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Abstract

Exponential functionals of Lévy processes appear as stationary distributions
of generalized Ornstein-Uhlenbeck (GOU) processes. In this paper we obtain the
infinitesimal generator of the GOU process and show that it is a Feller process.
Further we use these results to investigate properties of the mapping Φ, which
maps two independent Lévy processes to their corresponding exponential functional,
where one of the processes is assumed to be fixed. We show that in many cases this
mapping is injective and give the inverse mapping in terms of (Lévy) characteristics.
Also, continuity of Φ is treated and some results on its range are obtained.
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1 Introduction

The exponential functional of a bivariate Lévy process (ξ, η)T = ((ξt, ηt)
T )t≥0 is defined as

V∞ =

∫
(0,∞)

e−ξt−dηt. (1.1)

Necessary and sufficient conditions for the convergence of integrals of the form
∫
(0,t]

e−ξs−dηs

as t→ ∞ for a bivariate Lévy process (ξ, η)T were given by Erickson and Maller [12, The-
orem 2]. Distributional properties of exponential functionals have been studied in various
articles throughout the years by e.g. Paulsen [34], Yor [41], Bertoin et al. [6], Kondo et
al. [22], Lindner and Sato [28], Behme [3] and Kuznetsov et al. [23] to name just a few.
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Denote by L(X) the law of a random variableX. In this paper, for a given one-dimensional
Lévy process ξ, we will consider mappings like

Φξ : Dξ → set of probability distributions on R,

L(η1) 7→ L
(∫ ∞

0

e−ξs− dηs

)
defined on Dξ := {L(η1) : η Lévy process, independent of ξ, such that

∫∞
0
e−ξs− dηs

converges a.s.} and we will examine injectivity and continuity of such mappings and
gather information about their ranges. In the case that ξt = at is deterministic, it is well
known that Dξ = IDlog(R) is the set of real-valued infinitely divisible distributions with
finite log+-moment and that Φξ is an algebraic isomorphism between IDlog(R) and L(R),
the set of real-valued selfdecomposable distributions [16, Proposition 3.6.10].

We start with a short example of a special case to illustrate the kind of results we obtain,
as well as the occuring problems.

Example 1.1. Suppose (ξt)t≥0 is a compound Poisson process with intensity rate λ and
jump heights measure τ . Let η be a Lévy process independent of ξ such that L(η1) ∈ Dξ.
Define Ti to be the time of the ith jump of ξ with T0 := 0. Then

V∞ =

∫
(0,∞)

e−ξs− dηs =
∞∑
i=0

∫
(Ti,Ti+1]

e−ξTidηt =
∞∑
i=0

(
i∏

k=1

e−∆ξTk

)
(ηTi+1

− ηTi
).

Since (e−∆ξTi , ηTi+1
−ηTi

)i=0,1,2,... is an i.i.d. sequence, we obtain from this the distributional
fixed point equation

V∞
d
= XV ′

∞ +H

where (X,H)
d
= (e−∆ξTi , ηTi+1

−ηTi
) for i = 1, 2, . . . and V∞

d
= V ′

∞ where V ′
∞ is independent

of (X,H). In terms of characteristic functions this yields ϕV∞(u) = ϕXV ′
∞(u)ϕH(u) and

adding the fact that the characteristic function ϕη of the Lévy process (ηt)t≥0 and the
corresponding exponentially subordinated process (Ht)t≥0 = (ητ(t))t≥0 with τ ∼ Exp(λ)
fulfill the equation

ϕH(u) =
λ

λ− log(ϕη(u))

(see e.g. [40, p.10]) we have

log(ϕη(u))ϕV∞(u) = λ
(
ϕV∞(u)− ϕXV ′

∞(u)
)
= λ

∫
R

(
E
[
eiuV∞

]
− E

[
eiue

−yV∞
])
τ(dy).

(1.2)

Now, in the setting of the example if we knew that the characteristic function of V∞ is
non-zero on a dense subset of R this gave us a formula for the characteristic exponent of η
and thus injectivity of the mapping Φξ. But in general the quotient of two characteristic
functions does not necessarily yield a unique solution as has already been remarked in
[29]. Examples for non-uniqueness of such quotients are also given in [25].
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To obtain formulas like (1.2) for general Lévy processes (ξ, η)T we will strongly make use
of the fact that GOU processes are Markov processes. So, in Section 3 we first compute the
infinitesimal generator of the GOU process and show that it is actually a Feller process. In
Section 4 these results will be used to obtain formulas of the form (1.2) for general, inde-
pendent Lévy processes ξ and η. Hereby we obtain a general formula for log(ϕη(u))ϕV∞(u)
in terms of the characteristic triplet of ξ and L(V∞) as given in Theorem 4.1 and Corollary
4.3 and on the other hand in Theorem 4.6 we express log(ϕ−ξ(u))ϕlog |V∞|(u) in terms of
the characteristic triplet of η and L(log |V∞|).
Further, Section 5 is devoted to the study of injectivity, which - in view of the results
of Section 4 - now reduces to an examination of when either ϕV∞(u) or ϕlog |V∞|(u) are
non-zero on a dense subset of R. We give various examples of when the mapping Φξ or
its counterpart Φ̃η (which maps L(ξ1) to L(V∞) for η fixed) are injective and argue why
injectivity cannot be obtained if ξ and η are allowed to exhibit a dependence structure.
Section 6 then uses the previous results to obtain information on the ranges of Φξ and
Φ̃η. In particular, Theorem 6.4 shows that centered Gaussian distributions can only be
obtained in the setting of (standard) OU processes, i.e. for ξ being deterministic and η
being a Brownian motion.
Finally, in Section 7 we give conditions for continuity (in a weak sense) of the mappings
Φξ and Φ̃η and give an example of Φξ being not continuous.

2 Some background on GOU processes and Nota-

tions

By the Lévy-Khintchine formula (e.g. [36, Theorem 8.1]) the characteristic exponent of
an Rd-valued Lévy process X = (Xt)t≥0 is given by

ψX(u) := log ϕX(u) := logE
[
ei⟨u,X1⟩

]
= i⟨γX , u⟩ −

1

2
⟨u,AXu⟩+

∫
Rd

(ei⟨u,x⟩ − 1− i⟨u, x⟩1∥x∥≤1)νX(dx)

where (γX , AX , νX) is the characteristic triplet of X. In case that X is real valued we will
usually replace AX by σ2

X . To simplify notations, we set ν({0}) = 0 for any Lévy measure
ν. If the Lévy measure νX satisfies the condition

∫
∥x∥≤1

∥x∥νX(dx) <∞ we may also use

the Lévy-Khintchine formula in the form

ψX(u) = i⟨γ0X , u⟩ −
1

2
⟨u,AXu⟩+

∫
Rd

(ei⟨u,x⟩ − 1)νX(dx)

and call γ0X the drift of X. We refer to [36] for any further information on Lévy processes.
We write ∆Yt = Yt − Yt− for any càdlàg process Y .

Given a bivariate Lévy process ((ξt, ηt)
T )t≥0 and a random variable V0 on the same prob-

ability space,

Vt = e−ξt

(∫ t

0

eξs−dηs + V0

)
, t ≥ 0, (2.1)
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defines the generalized Ornstein-Uhlenbeck (GOU) process driven by (ξ, η)T with starting
random variable V0. In the case that ξt = at is deterministic, the process Vt is usually called
Ornstein-Uhlenbeck-type process, while if (ξt, ηt) = (at, Bt) for B a Brownian motion, Vt
is known as Ornstein-Uhlenbeck (OU) process.

