1999, theorems 28.4 and 53.1).
Thus, for self-decomposable elliptically contoured distri-
butions, the density generator g exists and is decreasing,
as we wish (section 3).

(2) Self-decomposable laws arise as marginal laws in
autoregressive time-series models

Xt = ρXt−1 + εt ,

where the innovation s (or errors) εt are independent, of
each other and of Xs , s < t (Bondesson 1981; cf (SD)).

(3) Self-decomposability is transferred from the mixing
distribution to a normal variance mixture (section 5
below). Our principal specific examples are of this type.
Also, normal variance mixtures are capable of modelling
a wide variety of real data sets, for structural reasons
(Romanowski 1979, Barndorff-Nielsen et al 1982).

(4) Barndorff-Nielsen et al (1988) have recently studied
time series arising in finance (and turbulence) with
various types of dependence structure and NIG marginals
(section 6). They use the theory of stochastic processes of
Ornstein–Uhlenbeck type (Sato (1999, section 17)). This
depends on self-decomposability, rather than the specifics
of the parametric NIG model, a theme developed further
in Barndorff-Nielsen and Shephard (2001b).

Radial CF. The infinitely divisible radial CFs �(t) =
ψ(t) are known (Kingman 1963, section 6): they are those of
the form

�(t) = exp

{
−c

∫ ∞

0
(1 − �ν(t x))

(
(1 + x2)

x2

)
dG(x)

}

with c > 0 and G a probability distribution on R+.
This is analogous to the form φ(s) = exp{−c

∫ ∞
0 (1 −

e−sx )((1 + x)/x) dG(x)} for infinitely divisible Laplace–
Stieltjes transforms on R+ (section 5 below and Feller 1971,
XIII.7). Both are instances of more general formulae for
Urbanik’s theory of generalized convolution algebras. For
details and references, see Urbanik (1964), Bingham (1971,
1984).

Of course, recognizing infinite divisibility from this
criterion may be difficult given a specific � or ψ , and
impossible given a specific g. This underlines the importance
of structural aspects such as self-decomposability, which
ensures infinite divisibility, or the normal variance mixture
property (section 5), which makes it easier to recognize.

Lévy-type models of financial markets. Recall the standard
Black–Scholes model defined via the SDE

dSt = St (µdt + σdWt),

6
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with constant coefficients and a standard Brownian motion W .
The solution of the SDE is

St = S0 exp

{
µt − σ 2

2
t + σ Wt

}
.

One can consider a general exponential Lévy process model
for stock prices

St = S0 exp(Lt),

with a Lévy process L . Now the distribution of a Lévy process
is uniquely determined by any of its one-dimensional marginal
distributions, so we may use the distribution of L1, i.e. F1.
Then F1 is infinitely divisible and its CF is given by the Lévy–
Khintchine formula as

E(exp{iuL1}) = exp{−ψ(u)},

with the Lévy exponent ψ of L1 given by

ψ(u) = c2

2
u2 − iαu +

∫
{|x|<1}

(1 − e−iux − iux)µ(dx)

+
∫

{|x|�1}
(1 − e−iux )µ(dx),

with α, c ∈ R and µ a σ -finite measure on R/{0}, the Lévy
measure, satisfying

∫
min{1, x2}µ(dx) < ∞.

The Lévy–Khintchine formula can now be used to read off
properties of the corresponding Lévy process Lt , see Protter
(1992), I.4. Examples of such models using the distributions
introduced above are

(i) hyperbolic distributions, see Eberlein and Keller (1995)
and Eberlein et al (1998).

(ii) NIG distributions, see Barndorff-Nielsen (1997, 1998).
(iii) Generalized hyperbolic distributions, see Eberlein (2001).
(iv) Variance-gamma model, see Madan and Seneta (1990)

and Carr et al (1998) and its extension the CGMY model,
see Carr et al (2000).

The normal variance-mean framework unifies the above
approaches. Instead of specifying a parametric family, such
as the GIG laws for the underlying mixing distribution
F , we can estimate F (or its density) non-parametrically.
The corresponding estimation problem has been treated by
Korsholm (2000) in the one-parametric case.

5. Normal variance mixtures
Suppose that U has law F on (0, ∞), and that given U = u,
x is r -variate normal with mean µ and covariance matrix uΣ:

X|(U = u) ∼ Nr (µ, uΣ).

Then X is called a normal variance mixture. Such mixtures
have been studied in, e.g. Barndorff-Nielsen et al (1982)

(taking β = 0 there) and Fang et al (1990) section 2.6. From
(NVMM) we find that their CFs have the form

ψX(t) = exp{itT µ}φM( 1
2 tT Σt), (NVM)

where φM(s) := ∫ ∞
0 e−sudF(u)(s > 0) (we use the suffix M

for ‘mixture’, rather than introduce another Greek letter) is the
Laplace–Stieltjes transform of U . Comparing with (EC′), we
see that all normal variance mixtures are elliptically contoured,
with characteristic generator

φ(s) = φM (s/2).

