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Abstract

Lévy processes and infinitely divisible distributions are increas-
ingly defined in terms of their Lévy measure. In order to describe the
dependence structure of a multivariate Lévy measure, Tankov (2003)
introduced positive Lévy copulas. Together with the marginal Lévy
measures they completely describe multivariate Lévy measures on Rm+ .
In this paper, we show that any such Lévy copula defines itself a Lévy
measure with 1-stable margins, in a canonical way. A limit theorem
is obtained, characterising convergence of Lévy measures with the aid
of Lévy copulas. Homogeneous Lévy copulas are considered in de-
tail. They correspond to Lévy processes which have a time-constant
Lévy copula, and a complete description of homogeneous Lévy copulas
is obtained. A general sheme to construct multivariate distributions
having special properties is outlined, for distributions with prescribed
margins having the same properties. This makes use of Lévy copulas
and of certain mappings of Upsilon type. The construction is then ex-
emplified for distributions in the Goldie-Steutel-Bondesson class, the
Thorin class and for selfdecomposable distributions.
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1 Introduction

The concept of copulas for multivariate probability distributions (or distri-

butional copulas, for short) has an analogue for multivariate Lévy measures,

called Lévy copulas. The latter concept was introduced in a paper by Tankov

[19] for Lévy measures on Rm+ , and extended to Lévy measures on Rm by

Kallsen and Tankov [13], see also the book by Cont and Tankov [10]. Similar

to copulas, a Lévy copula describes the dependence structure of a multivari-

ate Lévy measure. The Lévy measure is then completely characterised by

knowledge of the Lévy copula and the margins. Here and henceforth, by the

margins of an m-dimensional Lévy measure ν (or distribution µ) we will al-

ways mean the m one-dimensional margins, which are obtained as projections

of ν (or µ) onto the coordinate axes.

An advantage of modelling dependence via Lévy copulas is that the re-

sulting probability law is automatically infinitely divisible. From the applied

point of view, the usefulness of modelling Lévy measures hinges to a consid-

erable extent on how feasible it is to obtain insight into relevant properties

of the corresponding probability distributions. Much theoretical information

in this regard can be gleaned from the book by Sato [16], while numerically

there are now powerful methods that in many cases allow rather easy simu-

lation of a probability law from its Lévy measure. In this latter respect, see

Cont and Tankov [10] and references given there, cf. also Rosinski [15].

The present paper discusses several aspects of the Lévy copula concept.

Recall that a Lévy measure is a measure ν on Rm which has no atom at

zero and satisfies
∫
Rm

(|x|2 ∧ 1)ν(dx) < ∞, where |x| = (x2
1 + . . . + x2

m)1/2

denotes the Euclidean norm of x = (x1, . . . , xm). We call a Lévy measure

positive if its support is contained in Rm+ = [0,∞)m. For simplicity we shall

restrict attention to the class Lm+ of positive Lévy measures and hence to

Lévy copulas living on [0,∞]m. For the definition of Lévy copulas, we follow

the exposition given in Section 5.5 in the book of Cont and Tankov [10].

Accordingly, for every Lévy measure ν ∈ Lm+ the tail integral U = Uν can be
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defined as the function U : [0,∞]m → [0,∞] given by

U(x1, . . . , xm) :=

ν([x1,∞]× . . .× [xm,∞]), (x1, . . . , xm) 6= {0, . . . , 0}

∞, (x1, . . . , xm) = (0, . . . , 0).

Note that U(0, . . . , 0) = ν([0,∞]m) if and only if ν is infinite. It is convenient

when working with Lévy copulas to define U(0, . . . , 0) := ∞ even for finite

Lévy measures as above. This does not alter anything, since ν is completely

described by knowledge of U on [0,∞]m \ {0, . . . , 0}.
For ν ∈ Lm+ , denote the (one-dimensional) margins of ν by ν1, . . . , νm.

These margins are one-dimensional Lévy measures. In fact, ν1, . . . , νm are

the Lévy measures of the one-dimensional margins of the probability measure

corresponding to ν. To each of them we can associate the tail integral Uk(xk).

Then Uk(xk) = U(0, . . . , 0, xk, 0, . . . , 0) for any xk ∈ [0,∞] and we refer to

Uk (k = 1, . . . ,m) as the marginal tail integrals of ν.

In analogy to distributional copulas, Tankov [19] and Cont and Tankov

[10] define a (positive) Lévy copula to be a function C : [0,∞]m → [0,∞]

such that C(x1, . . . , xm) = 0 if at least one of the xi is zero (groundedness)

and

C(∞, . . . ,∞, xk,∞, . . . ,∞) = xk ∀ xk ∈ [0,∞], k = 1, . . . ,m, (1.1)

and such that C is an m-increasing function, i.e. C(x1, . . . , xm) 6= ∞ if

x1, . . . , xm are not all ∞, and for any set B of the form B = (a1, b1]× . . .×
(am, bm] with 0 ≤ ak < bk ≤ ∞ it holds that

∑
sgn(c)C(c) ≥ 0, where the

sum is taken over all vertices c = (c1, . . . , cm) of B, and sgn (c) is defined as

sgn (c) =

1, if ck = ak for an even number of vertices,

−1, if ck = ak for an odd number of vertices.

From this follows easily that if C is a Lévy copula, then

χC([0, b1]× . . .× [0, bm]) := C(b1, . . . , bm), 0 ≤ b1, . . . , bm ≤ ∞, (1.2)

can be extended to a unique (positive) measure χC on the Borel sets of

[0,∞]m such that χC has no atom at (∞, . . . ,∞) and has uniform (i.e. stan-

dard Lebesgue) margins, i.e.

χC([0,∞]k−1 × [0, xk]× [0,∞]m−k) = xk, k = 1, . . . ,m. (1.3)
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Conversely, for every measure χ on [0,∞]m with these properties, (1.2) defines

a unique Lévy copula.

The most important feature of Lévy copulas is that, analogous to dis-

tributional copulas, they allow to separate the margins and the dependence

structure of Lévy measures. More precisely, Tankov [19] proved that for any

ν ∈ Lm+ with tail integral U and marginal tail integrals U1, . . . , Um, there

exists a (positive) Lévy copula C such that

U(x1, . . . , xm) = C(U1(x1), . . . , Um(xm)) ∀ x1, . . . , xm ∈ [0,∞]. (1.4)

The Lévy copula C is uniquely determined on RanU1× . . .×RanUm (where

Ran denotes range of a mapping). Conversely, if C is a positive Lévy copula

and U1, . . . , Um are tail integrals of one-dimensional positive Lévy measures

ν1, . . . , νm, then (1.4) defines a Lévy measure ν ∈ Lm+ with tail integral U

and marginal Lévy measures ν1, . . . , νm. See also Cont and Tankov [10]. We

shall refer to any Lévy copula C satisfying (1.4) as a Lévy copula associated

with ν ∈ Lm+ .

The present paper is organised as follows: Section 2 establishes a limit

result for sequences of Lévy measures and Lévy copulas: we show that a

sequence of Lévy measures converges vaguely to another Lévy measure if and

only if the marginal Lévy measures converge vaguely, and the Lévy copulas

converge pointwise on a suitable subset of [0,∞]m.

Section 3 discusses the special class of homogeneous Lévy copulas in more

detail. They arise naturally as Lévy copulas which are constant in time for

Lévy processes: if (L(t))t≥0 is a Lévy process with Lévy measure ν(t) at time

t and if the Lévy copula C(1) of ν(1) is homogeneous, then C(1) is also a

Lévy copula for ν(t) for any t > 0. Furthermore, homogeneous Lévy copulas

constitute the class of possible limits of Lévy copulas of Lévy processes as

time approaches 0 or ∞. We further obtain a complete characterisation of

homogeneous Lévy copulas and investigate some conditions which must be

satisfied for a Lévy measure to have a homogeneuous Lévy copula.