The GOU process driven by (ξ, η)T is the unique solution of the stochastic differential
equation

dVt = Vt−dUt + dLt, t ≥ 0, (2.2)

for the bivariate Lévy process ((Ut, Lt)
T )t≥0 given by(

Ut

Lt

)
=

(
−ξt +

∑
0<s≤t

(
e−∆ξs − 1 + ∆ξs

)
+ t σ2

ξ/2
ηt +

∑
0<s≤t(e

−∆ξs − 1)∆ηs − t σξ,η

)
, t ≥ 0, (2.3)

where σ2
ξ and σξ,η denote the (1, 1) and (1, 2) elements of the Gaussian covariance matrix

A(ξ,η). Equation (2.3) defines a bijection between all bivariate Lévy processes (ξ, η)T and
all bivariate Lévy process (U,L)T such that νU((−∞,−1]) = 0. The upper line of (2.3)
is equivalent to e−ξt = E(U)t, where E(U)t is the stochastic exponential of U , which is
defined as the unique càdlàg solution S of St = 1+

∫
(0,t]

Ss−dUs (see e.g. [35, Thm. II.37]).

Equation (2.2) has a solution for any bivariate Lévy process (U,L)T and any starting
random variable V0 independent of (U,L)T , which in the case νU({−1}) = 0 is given by

Vt = E(U)t
(∫

(0,t]

E(U)−1
s− dηs + V0

)
, (2.4)

where ηt = Lt −
∑

0<s≤t(1 + ∆Us)
−1∆Us∆Ls − tσU,L, see [4, Thm. 2.1]. The processes

of the form (2.4) hence constitute a slightly larger class of stochastic processes than the
GOU processes defined by (2.1) since they allow U also to have jumps smaller than −1.
Obviously, the GOU process defined in (2.1) as well as the process defined in (2.4) are
time homogeneous Markov processes [4, Lemma 3.3].

In [27] necessary and sufficient conditions for the existence of causal, strictly stationary
solutions of the generalized Ornstein-Uhlenbeck process (2.1) are given. In particular
it is shown ([27, Theorem 2.1]) that if (Vt)t≥0 is strictly stationary and causal, then∫
(0,t]

e−ξs−dLs with L as defined in (2.3) converges a.s. to a finite random variable as

t→ ∞ and the stationary law µ is given by µ = L(V∞) for V∞ =
∫
(0,∞)

e−ξs−dLs. Observe

that L = η if ξ and η are independent.

The space of continuous functions Rd → R is denoted by C(Rd). The subspaces of bounded
functions, functions vanishing at infinity and functions with compact support are writ-
ten as Cb(Rd), C0(Rd) and Cc(Rd), resp. For n ∈ N we write Cn(Rd) for the space of
functions which are n-times continuously differentiable. Functions in Cn

b (Rd) are n-times
continuously differentiable and the first n derivatives are bounded. Cn

0 (Rd) and Cn
c (Rd)

are defined likewise. We write “
d
=” to denote equality in distribution of random variables,

“
d→” to denote convergence in distribution of random variables, i.i.d. for “independent

and identically distributed”, and log+(x) = log(max{x, 1}) for x ∈ R. Throughout, the
characteristic function of a random variable X is denoted by ϕX(u) = EeiuX , u ∈ R, and
the Fourier transform of a finite measure µ on (R,B1) by µ̂(u) =

∫
R e

iux µ(dx). Here, B1

denotes the Borel-σ-algebra in R.
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3 Feller property and the infinitesimal generator of

the GOU process

Let (Xt)t≥0 be a time-homogeneous Markov process on Rd with semigroup Tt, i.e.

Ttf(x) =

∫
Rd

f(y)µt(x, dy) = Ex[f(Xt)]

where µt(x, dy) = P (Xt ∈ dy|X0 = x) are the transition probabilities of X and f ∈
C0(Rd). Then X is a Feller process in Rd if its semigroup fulfills the Feller properties

(F1) TtC0(Rd) ⊂ C0(Rd)

(F2) Ttf → f as t→ 0 ∀f ∈ C0(Rd),

where the convergence under (F2) is meant to hold in the Banach space (C0(Rd), ∥ · ∥∞).

The infinitesimal generator A of a Feller process X is defined by

Af = lim
t→0

Ttf − f

t

for all functions f in the domain of A, i.e. all f in

D(A) =

{
f ∈ C0(Rd), lim

t→0

Ttf − f

t
exists in ∥ · ∥∞

}
.

A subspace D of D(A) is said to be a core for the generator A, if the closure of the
restriction of A to D is equal to A.

Any Lévy process X is a Feller process. If the Lévy process X is real-valued its generator
AX is given by (e.g. [36, Theorem 31.5])

AXf(x) =
1

2
σ2
Xf

′′(x) + γXf
′(x) +

∫
R
(f(x+ y)− f(x)− yf ′(x)1|y|≤1)νX(dy) (3.1)

and it holds C2
0(R) ⊂ D(AX).

The generator of the OU process is well known in the literature, unlike the generator of
the GOU process, which is presented in the next Theorem. For Lévy processes with finite
second moment this generator is also given in [21, Thm. 4.6.1] and the formula for the
generator can also be found in [35, Exercise V.7] (containing a typo). The fact that GOU
processes are Feller processes and the determination of the cores seems to be new.
Note that the equation dV x

t = x+
∫
(0,t]

V x
s− dUs + dLt can be written as

dV x
t = x+

∫
(0,t]

g(V x
s−) d(Us, Ls)

T (3.2)

with g(u) = (u, 1) ∈ R1×2. Solutions of (3.2) with bounded and locally Lipschitz g are well
known to constitute Feller process (e.g. [39, Cor. 3.3]), but the function u 7→ (u, 1) is not
bounded so that this theory cannot be applied. Further, in [39, Rem. 3.4] an example is
given when g is not bounded and the corresponding solution fails to be a Feller process.
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Theorem 3.1. Let (Zt)t≥0 = ((Ut, Lt)
T )t≥0 be a bivariate Lévy process with characteristic

triplet (γZ , AZ , νZ) where γZ = (γU , γL)
T , AZ =

(
σ2
U σU,L

σU,L σ2
L

)
and νZ((dz1, dz2)

T ) such

that νZ((−1, dz2)
T ) = 0. Then the process (V x

t )t≥0 defined by

V x
t = x+

∫
(0,t]

V x
s− dUs + Lt = x+

∫
(0,t]

g(V x
s−)dZs, t ≥ 0, (3.3)

for g(u) = (u, 1) is a Feller process whose generator has a domain containing

S(R) :=
{
f ∈ C2

0(R) : lim
|x|→∞

(
|xf ′(x)|+ |x2f ′′(x)|

)
= 0

}
.

In particular C∞
c (R) ⊂ C2

c (R) ⊂ D(AV ). For any f ∈ S(R) the generator can be written
as

AV f(x) = f ′(x)g(x)γZ +
1

2
f ′′(x)

(
g(x)AZg(x)

T
)

+

∫
R2

(
f(x+ g(x)z)− f(x)− f ′(x)g(x)z1|z|≤1

)
νZ(dz)

= f ′(x)(xγU + γL) +
1

2
f ′′(x)(x2σ2

U + 2xσU,L + σ2
L) (3.4)

+

∫
R2

(f(x+ xz1 + z2)− f(x)− f ′(x)(xz1 + z2)1|z|≤1)νU,L(dz1, dz2).

The spaces S(R), C2
c (R) and C∞

c (R) are cores for AV .

Proof. (i) Let us first establish the Feller property. It is well known that V x
t is a time

homogenous Markov process (e.g. [4, Lemma 3.3]). By (2.4), V x
t is given by V x

t =

E(U)t
(
x+

∫
(0,t]

E(U)−1
s− dηs

)
. Since E(U)t ̸= 0 as a consequence of νU({−1}) = 0, we

have lim|x|→∞ |V x
t | = ∞ and hence lim|x|→∞ f(V x

t ) = 0 for any f ∈ C0(R). By Lebesgue’s
dominated convergence theorem, this implies Ttf(x) = E[f(V x

t )] → 0 as |x| → ∞. The
fact that for bounded and continuous f the mapping x 7→ E[f(V x

t )] is continuous is ob-
vious using dominated convergence. Thus Tt maps C0(R) into C0(R) and (F1) is shown.
(F2) follows from (F1) and [26, Thm. 3.15], observing that for each x ∈ R, V x satisfies
P (V x

0 = x) = 1 and (V x
t )t≥0 is adapted to the smallest filtration satisfying the usual

hypotheses induced by ((Ut, Lt)
T )t≥0, which is right continuous.