Conversely, any elliptically contoured distribution whose
characteristic generator is completely monotone (or, by
Bernstein’s theorem, is a Laplace–Stieltjes transform) can arise
in this way. This is essentially the content of Schoenberg’s
theorem (see Bingham 1973). The possible φ, or φM , that can
arise belong to

�∞ := ∩∞
n=1�n,

where

�n := t{h : h(t2
1 + · · · + t2

n ) is an n-dimensional

characteristic function}.
Then φ ∈ �∞ iff φ is of the form

φ(x) =
∫ ∞

0
e−xr 2

dG(r)

for some law G on (0, ∞) (that is under the change of variable
r2 = u, φ is completely monotone, as above).

Infinite divisibility. The question of infinite divisibility,
or self-decomposability, of normal variance mixtures thus
transfers, by (NVM), to φM , or the mixing law F : the law
of X is infinitely divisible if F is, etc. Now the infinitely Q. 1

divisible laws on [0, ∞) are known: their Laplace transforms
are of the form φ(s) = exp{−h(s)}, where h(0) = 0 and h′ is
completely monotone (see e.g. Feller 1971, XIII.7). That is,
the infinitely divisible φ are

φ(s) = exp

{
−

∫ ∞

0
(1 − e−sx dµ(x))

}
,

where the Lévy measure µ satisfies
∫ 1

0 x dµ(x) < ∞. Infinite
divisibility of normal variance mixtures was studied by Kelker
(1971).

Self-decomposability. The further restriction to self-
decomposability requires further that the Lévy measure be
absolutely continuous, with density ν(x) = k(x)/x with k(.)

decreasing (Santo 1999, corollary 15.11).
Simulation. Given any decreasing k on R+ integrable at the

origin, we can form the Lévy measure k(x) dx/x , and simulate
random variables U from it, using the method of Bondesson
(1982) involving shot-noise processes. We can simulate Z ∼
Nr (0, I) as a vector (Z1, . . . , Zr ) of independent standard
normal variates, and then simulate X as µ + U

1
2 Σ

1
2 Z .

We thus have a wealth of examples of self-decomposable
normal variance mixtures to hand, one for each decreasing k,
from which we can simulate at will.

7
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6. The hyperbolic and NIG models
We now return to the discussion of the generalized hyperbolic
distributions, GH = GHl,γ,δ;µ,Σ in the framework of normal
variance mixtures, using the GIG laws as mixing distributions
(with β = 0, see section 2). By sections 3–5, the CF is

ψ(t) = exp{itT µ}ζ(tT Σt)

with ζ as in the Kλ formula, and the laws GH are elliptically
contoured, infinitely divisible and self-decomposable.

In the notation of section 2, we have φ = ζ ,
F = GIG. From section 5, the infinite divisibility
and self-decomposability of GIG transfer to GH: the
generalized hyperbolic laws GH are infinitely divisible and
self-decomposable. Being normal variance mixtures, their
characteristic generators are completely monotone, and in
particular are decreasing.

Density generator. Since X|(U = u) ∼ Nr (µ, uΣ), one
has, writing Q := (x − µ)T Σ−1(x − µ) as before,

fX|U (x|u) = 1

(2π)
1
2 r |Σ| 1

2

u− 1
2 exp

{
−1

2
u−1 Q

}
.

So

fX(x) =
∫ ∞

0
fX,U (x, u) du =

∫ ∞

0
fX|U (x|u) fU (u) du

= 1

(2π)r/2|Σ|1/2

×
∫ ∞

0
u− 1

2 exp

{
−1

2
u−1 Q

}
(γ /δ)λ

2Kλ(γ δ)

× uλ−1 exp

{
−1

2

(
γ 2u +

δ2

u

)}
du

= 1

(2π)r/2|Σ|1/2

(γ /δ)λ

2Kλ(γ δ)

×
∫ ∞

0
uλ− 3

2 exp

{
−1

2

(
γ 2u +

(δ2 + Q)

u

)}
du.

The integrand is the density of GIG
λ− 1

2 ,γ,
√

δ2+Q
to within

normalization, so the integral is 2Kλ− 1
2
(γ

√
δ2 + Q) ×

(γ /
√

δ2 + Q)−(λ− 1
2 ):

fX(x) = 1

(2π)r/2|Σ|1/2

(γ /δ)λ

Kλ(γ δ)

Kλ− 1
2
(γ

√
δ2 + Q)

(γ /
√

δ2 + Q)(λ− 1
2 )

.