Section 4 is concerned with the construction of Lévy measures and dis-

tributions with special structures and prescribed margins. Suppose that

ν1, . . . , νm are one-dimensional Lévy measures, all of which have a similar

structure, such as being selfdecomposable, say. In Section 4.1 we outline a
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general scheme how Lévy copulas can be used to construct a Lévy measure

ν with margins ν1, . . . , νm and which has the same structure, e.g. selfdecom-

posability. Apart from Lévy copulas the method requires certain mappings

which are of Upsilon type. For example, the mapping Υ0, which was intro-

duced by Barndorff-Nielsen and Thorbjørnsen [6, 7] and Barndorff-Nielsen,

Maejima and Sato [3] maps the class of infinitely divisible distributions bi-

jectively onto the Goldie-Steutel-Bondesson class. The general construction

theme is then exemplified in Sections 4.2 – 4.4 for Lévy measures in the

Goldie-Steutel-Bondesson class, for selfdecomposable Lévy measures and for

Lévy measures in the Thorin class. Section 4.5 investigates the action of the

mapping Υ0 on Lévy copulas in more detail.

In the final section, we show that every Lévy copula C defines itself a

Lévy measure νC of infinite variation with one-stable margins in a canonical

way. It is then shown that a Lévy copula is homogeneous if and only if νC

is 1-stable, thus proving the characterisation of homogeneous Lévy copulas

appearing in Section 3.

2 Lévy copulas and convergence of Lévy mea-

sures

In this section we obtain a limit result for Lévy measures, characterising

convergence of a sequence of Lévy measures by convergence of the margins

and of the Lévy copulas. Let µ be an infinitely divisible distribution on Rm

with characteristic triplet (A, ν, γ). Recall that ν is completely characterised

by (A, ν, γ), and that the characteristic function µ̂ of µ satisfies

µ̂(z) = exp{−1

2
〈z, Az〉+i〈γ, z〉+

∫
Rm

(ei〈z,x〉−1−i〈z, x〉1|x|≤1) dν(x)}, z ∈ Rm.

Here, A is a symmetric nonnegative-definite m × m-matrix, ν is the Lévy

measure of µ, and γ ∈ Rm is a constant. 〈·, ·〉 denotes the Euclidean inner

product on Rm.

Denote by C# the class of bounded continuous functions from R
m to R

vanishing in a neighbourhood of the origin. Let (µ(n))n∈N be a sequence of

infinitely divisible distributions on Rm with characteristic triplets (A(n), ν(n),
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γ(n)). For any ε > 0 define symmetric nonnegative-definite matrices A(n),ε

by

〈z, A(n),εz〉 = 〈z, A(n)z〉+

∫
|x|≤ε
〈z, x〉2 dν(n)(x), z ∈ Rm.

Then it is known that (µ(n))n∈N converges weakly to an infinitely divisible

distribution µ with characteristic triplet (A, ν, γ) if and only if

lim
n→∞

∫
Rm

f(x) dν(n)(x) =

∫
Rm

f(x) dν(x) ∀ f ∈ C#, (2.1)

lim
ε→0

lim sup
n→∞

|〈z, A(n),εz〉 − 〈z, Az〉| = 0 ∀ z ∈ Rm, (2.2)

lim
n→∞

β(n) = β, (2.3)

where

β := γ −
∫
|x|≤1

x|x|2 dν(x)

and β(n) is defined similarly. See e.g. Sato [16], Theorem 8.7. Hence the

appropriate convergence concept for Lévy measures is described by relation

(2.1). We shall write ν(n) #→ ν for this type of convergence of Lévy measures.

Standard arguments show that for positive Lévy measures ν(n) and ν, ν(n) #→
ν as n→∞ if and only if ν(n) converges vaguely to ν on [0,∞]m \{0, . . . , 0},
which is further equivalent to the pointwise convergence of the corresponding

tail integrals U (n)(x) to U(x) at every point x ∈ G1 × . . .× Gm, where

Gi := {xi ∈ (0,∞] : Ui continuous in xi} ∪ {0}, (2.4)

and the Ui denote the marginal tail integrals of ν, i = 1, . . . ,m. See [2],

Lemma 3.2, for a detailed proof of this.

We can now show that a sequence of Lévy measures converges to a Lévy

measure if and only if the margins converge and the Lévy copulas converge

pointwise on a suitable subset. This is an analogue of a result of Deheuvels

[11] (see also Lindner and Szimayer [14]) for distributional copulas.

Theorem 2.1 Let (ν(n))n∈N ⊂ Lm+ , ν ∈ Lm+ , with margins ν
(n)
i and νi (i =

1, . . . ,m), and associated Lévy copulas C(n) and C, respectively. Then ν(n) #→
ν as n → ∞ if and only if ν

(n)
i

#→ νi as n → ∞ for i = 1, . . . ,m, and C(n)

converges pointwise to C on RanU1× . . .×RanUm as n→∞, where the Ui
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denote the marginal tail integrals of ν. In that case, the convergence of C(n) to

C is uniform on any set of the form (RanU1×. . .×RanUm)∩(K1×. . .×Km),

where Ki is a compact subset of [0,∞), or Ki = {∞}.

Proof. Since any Lévy copula D defines a measure χD with uniform margins

via (1.2), it follows readily that for k ∈ {1, . . . ,m} and u1, . . . , uk, v1, . . . , vk ∈
[0,∞) the following Lipschitz condition holds:

|D(u1, . . . , uk,∞, . . . ,∞)−D(v1, . . . , vk,∞, . . . ,∞)| ≤
k∑
i=1

|ui − vi|, (2.5)

see also Lemma 3.2 in Kallsen and Tankov [13]. Let Mi := {Ui(xu,i) : xu,i ∈
Gi}, where the Gi are as in (2.4)

Suppose that ν(n) #→ ν as n → ∞. Then ν
(n)
i

#→ νi as n → ∞ for all

i = 1, . . . ,m (e.g. using the characterization of vague convergence in terms

of the convergence of the tail integrals, as stated before this Theorem). Let

(u1 . . . , um) ∈M1× . . .×Mm such that ui = Ui(xu,i), xu,i ∈ Gi, and without

loss of generality suppose that u1, . . . , uk 6= ∞, uk+1 = . . . = um = ∞ for

some k ∈ {1, . . . ,m}. Then (2.5) yields

|C(n)(u1, . . . , um)− C(u1, . . . , um)|
≤

∣∣∣C(n)(U1(xu,1), . . . , Um(xu,m))− C(n)(U
(n)
1 (xu,1), . . . , U (n)

m (xu,m))
∣∣∣

+
∣∣∣C(n)(U

(n)
1 (xu,1), . . . , U (n)

m (xu,m))− C(U1(xu,1, . . . , Um(xu,m))
∣∣∣

≤
k∑
i=1

|Ui(xu,i)− U (n)
i (xu,i)|

+|U (n)(xu,1, . . . , xu,m)− U(xu,1, . . . , xu,m)|.