(ii) Before we prove (3.4), we give a bound for the integrand appearing in (3.4) which will
be used throughout. Let f ∈ S(R) and set

K1(f) := sup
y∈R

{
|f ′(y)|(1 + |y|) + |f ′′(y)|(1 + |y|)2

}
<∞ and (3.5)

K2 :=
1

2
sup
y∈R

sup
ζ∈R:|ζ|≤(1+|y|)/2

(1 + |y|)2

(1 + |y + ζ|)2
<∞.

We claim that∣∣f(x+ xz1 + z2)− f(x)− f ′(x)(xz1 + z2)1|z|≤1

∣∣ (3.6)
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≤ K1(f)K2|z|21|z|≤1/2 +K1(f)|z|11/2<|z|≤1 + 2∥f∥1|z|>1/2 ∀ z = (z1, z2)
T ∈ R2, x ∈ R.

Indeed, this is obvious for |z| > 1/2 since |xz1 + z2| ≤
√
1 + x2|z| ≤ (1 + |x|)|z|. For

|z| ≤ 1/2, by Taylor’s theorem there is ζ ∈ R with 0 ≤ |ζ| ≤ |xz1 + z2| ≤ (1 + |x|)|z| ≤
(1 + |x|)/2 such that

|f(x+ xz1 + z2)− f(x)− f ′(x)(xz1 + z2)|
= 2−1|f ′′(x+ ζ)|(xz1 + z2)

2

≤ 2−1
∣∣f ′′(x+ ζ)(1 + |x+ ζ|)2

∣∣ (1 + |x|)2

(1 + |x+ ζ|)2
|z|2

≤ K1(f)K2|z|2,

which shows (3.6) also for |z| ≤ 1/2. In particular, the right hand side of (3.4) is in C0(R)
for f ∈ S(R) by Lebesgue’s dominated convergence theorem.

(iii) Let us show (3.4). Let f ∈ S(R), then by Itô’s Formula (e.g. [35, Thm II.32]) we have

f(V x
t )− f(V x

0 )

=

∫
(0,t]

f ′(V x
s−)dV

x
s +

1

2

∫
(0,t]

f ′′(V x
s−)d[V

x, V x]cs +
∑
0<s≤t

(
f(V x

s )− f(V x
s−)− f ′(V x

s )∆V
x
s

)
and hence

Ttf(x)− f(x) = E [f(V x
t )− f(V x

0 )]

= E

[∫
(0,t]

f ′(V x
s−)dV

x
s +

∑
0<s≤t

(
f(V x

s )− f(V x
s−)− f ′(V x

s−)∆V
x
s

)]

+
1

2
E

[∫
(0,t]

f ′′(V x
s−)d[V

x, V x]cs

]
=: It + IIt, say. (3.7)

Observe that dV x
s = g(V x

s−)dZs and ∆V x
s = g(V x

s−)∆Zs. Since Z is a Lévy process,
by the Lévy-Itô decomposition (e.g. [2, Thm. 2.4.16]) we can write Zt = γZt + Mt +∑

0<s≤t ∆Zs1|∆Zs|>1, where (Mt)t≥0 is a square integrable martingale with expectation 0.
Hence we obtain for the first term

It = E

[∫
(0,t]

f ′(V x
s−)g(V

x
s−)γZds

]
+ E

[∫
(0,t]

f ′(V x
s−)g(V

x
s−)dMs

]
+E

[∑
0<s≤t

f ′(V x
s−)g(V

x
s−)∆Zs1|∆Zs|>1 +

∑
0<s≤t

(
f(V x

s )− f(V x
s−)− f ′(V x

s−)g(V
x
s−)∆Zs

)]
.

SinceM is a square integrable martingale with expectation 0 and since s 7→ f ′(V x
s−)g(V

x
s−)

is bounded because of f ∈ S(R), the process t 7→
∫
(0,t]

f ′(V x
s−)g(V

x
s−)dMs is a martingale

with expectation 0 (e.g. [32, Prop. 2.24]). Hence we conclude

It =

∫
(0,t]

E
[
f ′(V x

s−)g(V
x
s−)
]
γZ ds
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+E

[∑
0<s≤t

(
f(V x

s− + g(V x
s−)∆Zs)− f(V x

s−)− f ′(V x
s−)g(V

x
s−)∆Zs1|∆Zs|≤1

)]

=

∫
(0,t]

E
[
f ′(V x

s−)g(V
x
s−)
]
γZds

+E

[∫
(0,t]

∫
R2

(
f
(
V x
s− + g(V x

s−)z
)
− f(V x

s−)− f ′(V x
s−)g(V

x
s−)z1|z|≤1

)
νZ(dz)ds

]
,

where we used the compensation formula (e.g. [24, Theorem 4.4]), which may be applied
since E

∫
(0,t]

∫
R2

∣∣f (V x
s− + g(V x

s−)z
)
− f(V x

s−)− f ′(V x
s−)g(V

x
s−)z1|z|≤1

∣∣ νZ(dz)ds is finite by

(3.6). Using the continuity of s 7→ V x
s at s = 0 and again the bound from (3.6), it follows

from Lebesgue’s dominated convergence theorem that

lim
t→0

t−1It = f ′(x)g(x)γZ +

∫
R2

(
f(x+ g(x)z)− f(x)− f ′(x)g(x)z1|z|≤1

)
νZ(dz).

For the second term in Eq. (3.7) observe that by [18, Eq. (4)]

[V x, V x]cs =

[
x+

∫
(0,·]

g(V x
u−)dZu, x+

∫
(0,·]

g(V x
u−)dZu

]c
s

=

∫
(0,s]

g(V x
u−) d[Z,Z

T ]cu g(V
x
u−)

T ,

and since [Z,ZT ]cu = AZu it follows

IIt =
1

2
E

[∫
(0,t]

f ′′(V x
s−)g(V

x
u−)AZ g(V

x
u−)

T du

]
.

Together with the obtained formula for It, and inserting the definition of g and Z, this
shows that limt→0 t

−1(It + IIt) is given by the right hand side of (3.4). Since V is a Feller
process, and since the right hand side of (3.4) is in C0(R) for f ∈ S(R) by (3.6), this
pointwise limit is actually uniform in x (e.g. [36, Lemma 31.7]), so that S(R) is contained
in the domain of the generator of V and that AV f is given by (3.4) for all f ∈ S(R).

(iv) We now show that S(R) is a core for AV under the extra assumption that EU2
1 <

∞ and EL2
1 < ∞. Denote At = E(U)t and Bt = E(U)t

∫
(0,t]

E(U)−1
s dηs. Then Bt

d
=∫

(0,t]
E(U)s− dLs by [4, Lemma 3.1]. Then EA2

t < ∞ and EB2
t < ∞ as a consequence of

Proposition 3.1 and Lemma 6.1 in [3] together with [36, Thm. 25.18]. We conclude that
∂2

∂x2
Ttf(x) exists for f ∈ S(R) and that

∂

∂x
Ttf(x) =

∂

∂x
E[f(Atx+Bt)] = E[Atf

′(Atx+Bt)] and

∂2

∂x2
Ttf(x) =

∂2

∂x2
E[f(Atx+Bt)] = E[A2

tf
′′(Atx+Bt)].
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Since EA2
t <∞, x 7→ ∂2

∂x2
Ttf(x) is obviously continuous, so that TtS(R) ⊂ C2(R)∩C0(R).