From (EC), fX(x) = |Σ|− 1
2 g(Q), with g the density

generator. Comparing, the density generator of the generalized
hyperbolic law GH = GHλ,γ,δ;µ,Σ is

g(u) = 1

(2π)r/2

(γ /δ)λ

Kλ(γ δ)

Kλ− 1
2
(γ

√
δ2 + u)

(γ /
√

δ2 + u)(λ− 1
2 )

, u > 0.

Now the function ζ above, being a Laplace transform, is
completely monotone, so in particular is decreasing. To within
constants, g has the same functional form as ζ (with λ − 1

2 in
place of λ), apart from interchange of

(i) Kλ− 1
2

with K−(λ− 1
2 ),

(ii) γ with δ.

Now (i) has no effect (recall Kν = K−ν from the integral
representation) and (ii) amounts to a reparametrization. Thus
g inherits the complete monotonicity of ζ : the density
generator g of the generalized hyperbolic law GH is completely
monotone, in particular is decreasing.

One can read off the decay rate of g:

Kν(x) ∼
√

π

2x
e−x (x → ∞)

(Watson 1944, section 3.71 (13)): thus all Kν decay like
K± 1

2
(x) = √

π/(2x)e−x ), so

g(u) ∼ const u
1
2 λ− 3

4 exp
{−γ

√
δ2 + u

}
(u → ∞).

Since the argument u replaces the quadratic form Q =
(x − µ)T Σ−1(x − µ), this shows again that GH has log–
linear tail-decay. This should be compared with the log–
quadratic tail decay in the normal/Gaussian case, where g(u) =
const exp(− 1

2 u).
Quadric surfaces. We can now clearly see the two main

qualitative features of the generalized hyperbolic distribution,
which motivate its definition and place it in context.

(i) The density f (x), being a smooth and decreasing function
of Q = (x − µ)T Σ−1(x − µ), is a unimodal r -
variate density with mode µ, and is elliptically contoured
(infinitely divisible, self-decomposable).

(ii) The tail decay is dominated by the term exp{−γ
√

δ2 + Q}.
Normalizing this term to obtain a density, the
corresponding log-density

y = const − γ
√

δ2 + Q

= const − γ
√

δ2 + (x − µ)T Σ−1(x − µ)

gives the lower sheet of a hyperboloid of two sheets, a
quadric surface in R

r+1. This explains the name, and the
interplay between the ‘elliptic’ and ‘hyperbolic’ aspects.
For background on quadrics, see e.g. Kendall (1961,
sections 34–38), Brannan et al (1999, section 1.4).

In the univariate case r = 1, the most symmetrical case
gives

f (x) = const exp
{−ξ

√
1 + (x/δ)2

}
,

called the hyperbolic distribution hypξ,δ in Bingham and
Kiesel (2001b).

Asymptotic cone. As x → ∞, y ∼ −γ
√

Q. Thus y is
asymptotic to the cone

y = −γ
√

(x − µ)T Σ−1(x − µ)

(a right circular cone, if we make the affine transformation to
standardized variables). This is the analogue in (r +1)-space of
the two linear asymptotes that the log-density of the univariate
hyperbolic distribution approaches.

NIG distribution. This is a relative of the univariate hy-
perbolic distribution, introduced by Barndorff-Nielsen (1998,

8
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1997) and studied by Rydberg (1997). It is defined as the dis-
tribution of one coordinate of a (drifting) bivariate Brownian
motion when the other coordinate first hits a linear barrier. It
seems that the NIG and hyperbolic models are broadly sim-
ilar, with NIG providing if anything a better empirical fit to
data. Since our main emphasis is not specific to any paramet-
ric model, we refer to the sources above for further detail.

7. Conclusions
The problem addressed here is the modelling of stock-
price and asset-return distributions in higher dimensions,
motivated by questions of portfolio selection and risk
management in finance. We propose a semi-parametric model,
which uses elliptically contoured distributions, specifically
normal variance mixtures with self-decomposable mixing
distributions, with particular emphasis on the density generator
g. For applications, we have to estimate two components,
the parametric part (µ,Σ) and the non-parametric part g.
For (µ,Σ) standard methods suffice; to estimate the density
generator g we rely on non-parametric function estimation,
see e.g. Härdle (1990). It turns out that the tail decay of g
is an indicator of the likelihood of extreme events and thus
the whole density generator g is informative about risk and
risk-management questions assuming that risk is measured by
the portfolio VaR (which is coherent in the sense of Artzner
et al (1999) for elliptically distributed risks). An application
of the proposed technique, together with a detailed analysis
of the econometric properties of the model, is contained in a
forthcoming paper Bingham et al (2002).
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