The convergence of the tail integrals on Gi, i = 1, . . .m, and on G1 × . . . ×
Gm, respectively, then implies convergence of C(n) to C at (u1, . . . , um). For

compact K1, . . . , Kk ⊂ [0,∞), standard arguments using the equicontinuity

of {C;C(n) : n ∈ N} on K1× . . .×Kk×{∞}× . . .×{∞} by (2.5) then imply

that the convergence of C(n) to C is actually uniform on (M1× . . .×Mm)∩
(K1× . . .×Kk×{∞}× . . .×{∞}) and hence on (RanU1× . . .×RanUm)∩
(K1 × . . .×Kk × {∞} × . . .× {∞}), since Mi = RanUi.
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For the converse, suppose that ν
(n)
i

#→ νi as n → ∞, and that C(n)

converges pointwise to C onM1× . . .×Mm. Then for x = (x1, . . . , xm) with

xi ∈ Gi, i = 1, . . . ,m, taken such that x1, . . . , xk 6= 0, xk+1 = . . . = xm = 0,

k ∈ {1, . . . ,m}, the Lipschitz condition (2.5) implies that

|U (n)(x)− U(x)| ≤∣∣∣C(n)(U
(n)
1 (x1), . . . , U (n)

m (xm))− C(n)(U1(x1), . . . , Um(xm))
∣∣∣

+
∣∣C(n)(U1(x1), . . . , Um(xm))− C(U1(x1), . . . , Um(xm))

∣∣
≤

k∑
i=1

|U (n)
i (xi)− Ui(xi)|

+|C(n)(U1(x1), . . . , Um(xm))− C(U1(x1), . . . , Um(xm))|.

This gives limn→∞ U
(n)(x) = U(x) for x ∈ G1 × . . . × Gm, so that vague

convergence of ν(n) to ν as n→∞ follows.

Recalling that weak convergence of infinitely divisible distributions can

be described by convergence of the characteristic triplets as in (2.1) - (2.3),

we obtain the following corollary to Theorem 2.1:

Corollary 2.2 Let (µ(n))n∈N and µ be infinitely divisible distributions with

characteristic triplets (A(n), ν(n), γ(n)) and (A, ν, γ), such that ν and ν(n) are

in Lm+ . Let µ(n) = (µ
(n)
1 , . . . , µ

(n)
m ) and µ = (µ1, . . . , µm). Suppose that A(n)

converges pointwise to A as n → ∞. Then µ(n) converges weakly to µ as

n →∞ if and only if all the margins µ
(n)
i converge weakly to µi as n →∞,

i = 1, . . . ,m, and the Lévy copula of νn converges pointwise to the Lévy

copula of ν on RanU1 × . . . × RanUm as n → ∞, where the Ui denote the

marginal tail integrals of ν.

It should be noted that the assumption limn→∞A
(n) = A is somewhat

restrictive. It implies that in the limit the Lévy measures do not contribute

to an extra Gaussian part. This then makes an easy description by the Lévy

copula convergence feasible.

Proof. In the following we will refer to (2.1) – (2.3) by (2.1)m – (2.3)m and

(2.1)1 – (2.3)1, respectively, according to whether we consider distributions
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on Rm (such as µ(n) and µ) or distributions on R (such as the margins,

µ
(n)
i , µi).

That weak convergence of µ(n) to µ as n → ∞ implies convergence of

the margins and of the Lévy copulas is clear by the continuous mapping

theorem, (2.1)m and Theorem 2.1. For the converse, suppose that µ
(n)
i con-

verges weakly to µi as n → ∞ for i = 1, . . . ,m, and that the Lévy copulas

converge. Then (2.1)m holds by (2.1)1 and Theorem 2.1. The characteristic

triplet of µi is (Aii, νi, γ̃i), where Aii denotes the i’th diagonal element of A,

γ̃i = γi+
∫
R
m
+
xi(1|xi|≤1−1|x|≤1) dν(x), and γi denotes the i’th coordinate of γ,

see Sato [16], Proposition 11.10. Let β̃i := γ̃i−
∫
|xi|≤1

xi|xi|2 dνi(xi). To show

(2.2)m and (2.3)m, note that convergence of A(n) to A implies convergence of

A
(n)
ii to Aii. Since µ

(n)
i converges weakly to µi, (2.2)1 and (2.3)1 imply that

lim
ε→0

lim sup
n→∞

∣∣∣∣∫
|xi|≤ε

x2
i dν

(n)
i (xi)

∣∣∣∣ = 0, (2.6)

and that β̃
(n)
i converges to β̃i as n→∞. Again, by convergence of An to A

and (2.6) it then follows, for any z ∈ Rm, that

lim sup
ε→0

lim sup
n→∞

|〈z, A(n),εz〉 − 〈z, Az〉|

≤ |z|2 lim sup
ε→0

lim sup
n→∞

∣∣∣∣∫
|x|≤ε
|x|2 dν(n)(x)

∣∣∣∣
≤ |z|2 lim sup

ε→0
lim sup
n→∞

m∑
i=1

∣∣∣∣∫
|xi|≤ε

x2
i dν

(n)
i (xi)

∣∣∣∣ = 0. (2.7)

This shows (2.2)m. For (2.3)m, note that

βi− β̃i =

∫
|xi|≤1

x3
i dνi(xi)−

∫
|x|≤1

xi|x|2 dν(x)−
∫
R
m
+

xi(1|xi|≤1− 1|x|≤1) dν(x),

where βi denotes the i’th coordinate of β (as appearing in (2.3)m). From

ν(n) #→ ν, (2.6) and (2.7) one can show that β
(n)
i − β̃

(n)
i converges to βi − β̃i

as n → ∞. Since β̃
(n)
i converges to β̃i, this proves that β

(n)
i converges to βi

as n→∞, verifying (2.3)m. This finishes the proof.
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3 Homogeneous Lévy copulas

In this section we discuss the special class of homogeneous Lévy copulas.

A Lévy copula C is called homogeneous (of order 1), if

C(u1, . . . , um) = t C(u1/t, . . . , um/t) ∀ u1, . . . , um ∈ [0,∞] ∀ t > 0.

Examples of homogeneous Lévy copulas are the Lévy copula of complete

dependence

C(u1, . . . , um) = min{u1, . . . , um},

the copula of independence

C(u1, . . . , um) =
m∑
i=1

ui 1{u1=...=ui−1=ui+1=...=um=∞},

and the family of Clayton Lévy copulas, defined for θ > 0 by

C(u1, . . . , um) =

(
m∑
i=1

u−θi

)−1/θ

,

u1, . . . , um ∈ [0,∞], see Cont and Tankov [10], Chapter 5. Examples of

non-homogeneous Lévy copulas are given in Examples 3.2 and 3.3 below.

A complete characterisation of homogeneous Lévy copulas will be given in

Theorem 3.4.

Homogeneous Lévy copulas appear naturally, because they correspond

to Lévy processes with time constant Lévy copulas: let (L(t))t≥0 be a Lévy

process in Rm. Then at any time t, L(t) has an infinitely divisible distribution.

If ν(t) denotes the Lévy measure of L(t) then ν(t) = tν(1). Now suppose that

ν(1) ∈ Lm+ with associated Lévy copula C(1). Then it follows readily that

C(t)(u1, . . . , um) := t C(1)(u1/t, . . . , um/t), ∀ u1, . . . , um ∈ [0,∞], (3.1)

gives a Lévy copula associated with ν(t). In particular, if C(1) is homogeneous,

then the Lévy process is described by the same Lévy copula C(1) at any time t.

On the other hand, if C is a Lévy copula and (L(t))t≥0 is a Lévy process such

that C is associated with ν(t) for every t, and if there is some ε > 0 such that

RanU
(1)
i ⊃ [0, ε] for all i = 1, . . . ,m (where U

(1)
i denote the marginal volume
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functions of ν(1)), then C must be homogeneous. This follows from the fact

that the Lévy copula of ν(t) is unique on t(RanU
(1)
1 × . . .×RanU

(1)
m ) for any

t > 0 by Tankov’s analogue of Sklar’s theorem for Lévy copulas, as stated in

the Introduction. This shows that the Lévy copulas at times t and 1 satisfy

(3.1), showing that C is homogeneous.