Using that E|Bt| <∞ and lim|y|→∞ |yf ′(y)| = 0 for f ∈ S(R), we further see by dominated
convergence that∣∣∣∣x ∂∂xTtf(x)

∣∣∣∣ ≤ E [|Atxf
′(Atx+Bt)|]

≤ E [|(Atx+Bt)f
′(Atx+Bt)|] + E [|Btf

′(Atx+Bt)|]
→ 0, as |x| → ∞.

In the same way one can check that

∣∣∣∣x2 ∂2∂x2Ttf(x)
∣∣∣∣→ 0 as |x| → ∞ such that TtS(R) ⊂

S(R). By [13, Prop. 1.3.3] we thus obtain that S(R) is a core for AV , provided that
EU2

t <∞ and EL2
t <∞.

(v) Now we drop the assumption that EU2
1 + EL2

1 < ∞ and show that S(R) is a core
for AV . Similarly to the proof of Theorem 3.1 in Sato and Yamazato [38], for f ∈ S(R)
denote the right hand side of (3.4) by Gf(x) and define

G0f(x) := f ′(x)(xγU + γL) +
1

2
f ′′(x)(x2σ2

U + 2xσU,L + σ2
L)

+

∫
{z∈R2:|z|≤1}

(f(x+ xz1 + z2)− f(x)− f ′(x)(xz1 + z2)1|z|≤1)νU,L(dz1, dz2).

For f ∈ C0(R), denote further

Wf(x) :=

∫
{z∈R2:|z|>1}

(f(x+ xz1 + z2)− f(x)) νU,L(dz1, dz2).

Then W : C0(R) → C0(R) is a bounded linear operator, and from (iii) we know that
AV f = Gf = G0f + Wf for f ∈ S(R). Consider the process V(0) defined by V x

(0),t =

x +
∫
(0,t]

V x
(0),s− dŨs + L̃t, where (Ũ , L̃)T is a Lévy process with characteristic triplet

(γZ , AZ ,1|z|≤1νZ(dz)). Again by (iii), G0f = AV(0)f for f ∈ S(R), and from (iv) we
know that S(R) is a core for AV(0) , so that the closure G0 of G0 is AV(0) , in particular
D(G0) = D(AV(0)). Since Gf = G0f +Wf for f ∈ S(R) and W is bounded, it follows
that the closure G of G satisfies G = G0 +W , in particular D(AV(0)) = D(G0) = D(G).
Since AV is a closed operator, we further know that D(G) ⊂ D(AV ) and that AV is a
closed extension of G. From the Hille-Yosida theorem (e.g. [13, Thm. 1.2.6]) it follows that
for every λ > 0, λ Id−G0 : D(AV(0)) = D(G0) → C0(R), f 7→ λf −G0f is a bijection with
bounded inverse (the resolvent) satisfying ∥(λ Id−G0)

−1∥ ≤ λ−1. For λ0 > ∥W∥, it then
follows from a perturbation result for closed linear operators (e.g. [19, Thm. IV.1.16]),
that also λ0 Id−G = λ0 Id−G0−W : D(G) = D(G0) → C0(R) is a bijection with bounded
inverse. Since AV is a closed extension of G and also λ0 Id − AV : D(AV ) → C0(R) is a
bijection (e.g. [13, Prop. 1.2.1]), we must have D(G) = D(AV ) and hence G = AV . This
shows that S(R) is a core for AV .

(vi) Finally, we show that C2
c (R) and C∞

c (R) are cores for AV . Let h be a function in C∞
c

with h(x) = 1 if |x| ≤ 1 and h(x) = 0 if |x| ≥ 2. Define hn(x) = h(x/n) and for any
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f ∈ S(R) set fn(x) = f(x)hn(x). Then fn ∈ C2
c (R) and we obtain that fn → f , f ′

n → f ′,
f ′′
n → f ′′, xf ′

n(x) → xf ′(x), xf ′′
n(x) → xf ′′(x) and x2f ′′

n(x) → x2f ′′(x) uniformly in x
as n → ∞. In particular, with K1(·) as defined in (3.5), we see that K1(fn) is bounded
in n and hence we conclude with (3.6) that AV fn → AV f uniformly as n → ∞. This
shows that C2

c (R) is a core for AV . Finally, for f ∈ C2
c (R) there are functions gn ∈ C∞

c (R)
with uniformly bounded supports such that gn → f , g′n → f ′ and g′′n → f ′′ uniformly as
n→ ∞, hence also xg′n(x) → xf ′(x), xg′′n(x) → xf ′′(x) and x2g′′n(x) → x2f ′′(x) uniformly
in x as n→ ∞. Again, this gives AV gn → AV f uniformly as n→ ∞ so that C∞

c is a core
for AV .

The following corollary is immediate from Theorem 3.1.

Corollary 3.2. In the setting of Theorem 3.1, if U and L are additionally independent,
Eq. (3.4) simplifies to

AV f(x) = f ′(x)(xγU + γL) +
1

2
f ′′(x)(x2σ2

U + σ2
L)

+

∫
R
(f(x+ xy)− f(x)− f ′(x)xy1|y|≤1)νU(dy)

+

∫
R
(f(x+ y)− f(x)− f ′(x)y1|y|≤1)νL(dy)

= ALf(x) + f ′(x)xγU +
1

2
f ′′(x)x2σ2

U (3.8)

+

∫
R
(f(x+ xy)− f(x)− f ′(x)xy1|y|≤1)νU(dy).

Corollary 3.3. Let (ξt)t≥0 and (ηt)t≥0 be two independent Lévy processes and let (V x
t )t≥0

be the generalized Ornstein-Uhlenbeck process driven by (ξ, η)T with starting point x as
defined in (2.1). Then (V x

t )t≥0 is a Feller process whose generator has a domain containing
S(R), and S(R), C2

c (R) and C∞
c (R) are cores for AV . For any f ∈ S(R) the generator

can be written as

AV f(x) = Aηf(x)− f ′(x)xγξ +
1

2
(f ′′(x)x2 + f ′(x)x)σ2

ξ (3.9)

+

∫
R
(f(xe−y)− f(x) + f ′(x)xy1|y|≤1)νξ(dy).

If f ∈ S(R) and f(0) = 0, define f̃(x) = f(ex) and ˜̃f(x) = f(−ex). Then f̃ , ˜̃f ∈ C2
0(R) ⊂

D(A−ξ), and for such f Eq. (3.9) can be rewritten as

AV f(x) = Aηf(x) + A−ξf̃(log x)1x>0 + A−ξ ˜̃f(log |x|)1x<0. (3.10)

Proof. Since (V x
t )t≥0 fulfills (3.3) for (U,L)

T defined in (2.3) the Feller property as well as
the statements on the domain and cores of the generator follow directly from Theorem 3.1.
Also observe from (2.3) that in the independent case we have ηt = Lt and thus Aη = AL
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whereas the relation between ξ and U yields νU((−∞,−1]) = 0. In [4, Lemma 3.4] we
have computed the characteristic triplet of ξ in terms of the characteristic triplet of U
(the Û used there is equal to ξ whenever νU((−∞,−1]) = 0). Using these relations and
(3.1) one obtains (3.9) from (3.8) by standard computations.

Finally the fact that f̃ , ˜̃f ∈ C2
0(R) if f ∈ S(R) such that f(0) = 0 and the validity of

(3.10) may be checked directly from (3.1) using the definitions of f̃ and ˜̃f .

Remark 3.4. In [23] the exponential functional for independent processes ξ and η is
studied. Under the condition of finite first moments of ξ and η, the authors prove that
for suitable functions f with support on the positive half line the generator of the GOU
process can be written as

AV f(x) = A−ξf̃(log x) + Aηf(x) (3.11)

where f̃(x) = f(ex) and A−ξ and Aη are the generators of −ξ and η respectively. Remark
that the ξ used by the authors corresponds to −ξ in our notation. The formula (3.11) for
positive x is also obtained in [9, Proof of Thm. 1].

4 Relations between the exponential functional and

the driving Lévy processes

It is basic knowledge in the theory of Markov processes (see e.g. [13, Proposition 4.9.2]),
that if µ is an invariant measure for the Markov process X with strongly continuous
contraction semigroup Tt and generator A, i.e. if µ(B) =

∫
µt(x,B)µ(dx) for all Borel

sets B, then ∫
Rd

Af(y)µ(dy) = 0 ∀f ∈ D(A). (4.1)

Conversely, if (4.1) holds, µ is an invariant measure under some additional conditions. In
the special case of Feller processes Eq. (4.1) holds if and only if µ is an invariant measure
of the corresponding process X [26, Thm. 3.37].

In [10] and [11] the authors make use of Equation (4.1) to obtain the density of a specific
stationary generalized Ornstein-Uhlenbeck process. More precisely they obtain the density
of the exponential functional in the special case that ξ is a Brownian motion with drift
and η is deterministic.

Let (Vt)t≥0 be a GOU process as defined in (2.1) or even a process as defined in (2.4),
fulfilling the SDE (2.2), with νU({−1}) = 0. Assume that U and L are independent, i.e. the
generator of (Vt)t≥0 is given by (3.8) for f ∈ S(R). Let µ = L(V∞) be the invariant measure
of (Vt)t≥0, assuming its existence. Then by (4.1) we obtain for any f ∈ S(R) ⊂ D(AV )

0 =

∫
R
AV f(x)µ(dx)

=

∫
R
ALf(x)µ(dx) + γU

∫
R
f ′(x)xµ(dx) +

σ2
U

2

∫
R
f ′′(x)x2 µ(dx) (4.2)
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+

∫
R

∫
R\{−1}

(f(x+ xy)− f(x)− f ′(x)xy1|y|≤1)νU(dy)µ(dx).

This and the previous results allow to establish relationships between the characteristic
functions of V∞, U and L, as done in the following.

Theorem 4.1. Let (Ut)t≥0 and (Lt)t≥0 be two independent Lévy processes with νU({−1}) =
0 and such that V∞ =

∫∞
0

E(U)s−dLs converges to a finite random variable. Then µ =
L(V∞) is the invariant law of the process (Vt)t≥0 defined by (2.4).
Let h ∈ C∞

c (R) be such that h(x) = 1 for |x| ≤ 1 and h(x) = 0 for |x| ≥ 2 and set
hn(x) := h(x

n
) and f(x) = eiux, fn(x) = f(x)hn(x) for u ∈ R. Then

ψL(u)ϕV∞(u) = lim
n→∞

(
−γU

∫
R
xf ′

n(x)µ(dx)−
σ2
U

2

∫
R
x2f ′′

n(x)µ(dx) (4.3)

−
∫
R

∫
R
(fn(x+ xy)− fn(x)− xyf ′

n(x)1|y|≤1)νU(dy)µ(dx)

)
.

If additionally E[V 2
∞] =

∫
R x

2 µ(dx) <∞, then

ψL(u)ϕV∞(u) = −iuγUE
[
V∞e

iuV∞
]
+
σ2
Uu

2

2
E
[
V 2
∞e

iuV∞
]

(4.4)

−
∫
R

(
ϕV∞(u(1 + y))− ϕV∞(u)− iuE

[
V∞e

iuV∞
]
y1|y|≤1

)
νU(dy)

= −uγUϕ′
V∞(u)− σ2

Uu
2

2
ϕ′′
V∞(u) (4.5)

−
∫
R

(
ϕV∞(u(1 + y))− ϕV∞(u)− uϕ′

V∞(u)y1|y|≤1

)
νU(dy)

= −E
[
eiuV∞ψU(uV∞)

]
(4.6)

Equation (4.6) can also be written in the compact form

E
[
(ψU(uV∞) + ψL(u))e

iuV∞
]
= 0 ∀ u ∈ R.

For the proof we need the following lemma. We use the notation S(R;C) to denote the
class of complex valued functions f : R → C such that ℜ(f) ∈ S(R) and ℑ(f) ∈ S(R).
Spaces like C∞

c (R;C) are defined similarly. For a generator A we also write

D(A;C) := {f ∈ C0(R;C) : ℜ(f),ℑ(f) ∈ D(A)}.

It is clear that (3.8) and hence (4.2) remain valid for complex valued functions f ∈ S(R;C).

Lemma 4.2. Let (Lt)t≥0 be a Lévy process in R with generator AL, µ a fixed finite measure
on (R,B1) and define h, hn, f and fn as in Theorem 4.1. Then fn ∈ C∞

c (R;C) ⊂ D(AL;C)
and

lim
n→∞

∫
R
ALfn(x)µ(dx) = ψL(u)

∫
R
eiuxµ(dx) = ψL(u)µ̂(u).

12



Proof. It is clear that fn ∈ C∞
c (R;C). From (3.1) we obtain∫

R
ALfn(x)µ(dx) = γL

∫
R
f ′
n(x)µ(dx) +

σ2
L

2

∫
R
f ′′
n(x)µ(dx)

+

∫
R

∫
R
(fn(x+ y)− fn(x)− f ′

n(x)y1|y|≤1)νL(dy)µ(dx).

By Taylor’s formula, there are ζ1, ζ2 ∈ [−|y|, |y|] such that∣∣fn(x+ y)− fn(x)− f ′
n(x)y1|y|≤1

∣∣
≤ |fn(x+ y)− fn(x)|1|y|>1 + 2−1 [|(ℜf ′′

n)(x+ ζ1)|+ |(ℑf ′′
n)(x+ ζ2)|] y21|y|≤1

≤ 2∥fn∥1|y|>1 + ∥f ′′
n∥y21|y|≤1.

Computing the first two derivatives of fn one easily sees that they are uniformly bounded
in n. Since additionally limn→∞ f ′

n(x) = iueiux and limn→∞ f ′′
n(x) = −u2eiux we obtain via

dominated convergence

lim
n→∞

∫
R
ALfn(x)µ(dx) = γL

∫
R
iueiux µ(dx)− σ2

L

2

∫
R
u2eiux µ(dx)

+

∫
R

∫
R

(
eiu(x+y) − eiux − iueiuxy1|y|≤1

)
νL(dy)µ(dx),

which gives the claim.

Proof of Theorem 4.1. Since
∫ t

0
E(U)s− dLs converges almost surely to the finite random

variable V∞ as t → ∞, µ = L(V∞) is the unique stationary marginal distribution and
hence invariant law of V by [4, Thms. 2.1 and 3.6]. Equation (4.3) then follows directly
from (4.1), (4.2) and Lemma 4.2.
To show (4.4), observe that by Taylor’s formula there are ζ1, ζ2 ∈ [−|xy|, |xy|] such that∣∣fn(x+ xy)− fn(x)− xyf ′

n(x)1|y|≤1

∣∣
≤ |fn(x+ xy)− fn(x)|1|y|>1 + 2−1 [|(ℜf ′′

n)(x+ ζ1)|+ |(ℑf ′′
n)(x+ ζ2)| ]x2y21|y|≤1

≤ 2∥fn∥1|y|>1 + ∥f ′′
n∥x2y21|y|≤1.

Equation (4.4) then follows directly from (4.3) by dominated convergence and Fubini’s
theorem, observing as in the proof of Lemma 4.2 that fn and its first two derivatives are
uniformly bounded in n. Finally, Equations (4.5) and (4.6) are immediate consequences
of (4.4).

For GOU processes driven by (ξ, η), Theorem 4.1 gives the following.