We now turn to convergence of Lévy copulas of Lévy processes as time

goes to infinity and to zero. Again, the homogeneous Lévy copulas appear

naturally as possible limit copulas.

Theorem 3.1 Let (L(t))t≥0 be a Lévy process with positive Lévy measure and

with Lévy copula C(t) at time t given by (3.1). Then:

(a) C(t) converges pointwise to a finite function D on [0,∞]m\{(∞, . . . ,∞)}
as t→∞ if and only if all for all directions (u1, . . . , um) ∈ Rm+ the directional

derivative of C(1) exists at the origin. In that case, the function D is a homo-

geneous Lèvy copula. The convergence is uniform on [0,∞]m \{(∞, . . . ,∞)}
if and only if C(1) is homogeneous.

(b) If C(t) converges pointwise to a finite function D on [0,∞]m\{(∞, . . . ,∞)}
as t→ 0, then the function D is a homogeneous Lévy copula. C(t) converges

uniformly on [0,∞]m \ {(∞, . . . ,∞)} to D as t → 0 if and only if ‖C(1) −
D‖∞ <∞, where ‖·‖∞ denotes the supremum norm on [0,∞]m\{∞, . . . ,∞}.

Proof. From (3.1) follows readily that if C(t) converges pointwise to a finite

function D on [0,∞]m \ {∞, . . . ,∞} as t → ∞ or t → 0, then D must be

a homogeneous Lévy copula. Further, noting that for u = (u1, . . . , um) and

t > 0 we have

t C(1)(u/t) =
C(1)(u/t)− C(1)(0)

1/t
,

it follows that limt→∞C
(t)(u) exists if and only if if the directional derivative

of C(1) in direction u exists at the origin. If C(1) is homogeneous, then uniform

convergence of C(t) as t → ∞ is clear. For the converse, suppose uniform

convergence, but that C(1) is not homogeneous. Then there is u ∈ [0,∞]m

and t0 > 0 such that |C(1)(t0u) − t0C
(1)(u)| =: ε > 0. From the uniform

convergence follows the existence of t1 > 0 such that |t C(1)(v/t)−D(v)| ≤ ε

forevery v ∈ [0,∞]m \ {∞, . . . ,∞} and every t > t1. Using the homogeneity
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of D we conclude for t > t1

|tt0C(1)(u)− tt0D(u)| =
∣∣t0tC(1)(tu/t)− t0D(tu)

∣∣ ≤ t0ε,

|tC(1)(t0u)− tt0D(u)| =
∣∣tC(1)(tt0u/t)−D(tt0u)

∣∣ ≤ ε.

This implies

tε = t|t0C(1)(u)− C(1)(t0u)| ≤ (1 + t0)ε ∀ t ≥ t1,

which clearly is a contradiction. This proves (a).

For the proof of (b), note that, by homogeneity of D, C(t) converges uni-

formly to D as t→ 0 if and only if t|C(1)(v/t)−D(v/t)| converges uniformly

in v to 0. But this is equivalent to ‖C(1) −D‖∞ <∞.

That there are Lévy processes for which the Lévy copulas do not converge

as time goes to 0 or to ∞ is established in the following example:

Example 3.2 Let the (distributional) copulas H1 and H2 on [0, 1]2 be given

by H1(u, v) := uv and H2(u, v) := min{u, v}. For any integer n ∈ Z and

u, v ∈ [2n, 2n+1] let

C(1)(u, v) := 2n + 2nHi

(
u− 2n

2n
,
v − 2n

2n

)
,

where i = 1 if n is odd and i = 2 if n is even. If u ∈ [2n, 2n+1] for some n

and v > 2n+1, set C(1)(u, v) := C(1)(u, 2n+1), and if u > v set C(1)(u, v) =

C(1)(v, u). It can be easily checked that C(1) defines a Lévy copula. Let un :=

2n + 2n−1. Then C(1)(un, un) = un if n is even, and C(1)(un, un) = 2n + 2n−2

if n is odd. In particular,

C(1)(un, un)

un
=

5/6, n odd,

1, n even.

This shows that for a Lévy process with Lévy copula C(t) at time t > 0,

C(t)(1, 1) does neither converge as t→ 0 nor as t→∞.

That pointwise convergence of Lévy copulas as t → ∞ does not imply

uniform convergence can be seen from the following:
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Example 3.3 Consider a Lévy process such that the Lévy copula at time 1

is given by

C(1)(u1, . . . , um) := log

( m∑
i=1

e−ui

1− e−ui

)−1

+ 1

 .

This Lévy copula was introduced in Tankov [19], see Cont and Tankov [10],

page 150. Let D∞(u1, . . . , um) := (
∑m

i=1(1/ui))
−1

and D0(u1, . . . , um) :=

min{u1, . . . , um}. Then easy calculations show that C(t) converges pointwise

to D∞ as t → ∞. The convergence is not uniform, since C(1) is not homo-

geneous. On the other hand, it is easy to show that ‖C(1) −D0‖∞ < ∞, so

that C(t) converges uniformly to D0 as t→ 0.

There remains the question whether there are Lévy processes such that

the Lévy copula C(t) converges pointwise but not uniformly as t → 0. By

now we have not been able to decide this question.

The next theorem characterises homogeneous Lévy copulas. We denote

S := {ξ ∈ Rm : |ξ| = 1} and

S+ := {(ξ1, . . . , ξm) ∈ S : ξ1 ≥ 0, . . . , ξm ≥ 0}.

Theorem 3.4 A function C : [0,∞)m → [0,∞] is a homogeneous Lévy

copula if and only if there exists a finite (positive) measure λ on S+ such

that with ξ = (ξ1, . . . , ξm)∫
S+

ξi λ(dξ) = 1 ∀ i = 1, . . . ,m, (3.2)

and that C has the representation

C(b1, . . . , bm) =

∫
S+

min (b1ξ1, . . . , bmξm) λ(dξ) ∀ b1, . . . , bm ∈ [0,∞]m

(3.3)

with the convention biξi :=∞ for bi =∞. A Lévy copula C is homogeneous

if and only if there exists a finite measure λ on S+ such that (3.3) holds.

The proof relies on showing that the measure χC defined in (1.2) can be

transformed to the Lévy measure of a 1-stable distribution, under a suitable
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inversion map. We will investigate this mapping in more detail in Section 5

and give a proof of Theorem 3.4 there.

We conclude this section by showing that homogeneous Lévy copulas are

rarely associated with finite Lévy measures that have no mass on the axes:

Theorem 3.5 Let ν be a finite Lévy measure, concentrated on (0,∞)m, and

suppose that the Lévy copula C associated with ν is homogeneous. Then C

must be the Lévy copula of complete dependence, i.e.

C(u1, . . . , um) = min{u1, . . . , um} ∀ u1, . . . , um ∈ [0,∞].

Proof. Denote by M the total mass of ν and its (marginal) tail inte-

grals by Ui and U . Then limxi→0 Ui(xi) = M for i ∈ {1, . . . ,m}, and

limx→0 U(x, . . . , x) = M . By (1.4), C(U1(x), . . . , Um(x)) converges to M as

x→ 0. From the continuity property (2.5) then follows C(M, . . . ,M) = M .

Since C was assumed to be homogeneous, we conclude C(u, . . . , u) = u for

any u > 0. Now let u1, . . . , um ∈ [0,∞] and suppose w.l.o.g. that their

minimum is at u1. Then

u1 = C(u1, . . . , u1) ≤ C(u1, u2, . . . , um) ≤ C(u1,∞, . . . ,∞) = u1,

showing the claim.

Note that Theorem 3.5 does not contradict the fact that all one-dimensional

Lèvy measures can be coupled with every homogeneous Lévy copula via (1.4)

to give a Lèvy measure on [0,∞)m. But it states that the resulting Lévy mea-

sure ν must necessarily satisfy ν([0,∞)m \ (0,∞)m) > 0, if the homogeneous

Lévy copula is not the Lévy copula of complete dependence.

4 Copulas and transformations of Upsilon type

In general, a model constructed from a set of infinitely divisible one-dimensional

marginals and a chosen Lévy copula is not guaranteed to have useful prop-

erties beyond the infinite divisibility. This is true even if the marginals

have special properties. For instance, selfdecomposability of all the one-

dimensional marginals does not imply selfdecomposability of the constructed

m-dimensional model, as can be seen from the following example. We say
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that a Lévy measure is stable or self-decomposable, if it is the Lévy measure

of a stable or self-decomposable infinitely divisible distribution, respectively.

For the definitions and properties of such distributions, we refer to Sato [16],

Chapters 13-15.

Example 4.1 Let ν1 and ν2 be one-dimensional positive Lévy measures with

stable margins such that U1(x1) = x−α1 and U2(x2) = x−β2 , where 0 < α, β < 2

and α 6= β. Define the bivariate Lévy measure ν using the Lévy copula

C(x1, x2) = min(x1, x2). Then the tail integral of ν is given by U(x1, x2) =

min(x−α1 , x−β2 ). But this implies that the Lévy measure ν is concentrated

on the curve x2 = x
α/β
1 . In particular, its radial component cannot have a

Lebesgue density, so ν is not selfdecomposable. However, the marginals ν1

and ν2 of ν are α- and β-stable, respectively, and hence selfdecomposable.

In certain settings it is however possible to obtain desirable additional

properties. Below we describe a general framework for this and we exemplify

by indicating how to construct models in some important subclasses of the

set of all infinitely divisible distributions on Rm.

4.1 Construction of Lévy copulas with further proba-

bilistic properties

Suppose that, for m = 1, 2, ..., we have a one-to-one mapping Ψ
(m)
0 that is

defined on the class Lm of Lévy measures (or perhaps on a major subclass

Dm of Lm) and whose range is some subclass Am of Lm possessing inter-

esting probabilistic properties. In particular, then Ψ
(m)
0 sends each of the

one-dimensional marginals of a Lévy measure ν into the corresponding one-

dimensional marginal of Ψ
(m)
0 (ν), that is, denoting by Πi the projection onto

the i-th axis of Rm, for each i we have a mapping Πiν → Πiν̃. We assume

that these latter mappings are all effected by Ψ
(1)
0 in the sense that

ΠiΨ
(m)
0 (ν) = Ψ

(1)
0 Πi (ν) . (4.1)

We shall refer to such mappings as mappings of Upsilon-type, cf. Barndorff-

Nielsen and Thorbjørnsen [8] Now suppose furthermore that D1 = ΠiDm,

A1 = ΠiAm, i = 1, 2, ...,m = 1, 2, .... Under these assumptions, we can now
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construct a model in Am with prescribed marginals ν̃i in A1, i = 1, 2, ..., as

follows. Using the inverse mapping (Ψ
(1)
0 )−1 of Ψ

(1)
0 , let

νi = (Ψ
(1)
0 )−1 (ν̃i) ,

i = 1, ...,m, take any Lévy copula C, define ν as the Lévy measure in Lm

determined by C and by νi, i = 1, ...,m, and, finally, let ν̃ = Ψ
(m)
0 (ν).

To illustrate the construction scheme further, denote for any Lévy copula

C by TC : (L1
+)m → Lm+ the mapping which combines m one-dimensional

Lévy measures via (1.4) to an m-dimensional Lévy measure with given one-

dimensional margins and Lévy copula C. In the present situation, the Lévy

copula C̃ coupling ν̃1, . . . , ν̃m ∈ A1 to give a Lévy measure ν̃ ∈ Am with

margins ν̃1, . . . , ν̃m is then found by the following commuting diagram; here,

C is any Lévy copula:

ν̃1, . . . , ν̃m
(Ψ

(1)
0 )−1

−→ ν1, . . . , νmyTC̃ yTC
ν̃

Ψ
(m)
0←− ν

(4.2)

Offhand, it is not obvious that there do exist examples of tractable one-

to-one mappings Ψ
(m)
0 with associated interesting image sets Am, of the kind

described above. However, some recent investigations, arising out of a study

of free probability (see Barndorff-Nielsen and Thorbjørnsen [6, 7, 8] and

Barndorff-Nielsen, Maejima and Sato [3]), have shown that this is in fact the

case. In Sections 4.2 – 4.4 we shall describe three such examples, starting by

describing the image sets Am. In all three cases the mapping Ψ
(m)
0 is of the

form

ν̃(B) =

∫ ∞
0

ν(ξ−1B)τ (dξ) ∀ B Borel set in R
m, (4.3)

for some Radon measure τ on (0,∞). In the actual settings, τ has a density

ψ with respect to Lebesgue measure.

A systematic study of measure transformations having the structure (4.3)

has been initiated, see Barndorff-Nielsen and Thorbjørnsen [8, Section 3.6].

A point of particular probabilistic interest is that in many cases, including

the three discussed in Sections 4.2 – 4.4 below, there exists a stochastic
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representation of (4.3) in terms of an integral of a deterministic function

with respect to the Lévy process determined by ν.

4.2 The Goldie-Steutel-Bondesson class

Based on the work of Goldie [12] and Steutel [18], Bondesson [9] considered

the smallest class of probability distributions on [0,∞) which is closed under

weak convergence and convolution and contains all mixtures of exponential

distributions. This class was extended to distributions on the real line, and

we shall refer to that as the Goldie-Steutel-Bondesson class B(R), or G-S-B

class, for short. Barndorff-Nielsen, Maejima and Sato [3] generalised this

further to distributions on Rm: by definition, the multivariate G-S-B class

B(Rm) consists of all infinitely divisible distributions µ whose Lévy measure

ν can be expressed as

ν(B) =

∫
S

λ(dξ)

∫ ∞
0

1B(rξ) lξ(r) dr ∀ B Borel set in Rm \ {0}. (4.4)

Here, λ is a positive measure on S = {ξ ∈ Rm : |ξ| = 1} and (lξ)ξ∈S is a family

of functions on (0,∞) such that lξ(r) is completely monotone in r for λ-a.e. ξ,

and lξ(r) is measurable in ξ for each r > 0. A characterisation of B(Rm)

as the smallest class closed under weak convergence and convolution and

containing all “elementary mixtures” of signed exponential random variables

in Rm was also obtained in [3]; we shall not make use of this characterisation

in the sequel.

We shall be interested in the subclass B(Rm+ ), consisting of all elements

of B(Rm) whose Lévy measure is concentrated on Rm+ . For notational con-

venience, since for any infinitely divisible distribution µ the property of be-

longing to B(Rm+ ) is completely determined by its Lévy measure ν, we shall

also say that ν belongs to B(Rm+ ). In one dimension, B(R+) consists of all in-

finitely divisible distributions whose Lévy measure is concentrated on (0,∞)

and has a completely monotone Lévy density there.

It follows from (4.4) that Am := B(Rm+ ) satisfies A1 = ΠiAm for every

m ∈ N. To construct multivariate Lévy measures in the G-S-B class with

prescribed margins in the G-S-B class, we will apply the general method

outlined in Section 4.1. The role of the transform Ψ
(m)
0 is played by the
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Upsilon transformation Υ
(m)
0 , defined for ν ∈ Lm by

ν̃(B) = Υ
(m)
0 (B) :=

∫ ∞
0

e−s ν(s−1B) ds, B Borel set in R
m. (4.5)

This falls into the general class of transformations considered in (4.3), with

density ψ(ξ) = e−ξ1(0,∞)(ξ) of the Radon measure τ .