Corollary 4.3. Let (ξt)t≥0 and (ηt)t≥0 be two independent Lévy processes such that V∞ =∫∞
0
e−ξs−dηs converges to a finite random variable. Then µ = L(V∞) is the invariant law

of the GOU process (Vt)t≥0 driven by (ξ, η)T as defined in (2.1).
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Let h ∈ C∞
c (R) such that h(x) = 1 for |x| ≤ 1 and h(x) = 0 for |x| ≥ 2 and set

hn(x) := h(x
n
) and f(x) = eiux, fn(x) = f(x)hn(x) for u ∈ R. Then

ψη(u)ϕV∞(u) = lim
n→∞

(
γξ

∫
R
xf ′

n(x)µ(dx)−
σ2
ξ

2

∫
R
(x2f ′′

n(x) + xf ′
n(x))µ(dx) (4.7)

−
∫
R

∫
R
(fn(xe

−y)− fn(x) + xyf ′
n(x)1|y|≤1)νξ(dy)µ(dx)

)
.

If additionally E[V 2
∞] <∞, then

ψη(u)ϕV∞(u) = γξuϕ
′
V∞(u)−

σ2
ξ

2

(
u2ϕ′′

V∞(u) + uϕ′
V∞(u)

)
(4.8)

−
∫
R

(
ϕV∞(ue−y)− ϕV∞(u) + uyϕ′

V∞(u)1|y|≤1

)
νξ(dy).

Proof. This follows directly from Theorem 4.1 and the relations between (U,L) and (ξ, η)
as given in (2.3) and [4, Lemma 3.4], or alternatively using (3.9) and arguments as in the
proof of Theorem 4.1.

Observe that for ξ being a compound Poisson process Eq. (4.8) immediately gives (1.2).

Remark 4.4. Carmona [9, Thm. 2] obtains a formula related to (4.8) under certain,
more restrictive assumptions. In particular, it is assumed in [9] that eξt admits a strictly
positive density on some interval (0, rt) for some rt > 0. In the special case that η is a
compound Poisson process without negative jumps, and ξ is a Brownian motion with drift,
formula (4.8) has already been obtained by Nilsen and Paulsen [33, Prop. 2], stated for
Laplace transforms.

Remark 4.5. Let η be a subordinator, ξ a Lévy process independent of η, and suppose
that V∞ :=

∫∞
0
e−ξs− dηs is almost surely finite. Then V∞ ≥ 0, and we can also use Laplace

transforms in the above derivation. More precisely, let (U,L)T be given by (2.3), so that
L = η by independence and e−ξt = E(U)t, where νU((−∞,−1]) = 0. Denote the Laplace
transforms of η = L and V∞ for u ≥ 0 by Lη(u) = LL(u) = E[e−uη1 ] = ϕη(iu) and
LV∞(u) = E[e−uV∞ ], respectively. Let f be a function in S(R) with f(x) = e−ux, x ≥ 0,
then f is in D(AV ) and a direct computation starting from (4.2) yields the following
analogues of (4.4) and (4.8) without any further moment restrictions on the distribution
of V∞.

logLL(u) = logLη(u)

= uγU
E
[
V∞e

−uV∞
]

LV∞(u)
− σ2

Uu
2

2

E
[
V 2
∞e

−uV∞
]

LV∞(u)

−
∫
(−1,∞)

(
LV∞(u(1 + y))

LV∞(u)
− 1 + u

E
[
V∞e

−uV∞
]

LV∞(u)
y1|y|≤1

)
νU(dy)

= −uγξ
E
[
V∞e

−uV∞
]

LV∞(u)
−
σ2
ξ

2

(
E
[
V 2
∞e

−uV∞
]

LV∞(u)
u2 −

E
[
V∞e

−uV∞
]

LV∞(u)
u

)

14



−
∫
R

(
LV∞(ue−y)

LV∞(u)
− 1− u

E
[
V∞e

−uV∞
]

LV∞(u)
y1|y|≤1

)
νξ(dy), u ≥ 0.

The formula given in Corollary 4.3 will be useful in determining L(η1) from L(V∞) and
L(ξ1) as observed in Theorem 5.1 below. For the determination of L(ξ1) from L(V∞) and
L(η1), the following relation between the characteristic triplets of ξ, L and the character-
istic function of log |V∞| will be helpful.

Theorem 4.6. Let (ξt)t≥0 and (ηt)t≥0 be two independent Lévy processes such that V∞ =∫∞
0
e−ξs−dηs converges to a finite random variable and such that η is not the zero process.

Then µ = L(V∞) is the invariant law of the GOU process (Vt)t≥0 driven by (ξ, η)T .
Let h ∈ C∞

c (R) such that h(x) = 1 for |x| ≤ 1 and h(x) = 0 for |x| ≥ 2 and set hn(x) :=
h(x

n
) and for x ̸= 0 and u ∈ R define f(x) = eiu log |x| and fn(x) = eiu log |x|hn(log |x|) with

fn(0) = 0. Then

ψ−ξ(u)ϕlog |V∞|(u) = − lim
n→∞

∫
R
Aηfn(x)µ(dx) (4.9)

= lim
n→∞

(
−γη

∫
R
f ′
n(x)µ(dx)−

σ2
η

2

∫
R
f ′′
n(x)µ(dx) (4.10)

−
∫
R

∫
R
(fn(x+ y)− fn(x)− f ′

n(x)y1|y|≤1νη(dy)µ(dx)

)
.

If additionally E[V −2
∞ ] <∞, then

ψ−ξ(u)ϕlog |V∞|(u) (4.11)

= −iuγηE
[
V −1
∞ eiu log |V∞|]+ σ2

η

2
(iu+ u2)E

[
V −2
∞ eiu log |V∞|]

−
∫
R

(
E
[
eiu log |V∞+y|]− E

[
eiu log |V∞|]− iuyE

[
V −1
∞ eiu log |V∞|]1|y|≤1

)
νη(dy).

Proof. Observe that obviously fn ∈ C∞
c (R;C) and thus fn ∈ D(AV ;C)∩D(Aη;C). On the

other hand we obtain for f̃(x) = f(ex) and f̃n(x) = fn(e
x) that f̃(x) = eiux and f̃n(x) =

f̃(x)hn(x) and hence f̃n ∈ C∞
c (R;C) ⊂ D(A−ξ;C). Similarly for ˜̃f(x) = f(−ex) and

˜̃fn(x) = fn(−ex) we have ˜̃f(x) = eiux and ˜̃fn(x) =
˜̃f(x)hn(x) and also ˜̃fn ∈ C∞

c (R;C) ⊂
D(A−ξ;C).
Since µ({0}) = 0 by [6, Thm. 2.2], we obtain from (3.10) and (4.1)

0 =

∫
R
AV fn(x)µ(dx)

=

∫
R
Aηfn(x)µ(dx) +

∫
(0,∞)

A−ξf̃n(log x)µ(dx) +

∫
(−∞,0)

A−ξ ˜̃fn(log |x|)µ(dx).

Setting S1 : (0,∞) → R, x 7→ log x, and S2 : (−∞, 0) → R, x 7→ log(−x), we compute
using Lemma 4.2

lim
n→∞

(∫
(0,∞)

A−ξf̃n(log x)µ(dx) +

∫
(−∞,0)

A−ξ ˜̃fn(log |x|)µ(dx)
)
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= lim
n→∞

(∫
R
A−ξf̃n(y)dS1(µ|(0,∞))(y) +

∫
R
A−ξ ˜̃fn(y)dS2(µ|(−∞,0))(y)

)
= ψ−ξ(u)

(∫
R
eiuydS1(µ|(0,∞))(y) +

∫
R
eiuydS2(µ|(−∞,0))(y)

)
= ψ−ξ(u)

(∫
(0,∞)

eiu log xµ(dx) +

∫
(−∞,0)

eiu log |x|µ(dx)

)
= ψ−ξ(u)ϕlog |V∞|(u)

which yields (4.9) and (4.10) via (3.1).