The mapping Υ
(m)
0 was introduced by Barndorff-Nielsen and Thorbjørnsen

[6, 7] for the one-dimensional case m = 1 and extended by Barndorff-Nielsen,

Maejima and Sato [3] to the multivariate setting. There it was shown that

Υ
(m)
0 is a bijection from the class of m-dimensional Lévy measures onto the

Lévy measures in the G-S-B class B(Rm). Since every Lévy measure in the

G-S-B class has a radial Lévy density, Υ
(m)
0 can be seen as a regularizer, in

particular it follows that the Lévy measure constructed in Example 4.1 is not

in the G-S-B class B(R2
+), although its margins are. This means that not ev-

ery Lévy copula coupled with margins in the 1-dimensional G-S-B class gives

Lévy measures in the m-dimensional G-S-B class, but the scheme outlined

in Section 4.1 works, since it follows easily from (4.5) that ΠiΥ
(m)
0 = Υ

(1)
0 Πi

for i = 1, . . . ,m, so that (4.1) holds for Ψ
(m)
0 = Υ

(m)
0 .

To illustrate the construction method in more detail, suppose that ν̃1, . . . ,

ν̃m ∈ B(R+) are prescribed marginal Lévy measures. Denote their Lévy

densities by f̃i, i = 1, . . . ,m. Since the f̃i are completely monotone, by

Bernstein’s theorem there exist positive measures φi on (0,∞) such that f̃i

is the Laplace transform of φi, i.e.

f̃i(xi) =

∫
(0,∞)

e−xis dφi(s), xi > 0.

Suppose now that the measures φi have a density, and denote this density by

φi(ds) = s hi(s) ds for some function hi. Then, as shown in Barndorff-Nielsen

and Thorbjørnsen [6], it follows that the tail integral Ui of (Υ
(1)
0 )−1 is given

by

Ui(xi) =

∫ 1/xi

0

hi(s) ds, xi > 0. (4.6)

Then if C is any Lévy copula, define the tail integral U of a Lévy measure

ν by (1.4), and let ν̃ := Υ
(m)
0 (ν). The measure ν̃ is then in the G-S-B class
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B(Rm+ ) with margins ν̃1, . . . , ν̃m, and its tail integral Ũ is given by

Ũ(x1, . . . , xm) =

∫ ∞
0

e−sU(x1/s, . . . , xm/s) ds

=

∫ ∞
0

e−sC(U1(x1/s), . . . , Um(xm/s)), x1, . . . , xm ≥ 0. (4.7)

Example 4.2 Suppose that ν̃i, i = 1, . . . ,m, are Lévy measures of inverse

Gaussian distributions IG(δi, γi) with δi, γi > 0. Their Lévy density f̃i is

given by

f̃i(xi) =
δi√
2π

x
−3/2
i exp{−1

2
γ2
i xi} 1(0,∞)(xi), xi > 0,

see Barndorff-Nielsen and Shephard [4]. Define hi(s) by

hi(s) :=
δi
√

2

π

s− γ2
i /2

s
1[γ2

i /2,∞)(s), s > 0.

Then f̃i is the Laplace transform of s 7→ s hi(s), see e.g. [1], formula 29.3.63.

The tail integrals Ui of (Υ
(1)
0 )−1 can then by calculated using (4.6), giving

Ui(xi) =

0, xi ≥ 2/γ2
i ,

δi
√

2
π

{
2(x−1

i − γ2
i /2)1/2 −

√
2γi arctan

√
2(x−1

i −γ
2
i /2)1/2

γi

}
, xi ≤ 2/γ2

i .

Then if C is any Lévy copula, (4.7) defines the tail integral of a Lévy measure

in the G-S-B class with IG(δi, γi) margins.

4.3 The Lévy class

The Lévy class L(Rm) is the class of all selfdecomposable distributions on Rm.

Recall that an infinitely divisible distribution µ is self-decomposable if and

only if its Lévy measure ν has representation (4.4), where lξ does not need to

be completely monotone, but r 7→ rlξ(r) has to be decreasing on (0,∞), see

Sato [16], Theorem 15.10. By an abuse of language, we shall also say that

the Lévy measure ν is self-decomposable. Denote by L(Rm+ ) the class of self-

decomposable distributions with Lévy measure in Lm+ , by IDlog(Rm) the class

of infinitely divisible distributions µ which satisfy
∫
|x|>1

log |x| dµ(x) < ∞,

and by IDlog(Rm+ ) the distributions in IDlog(Rm) whose Lévy measure is in
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Lm+ . If µ is infinitely divisible with Lévy measure ν ∈ Lm, then µ ∈ IDlog(Rm)

if and only if
∫
|x|>1

log |x| dν(x) < ∞, see Sato [16], Theorem 25.3; we shall

also write ν ∈ IDlog(Rm), ν ∈ L(Rm) and similar expressions if additionally

the Lévy measure is in Lm+ .

For a Lévy measure ν ∈ IDlog(Rm), define the mapping Φ
(m)
0 by

Φ
(m)
0 (ν)(B) :=

∫ ∞
0

ν(esB) ds =

∫ 1

−1

s−1 ν(s−1B) ds ∀ B Borel set in Rm.

The mapping Φ
(m)
0 has the general form (4.3), where the measure τ has

density ψ(ξ) = ξ−1 1[−1,1](ξ). Sato and Yamazato [17], Section 4, showed

that Φ0 defines a bijection from the Lévy measures in IDlog(Rm) to those in

L(Rm), hence also from IDlog(Rm+ ) onto L(Rm+ ). Denote Am := L(Rm+ ). Then

ΠiAm = A1. Furthermore, easy calculations show that if ν is a Lévy measure

with marginals ν1, . . . , νm, then ν ∈ IDlog(Rm+ ) if and only if νi ∈ IDlog(R+)

for all i = 1, . . . ,m. In particular, any Lévy copula applied to margins

in IDlog(R+) gives a Lévy measure in IDlog(Rm+ ). Since the mapping Φ0

commutes with projection, i.e. (4.1) holds for Ψ0 = Φ0, the method outlined

in Section 4.1 can be applied to construct Lévy measures in L(Rm+ ) with

prescribed selfdecomposable margins. In more detail, let ν̃1, . . . , ν̃m be Lévy

measures in L(Rm+ ). Denote their Lévy density by f̃i, i = 1, . . . ,m. Then

the tail integral of νi := (Φ
(1)
0 )−1(ν̃i) (i.e. of the background driving Lévy

process) is given by

Ui(xi) = xi f̃i(xi), xi > 0,

see Barndorff-Nielsen and Shephard [5]. Thus if C is any Lévy copula, then

(1.4) defines the tail integral of a Lévy measure ν ∈ IDlog(Rm+ ), and ν̃ :=

Φ
(m)
0 (ν) is in L(Rm+ ), with margins ν̃1, . . . , ν̃m. Its tail integral Ũ is given by

Ũ(x1, . . . , xm) =

∫ ∞
0

U(esx1, . . . , e
sxm) ds

=

∫ ∞
0

C(esx1 f̃1(esx1), . . . , esxm f̃m(esxm)) ds, x1, . . . , xm > 0.