Now assume that E[V −2
∞ ] <∞. We have f̃n(x) = eiuxhn(x) and fn(x) = f̃n(log |x|) for all

x ∈ R. In particular, f ′
n(x) = x−1f̃ ′

n(log |x|) and f ′′
n(x) = x−2(f̃ ′′

n(log |x|)− f̃ ′
n(log |x|)) for

x ̸= 0. For |y| > 1, we further have |fn(x+ y)− fn(x)| ≤ 2∥h∥ <∞, and for |y| ≤ 1 such
that xy(x+ y) ̸= 0 there are ζ1, . . . , ζ4 ∈ R by Taylor’s theorem such that

|fn(x+ y)− fn(x)− f ′
n(x)y|

=
∣∣∣f̃n(log |x+ y|)− f̃n(log |x|)− f̃ ′

n(log |x|)yx−1
∣∣∣

≤
∣∣∣f̃n((log |x|) + yx−1)− f̃n(log |x|)− f̃ ′

n(log |x|)yx−1
∣∣∣

+
∣∣∣f̃n(log |x|+ log |1 + yx−1|)− f̃n((log |x|) + yx−1)

∣∣∣
= 2−1

∣∣∣(ℜf̃ ′′
n)((log |x|) + ζ1)y

2x−2
∣∣∣+ ∣∣∣(ℜf̃ ′

n)((log |x|) + yx−1 + ζ2)
(
log |1 + yx−1| − yx−1

)∣∣∣
+2−1

∣∣∣(ℑf̃ ′′
n)((log |x|) + ζ3)y

2x−2
∣∣∣+ ∣∣∣(ℑf̃ ′

n)((log |x|) + yx−1 + ζ4)
(
log |1 + yx−1| − yx−1

)∣∣∣
≤ ∥f̃ ′′

n∥y2x−2 + ∥f̃ ′
n∥Cy2x−2

for some universal constant C. Since ∥f̃n∥, ∥f̃ ′
n∥ and ∥f̃ ′′

n∥ are uniformly bounded in n,
since µ is continuous (cf. [6, Thm. 2]) so that (ν ⊗ µ)({(x, y)T ∈ R2 : xy(x+ y) = 0} = 0,
since

∫
R x

−2µ(dx) <∞ by assumption and since fn, f
′
n and f ′′

n converge on R \ {0} to f ,
f ′ and f ′′, respectively, by dominated convergence the right hand side of (4.10) is equal
to ∫

R

(
−γηf ′(x)−

σ2
η

2
f ′′(x)−

∫
R

(
f(x+ y)− f(x)− f ′(x)y1|y|≤1

)
νη(dy)

)
µ(dx),

which gives (4.11).

5 Injectivity

Let ξ = (ξt)t≥0 and (ηt)t≥0 be two independent Lévy processes such that V∞ :=
∫∞
0
e−ξs− dηs

converges almost surely. By [12, Thm. 2], this implies that ξ drifts to +∞. As in the in-
troduction, for a Lévy process (ξt)t≥0 such that ξt → +∞ a.s. as t→ ∞ denote

Dξ := {L(η1) : η Lévy process, independent of ξ, such that

∫ ∞

0

e−ξs− dηs converges a.s.}
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and consider the mapping

Φξ : Dξ → P(R), L(η1) 7→ L
(∫ ∞

0

e−ξs− dηs

)
, where η and ξ are independent.

Here P(R) denotes the set of probability distributions on (R,B1). For a Lévy process
(ηt)t≥0 denote further

D̃η := {L(ξ1) : ξ Lévy process, independent of η, such that

∫ ∞

0

e−ξs− dηs converges a.s.}

and define Φ̃η by

Φ̃η : D̃η → P(R), L(ξ1) 7→ L
(∫ ∞

0

e−ξs− dηs

)
, where η and ξ are independent.

We are interested in injectivity of the mappings Φξ and Φ̃η, or at least in injectivity of
these mappings when restricted to certain subsets. A key result for these investigations will
be the following Theorem, which follows immediately from (4.7) and (4.10), by dividing
by ϕV∞(u) and ϕlog |V∞|(u) when different from zero, which is always the case for u in a
neighborhood of zero.

Theorem 5.1. Let (ξt)t≥0 and (ηt)t≥0 be two independent Lévy processes such that V∞ :=∫∞
0
e−ξs− dηs converges almost surely. If ϕV∞(u) ̸= 0 for u from a dense subset of R, or if

L(η1) is uniquely determined by the values of its characteristic function in a neighborhood
of the origin, then L(η1) is uniquely determined by L(V∞) and L(ξ1). Similarly, if η is
not the zero process and ϕlog |V∞|(u) ̸= 0 for u from a dense subset of R, or if L(ξ1) is
uniquely determined by the values of its characteristic function in a neighborhood of the
origin, then L(ξ1) is uniquely determined by L(V∞) and L(η1).

It is well known (e.g. [29]) that not every distribution is characterized by the values of
its characteristic function in a neighborhood of the origin. This remains true for infinitely
divisible distributions. To see this take two different distributions µ1 and µ2 whose charac-
teristic functions coincide in a neighborhood of the origin and consider the corresponding
compound Poisson distributions with Lévy measures µ1 and µ2. These are both infinitely
divisible and their characteristic functions exp(µ̂i(u) − 1) coincide in a neighborhood of
the origin.

We do not know if the characteristic function of the stationary distribution of a GOU
process cannot vanish on a non-empty open interval. As shown by Il’inskii [14, Cor. 1], a
set A ⊂ R is the zero set of some characteristic function if and only if A is closed, does not
contain 0 and is symmetric with respect to the origin. Hence, a priori there is no reason
why ϕV∞ appearing in Theorem 5.1 should not vanish identically on some interval.

Still, it is possible to give some sufficient conditions. We start with the following lemma,
which is a minor reformulation of results in Kawata [20] and Lucasz [30].
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Lemma 5.2. Let X be a random variable with law µ and assume that there is some ε > 0
such that EeεX < ∞ or Ee−εX < ∞. Then the characteristic function ϕX = µ̂ cannot
be identically zero on non-empty open intervals. Furthermore, if Y is another random
variable whose characteristic function coincides with that of X in a neighborhood of 0,
then L(Y ) = L(X) = µ.

Proof. Without loss of generality assume that Ee−εX < ∞. Then g(z) := EeizX can
be defined for all z ∈ C such that 0 ≤ ℑz < ε, it is continuous there and analytic in
0 < ℑz < ε. That ϕX cannot be identically zero on non-empty open intervals then follows
from [20, Cor. 1.14.1]. Let Y be another random variable such that ϕY (u) = ϕX(u) for
all u ∈ (−a, a) with some a > 0. Since ϕY (u) = limy↓0 g(u+ iy) for u ∈ (−a, a), it follows
from [30, Thm. 11.1.1] and its proof that Ee−εY < ∞. That L(Y ) = L(X) then follows
from [20, Thm. 9.6.2].

Define IDsym to be the set of all infinitely divisible distributions L(η1) which are symmet-
ric, and IDexp to be the set of all infinitely divisible distributions whose Lévy measure νη
has some one-sided exponential moment, i.e. for which there is ε > 0 such that∫ ∞

1

eεx νη(dx) <∞ or

∫ −1

−∞
e−εx νη(dx) <∞.

Denote

Dsym,exp
ξ := Dξ ∩ (IDsym ∪ IDexp), Dsym

ξ := Dξ ∩ IDsym and Dexp
ξ := Dξ ∩ IDexp.

With these notions, we get the following result:

Theorem 5.3. Let (ξt)t≥0 be a Lévy process such that ξt converges almost surely to ∞ as
t→ ∞. Then (Φξ)|Dsym,exp

ξ
is injective and

Φξ(D
sym,exp
ξ ) ∩ Φξ(Dξ \Dsym,exp

ξ ) = ∅.

If additionally ξ is spectrally negative, or ξ = qN for some constant q > 0 and a Poisson
process N , then Φξ is injective on Dξ.