4.4 The Thorin class

In Barndorff-Nielsen, Maejima and Sato [3], the m-dimensional Thorin class

T (Rm) is defined to be the class of all infinitely divisible distributions µ
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whose Lévy measure ν has representation (4.4), where r 7→ rlξ(r) has to

be completely monotone on (0,∞). We shall also write ν ∈ T (Rm). The

m-dimensional Thorin class T (Rm) is a generalisation of the one-dimensional

Thorin class T (R) introduced by Thorin [20]. It can be shown that T (Rm) is

a proper subclass of B(Rm)∩L(Rm). A probabilistic interpretation as for the

G-S-B class is given in [3]. There, it is also shown that the Lévy measures in

T (Rm) constitute the image set of Lévy measures in L(Rm) under Υ
(m)
0 (for

m = 1 this was proved in [6]), and also the image set of Lévy measures in

B(Rm) ∩ IDlog(Rm) under Φ
(m)
0 . Furthermore, Φ

(m)
0 and Υ

(m)
0 commute, i.e.

Φ
(m)
0 Υ

(m)
0 (µ) = Υ

(m)
0 Φ

(m)
0 (µ) for ν ∈ IDlog(Rm), and Φ

(m)
0 Υ

(m)
0 has the general

form (4.3) where the measure τ has density ψ(ξ) = ξ−1e−ξ1(0,∞)(ξ). Denote

by T (Rm+ ) the class of all infinitely divisible distributions in the Thorin class

whose Lévy measure ν is in Lm+ , and write also ν ∈ T (Rm+ ). Then the general

scheme outlined in Section 4.1 can be applied to construct Lévy measures ν̃

in T (Rm+ ) with prescribed margins ν̃1 ∈ T (R+). Alternatively, the results of

Sections 4.2 and 4.3 can be used: take the inverses νi of the marginal Lévy

measures ν̃i under Υ
(1)
0 , construct a Lévy measure ν ∈ L(Rm+ ) with margins

νi as in Section 4.3, and set ν̃ := Υ
(m)
0 (ν). Similarly, one can apply first

(Φ
(1)
0 )−1, then use the results of Section 4.2, and finally apply Φ(m) to the

Lévy measure obtained in this way.

4.5 Transformation of Lévy copulas under Υ0

In Section 4.1 we have seen how Lévy copulas and Υ-type transformations Ψ0

can be used to construct multivariate Lévy measures ν̃ with given margins

and further properties. It is interesting to compare properties of the Lévy

copula C associated with ν = (Ψ
(m)
0 )−1 with the Lévy copula C̃ associated

with ν̃, where the relation between C and C̃ is given by the diagram (4.2). We

shall restrict ourselves to the mapping Υ0 appearing in Section 4.2. A natural

question is e.g. whether a homogeneous Lévy copula C gives rise to a homo-

geneuous Lévy copula C̃, or if the Lévy copulas of complete dependence and

independence are preserved, respectively. For the Lévy copula of indepen-

dence this is indeed the case, as follows easily from (4.7). On the other hand,

if ν ∈ L2
+ with the (homogeneous) Lévy copula C(u1, u2) = min{u1, u2} of
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complete dependence, and with tail integrals U1(x1) = 2x−1
1 for x1 ≥ 1/2,

U1(x1) = 3 + (2x1)−1 for x1 < 1/2, and U2(x2) = x−1
2 for x2 > 0, then easy

calculations show that the Lévy copula C̃ associated with ν̃ = Υ
(2)
0 (ν) is not

homogeneous. In particular, the Lévy copula of complete dependence is not

preserved, nor is homogeneity of Lévy copulas. The Lévy copula C̃ depends

not only on C, but also on the margins ν. However, if the margins of ν are

stable, then we have the following positive result:

Theorem 4.3 Let ν ∈ Lm+ have stable non-degenerate margins with indices

κ1, . . . , κm ∈ (0, 2). Then the Lévy copula associated with ν is homogeneous

if and only if the Lévy copula C̃ associated with ν̃ = Υ0(ν) is homogeneous.

Proof. Let νi, i = 1, . . . ,m, be the non-degenerate κi stable margins of ν.

Then it is easy to see that

C̃(u1, . . . , um) =

∫ ∞
0

e−sC

(
sκ1

u1

Γ(κ1 + 1)
, . . . , sκm

um
Γ(κm + 1)

)
ds. (4.8)

From this follows immediately that if C is homogeneous then so is C̃. For

the converse, suppose that C̃ is homogeneous. Equation (4.8) then shows,

that for any t > 0,

t−1C̃(t−κ1u1, . . . , t
−κmum) =

∫ ∞
0

e−rtC

(
rκ1u1

Γ(κ1 + 1)
, . . . ,

rκmum
Γ(κm + 1)

)
dr.

For fixed u = (u1, . . . , um) ∈ [0,∞]m \ {(∞, . . . ,∞)}, define

fu : (0,∞)→ R, r 7→ C

(
rκ1

u1

Γ(κ1 + 1)
, . . . , rκm

um
Γ(κm + 1)

)
,

gu : (0,∞)→ R, t 7→ t−1C̃
(
t−κ1u1, . . . , t

−κmum
)
.

Then gu is the Laplace transform of fu, gu = Lap(fu). Further, for fixed

s > 0, 1
s
gsu = Lap(1

s
fsu). Now if C̃ is homogeneous, then gu = 1

s
gsu. From

the uniqueness theorem for Laplace transforms then follows that 1
s
fsu(r) =

fu(r) almost everywhere in r, and even everywhere in r since both functions

are continuous by (2.5). In particular, 1
s
fsu(1) = fu(1), showing that C is

homogeneous.

One might wonder if both ν and Υ
(m)
0 (ν) having homogeneous Lévy cop-

ulas implies stability of the margins. This, however, is not the case:
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Example 4.4 Let ν ∈ Lm+ with marginal tail integrals U1(x) ≥ U2(x) ≥
. . . ≥ Um(x) ∀ x ∈ [0,∞] and associated Lévy copula C(u1, . . . , um) =

min{u1, . . . , um}. Then it follows easily that C̃ = C is associated with

Υ
(m)
0 (ν). In particular, C and C̃ are both homogeneous, although the margins

of ν are not necessarily stable.

5 The Lévy measure induced by Lévy copulas

An interesting feature of distributional copulas is that they themselves are

distribution functions with special properties. It is natural to ask whether

Lévy copulas can be interpreted as a special class of Lévy copulas, too. This

is indeed the case when a simple “inversion map” is applied to the measure

χC defined by (1.2):

Definition 5.5 For m ∈ N, denote by Q = Qm the bijection

Qm : [0,∞]m → [0,∞]m, (x1, . . . , xm) 7→ (x−1
1 , . . . , x−1

m ),

where 1/0 has to be interpreted as ∞, and 1/∞ as 0. For any Lévy copula C

on [0,∞]m, the measure νC is then defined as the image of the measure χC

given in (1.2), under the mapping Qm, i.e.

νC(B) = (QχC)(B) = χC(Q−1
m (B)) ∀ B Borel set in [0,∞]m.

From (1.2) we see that νC is thus determined by

νC([x1,∞]× . . .× [xm,∞]) = C(x−1
1 , . . . , x−1

m ), 0 ≤ x1, . . . , xm ≤ ∞, (5.9)

and that νC has no atom at (0, . . . , 0). Then νC is a Lévy measure, more

precisely we have:

Theorem 5.6 If C is an m-dimensional Lévy copula, then the measure νC

is a Lévy measure with marginal tail integrals [0,∞]→ [0,∞], xk 7→ x−1
k . In

particular, then it has 1-stable margins.The Lévy measure νC is not of finite

variation, i.e.
∫
|x|<1
|x|νC(dx) = ∞. Conversely, if ν ∈ Lm+ is any Lévy

measure with marginal tail integrals [0,∞] → [0,∞], xk 7→ x−1
k , then there

exists a unique Lévy copula C such that νC = ν.
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Proof. Let C be a Lévy copula. Then groundedness of C corresponds to

the fact that νC is concentrated on [0,∞)m, and that it has no atom at the

origin is due to the fact that χC has none at (∞, . . . ,∞). Finiteness of C

on [0,∞]m \ {(∞, . . . ,∞)} shows that νC is finite outside neighbourhoods of

the origin, and it is a Lévy measure since∫
[0,1]m

m∑
k=1

x2
k dνC(x1, . . . , xm) ≤

m∑
k=1

∫
[0,1]

x2
k d(νC)k(xk) =

∞∑
k=1

∫ ∞
1

1

y2
k

dyk <∞

(here, (χC)k denotes the k-th marginal measure of χC). That νC is not of

finite variation can be seen from∫
[0,1]m

m∑
k=1

xk dνC(x1, . . . , xm) ≥
∫

[1,∞]m

1

y1

dχC(y1, . . . , ym) =

∫
[1,∞]×[0,∞]m−1

1

y1

dχC(y1, . . . , ym)−
∫

[1,∞]×([0,∞]m−1\[1,∞]m−1)

1

yi
dχC(y1, . . . , ym);

here, the first integral is equal to
∫∞

1
1
y1
dy1 = ∞, while the second integral

is finite since χC([1,∞] × ([0,∞]m−1 \ [1,∞]m−1)) < ∞. The remaining

assertions are clear.

Remark 5.7 Let C be a Lévy copula, and denote the (marginal) tail integrals

of νC by UC and UC,i, respectively. Then it follows from (5.9) and (1.4) that

for x1, . . . , xm ∈ [0,∞],

UC(x1, . . . , xm) = C(x−1
1 , . . . , x−1

m ) = C(UC,1(x1), . . . , UC,m(xm)).

This shows that the Lévy copula, associated with the Lévy measure νC by

(1.4), is again C.

The mapping Qm is not the only bijection that could have been used

to transform χC (and hence Lévy copulas) to Lévy measures. However,

the mapping Qm has many appealing features. Apart from being easy to

calculate, the obtained Lévy measure reflects the uniform margins property of

distributional Lévy copulas in a very clear way having tail integrals [0,∞]→
[0,∞], xk 7→ x−1

k . Further, as we shall see in Theorem 5.9, homogeneous

Lévy copulas C are precisely those Lévy measures for which νC is the Lévy
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measure of a 1-stable distribution, and hence this allows an easy description

of homogeneous Lévy copulas as done in Theorem 3.4. Finally, the mapping

Qm appears naturally when dealing with the Upsilon transform Υm
0 , as can

be seen from (4.7).

The following proposition provides a stepping stone to Theorem 5.9 below.

Proposition 5.8 Let α ∈ (0, 2) and ν be a Lévy measure with non-degenerate

α-stable margins and associated Lévy copula C. Then

(a) ν is stable if and only if νC is 1-stable.

(b) ν is selfdecomposable if and only if νC is selfdecomposable.

Proof. We first prove part (b). Let Ui(xi) = k−1
i x−αi (ki > 0, i = 1, . . . ,m)

be the marginal tail integrals of ν. By Sato [16], Theorem 15.8, ν is selfde-

composable if and only if ν(t−1B) ≥ ν(B) for all Borel sets B in [0,∞)m and

all t ≥ 1, or what is the same if

χ(t−1B) ≤ χ(B) (5.10)

for all Borel sets B in (0,∞]m and all t ≥ 1; here χ = Qmν. It is enough to

check (5.10) for all Borel sets of the form B := (a1, b1]× . . .× (am, bm]. With

the aid of the tail integral of ν we can write

χ(B) =
∑

sgn (c)U(Qm(c))

=
∑

sgn (c)C(k1 x
α
1 , . . . , km x

α
m),

where the sum is taken over all vertices c = (c1, . . . , cm) of B. Thus, ν is

selfdecomposable if and only if∑
sgn (c)C(t−αk1c

α
1 , . . . , t

−αkmc
α
m) ≤

∑
sgn (c)C(k1c

α
1 , . . . , kmc

α
m)

for all t ≥ 1 and all sets (a1, b1] × . . . × (am, bm]. Substituting ui = kia
α
i ,

vi = kib
α
i , this is the same as∑

sgn (d)C(t−αd) ≤
∑

sgn (d)C(d),

where the sum ranges over all vertices d of (u1, v1], . . . , (um, vm]. The latter

is the condition for χC to satisfy (5.10), i.e. for νC to be selfdecomposable.
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The proof of (a) is similar, using Sato [16], Theorem 14.3.

Tankov [19] showed that if α ∈ (0, 2) and if a positive Lévy measure ν

has non-degenerate α-stable margins, then ν is α-stable if and only if the

associated Lévy copula is homogeneous. Combining this with the previous

proposition and Remark 5.7, we immediately obtain:

Theorem 5.9 A Lévy copula C is homogeneous if and only if νC is a 1-stable

Lévy measure.

Using this, Theorem 3.4 follows easily:

Proof of Theorem 3.4. It is easy to see that every function C satisfying

(3.2) and (3.3) is a Lévy copula. For the converse, the spectral representation

of stable Lévy measures (cf. Sato [16], Theorem 14.3) shows that the Lévy

measure νC coming from a Lévy copula C is 1-stable if and only if it has the

representation

νC(B) =

∫
S+

∫ ∞
0

1B(rξ) r−2 dr λ(dξ) ∀ B Borel set in [0,∞)m,

where λ is a finite measure on S+. As can be easily seen, this is equivalent to

(3.3). Equation (3.2) corresponds to the uniform margins property of Lévy

copulas. �

Returning to the characterisation of convergence of Lévy measures in The-

orem 2.1, it is natural to ask whether the pointwise convergence condition

of C(n) there can be replaced by vague convergence of νC(n) . Since the limit

Lévy copula C in Theorem 2.1 is not necessarily unique if RanUi 6= [0,∞]

for some i, vague convergence is not to be expected in general. However, if

RanUi = [0,∞] for all i = 1, . . . ,m, then the statement on the pointwise

convergence of C(n) in Theorem 2.1 can be replaced by vague convergence

of νC(n) . This follows from the following lemma, which is an immediate con-

sequence of the characterisation of vague convergence in terms of pointwise

convergence of tail integrals, as stated before Theorem 2.1.

Lemma 5.10 Let (C(n))n∈N and C be Lévy copulas. Then C(n) converges

pointwise on [0,∞]m to C if and only if νC(n)

#→ νC as n→∞.
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Finally, let us return to the transformation of Lévy copulas under the

mapping Υm
0 , as discussed in Section 4.5. We have seen that the Lévy copula

of a transformed Lévy measure does not need to share the same properties

as the original Lévy copula. However, if the margins of the Lévy measure

are stable, then for example homogeneity of Lévy copulas is preserved under

Υm
0 . Since every Lévy copula C defines a Lévy measure νC with 1-stable

margins, to which C is again associated via (1.4), it is natural to define a

direct Upsilon transformation acting on Lévy copulas:

Definition 5.11 For any Lévy copula C, the transformed Lévy copula Υcop
0 (C)

is defined by

Υcop
0 (C)(u1, . . . , um) =

∫ ∞
0

e−sC(su1, . . . , sum) ds ∀ u1, . . . , um ∈ [0,∞].

Then Υcop
0 (C) is the Lévy copula of Υ

(m)
0 (νC), as can be seen from (4.8).

Note that Υcop
0 (C) can be defined for any Lévy copula C, while C̃ as appearing

in Section 4.5 depends on the margins of a Lévy measure.
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[6] Barndorff-Nielsen, O.E. and Thorbjørnsen, S. (2004a): A connection be-

tween free and classical infinite divisibility. Inf. Dim. Anal. Quantum

Prob. 7, 573-590.

[7] Barndorff-Nielsen, O.E. and Thorbjørnsen, S. (2004b): Regularising map-
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