In the special case when ξt = t, we have a spectrally negative ξ, and we recover the well
known result (e.g. [16, Prop. 3.6.10]) that Φξt=t is injective.

Proof of Theorem 5.3. If ξ is spectrally negative, then V∞ =
∫∞
0
e−ξt− dηt is self-decomposable

by Remark (ii) to Theorem 2.2 in [6], hence infinitely divisible so that ϕV∞(u) ̸= 0 for
all u ∈ R. Injectivity of Φξ then follows from Theorem 5.1. If ξ = qNt for q > 0 and
a Poisson process N , then by Example 1.1 we can write V∞ =

∑∞
i=0 e

−qi(ηTi+1
− ηTi

),
where (ηTi+1

− ηTi
)i=0,1,2,... is i.i.d. and infinitely divisible by [36, Thm. 30.1]. Hence V∞ is

infinitely divisible, and injectivity of Φξ follows from Theorem 5.1.

Now let ξ be an arbitrary Lévy process drifting to infinity. If L(η1) ∈ Dξ ∩ IDexp, then
there is ε > 0 such that Eeεη1 <∞ or Ee−εη1 <∞ (cf. [36, Thm. 25.17]), and Theorem 5.1
and Lemma 5.2 show that (Φξ)|Dexp

ξ
is injective and Φξ(D

exp
ξ ) ∩ Φξ(Dξ \ (Dexp

ξ )) = ∅.
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Finally, let ξ be an arbitrary Lévy process drifting to infinity and L(η1) ∈ Dsym
ξ . Condi-

tioning on ξ, for f in the Skorokhod space D([0,∞),R) of càdlàg functions, we have

(V∞|ξ = f) =

∫ ∞

0

e−f(t) dηt,

which converges for Pξ-almost every f . For such f ,
∫∞
0
e−f(t) dηt is infinitely divisible

(e.g. Sato [37]), and hence E(eiuV∞|ξ = f) ̸= 0 for all u ∈ R. Since
∫∞
0
e−f(t) dηt is also

symmetric, E(eiuV∞ |ξ = f) is real valued and continuous in u and hence strictly positive
for all u ∈ R. It follows that

ϕV∞(u) =

∫
D([0,∞),R)

E
[
eiuV∞|ξ = f

]
Pξ(df) > 0 ∀u ∈ R.

Theorem 5.1 then shows that (Φξ)|Dsym
ξ

is injective and Φξ(D
sym
ξ ) ∩ Φξ(Dξ \ (Dsym

ξ )) = ∅.
This finishes the proof.

Remark 5.4. Theorem 5.3 shows in particular that if ξ is arbitrary (but drifting to +∞),
and η is spectrally positive or negative (which applies in particular if η is a subordinator
or the negative of a subordinator), then the distribution of η1 is uniquely determined by
L(V∞) and L(ξ1).

Let us now turn to injectivity properties of Φ̃η. We start with the following lemma, which
is immediate from Lemma 5.2.

Lemma 5.5. Let X be a random variable which has no atom at 0 and assume that there
is ε > 0 such that E|X|ε < ∞ or E|X|−ε < ∞. Then the characteristic function ϕlog |X|
of log |X| cannot be identically zero on non-empty open intervals.

Examples of random variables X with finite negative fractional moment E|X|−ε <∞ are
given by random variables which have a density f in a neighborhood of zero such that
f(x) = O(xα) as |x| → 0 for some α > ε− 1. In particular, if L(X) is a self-decomposable
non-degenerate distribution, then X has a density satisfying this condition for some ε > 0,
which follows from Theorems 28.4, 53.6 and 53.8 in [36]; observe that this is trivial if X
has a non-zero Gaussian component. Hence, whenever X ̸≡ 0 is self-decomposable, then
ϕlog |X| cannot be identically zero on non-empty open intervals.

Other examples are given in the next lemma, which shows that
∫∞
0
e−ξs− dηs will always

have certain negative fractional moments if η is a subordinator with strictly positive drift,
or if η has a non-trivial Brownian motion component. This complements [31, Lemma 2.1]
and [23, Lemma 3.3] who assume ξ to have finite mean.

Lemma 5.6. Let ξ and η be two independent Lévy processes such that V∞ =
∫∞
0
e−ξs− dηs

converges almost surely. Suppose that η is a subordinator with strictly positive drift, or
that the Brownian motion part of η is non-trivial (i.e. σ2

η > 0). Then E|V∞|−ε < ∞ for
every ε ∈ [0, 1). In the latter case (i.e. when σ2

η > 0), V∞ has a bounded density on R.
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Proof. Suppose first that η is a subordinator with strictly positive drift γ0η . Let ε ∈ (0, 1).

Define the Lévy process ξ♭ by ξ♭t = ξt−
∑

0<s≤t,|∆ξs|>1∆ξs. Let τ be the time of first jump
of ξ whose size is greater than 1 in magnitude. Then

V∞ ≥ γ0η

∫ 1∧τ

0

e−ξs− ds ≥ γ0η(1 ∧ τ) exp
{
− sup

0≤s≤1
|ξ♭s|
}
.

Since τ and ξ♭ are independent and τ is exponentially distributed (or τ ≡ ∞), it follows
E(1 ∧ τ)−ε < ∞ and E exp

{
ε sup0≤s≤1 |ξ♭s|

}
< ∞ (cf. [36, Thms. 25.17, 25.18]), so that

EV −ε
∞ <∞ if η is a subordinator with strictly positive drift.

Now suppose that η is a Lévy process such that σ2
η > 0. Denote the Brownian mo-

tion component of η by B, so that B and η − B are independent. Then the condi-
tional distribution of V∞ given ξ = f is given by

∫∞
0
e−f(t−) dBt +

∫∞
0
e−f(t−) d(ηt − Bt).

But
∫∞
0
e−f(t−) dBt is N(0, σ2

η

∫∞
0
e−2f(s) ds)-distributed, hence its density is bounded by

(2πσ2
η

∫∞
0
e−2f(s) ds)−1/2. Hence also (V∞|ξ = f) has a density, gf say, which is bounded by

(2πσ2
η

∫∞
0
e−2f(s) ds)−1/2. It follows that V∞ has a density given by x 7→

∫
D([0,∞))

gf (x)Pξ(df),

and since∫
D([0,∞))

(
2πσ2

η

∫ ∞

0

e−2f(s)ds

)−1/2

Pξ(df) = (2πσ2
η)

−1/2E

[(∫ ∞

0

e−2ξs− ds

)−1/2
]
<∞

by the part just proved, this density is bounded on R. This then also shows that E|V∞|−ε <
∞ for all ε ∈ [0, 1).

Recall that IDexp denotes the set of all infinitely divisible distributions whose Lévy mea-
sure has some one-sided exponential moment. Denote

D̃exp
η := D̃η ∩ IDexp.

We can now prove the following injectivity result regarding Φ̃η:

Theorem 5.7. Let η = (ηt)t≥0 be a non-zero Lévy process. Then (Φ̃η)|D̃exp
η

is injective
and

Φ̃η(D̃
exp
η ) ∩ Φ̃η(D̃η \ D̃exp

η ) = ∅. (5.1)

If additionally η is a subordinator with strictly positive drift, or if the Brownian motion
part of η is non-trivial (i.e. σ2

η > 0), or if η is a compound Poisson process without drift

such that νη((−∞, 0)) = 0 and
∫ 1

0
x−ε νη(dx) <∞ for some ε > 0, then Φ̃η is injective on

D̃η.

Observe that D̃exp
η contains all L(ξ1) ∈ D̃η such that ξ is spectrally negative or spectrally

positive. In particular, subordinators are uniquely determined by L(V∞) and L(η1).

Proof of Theorem 5.7. The injectivity of Φ̃ξ on D̃exp
ξ as well as (5.1) are clear from The-

orem 5.1 and Lemma 5.2. Similarly, injectivity of Φ̃ξ on D̃ξ follows from Lemmas 5.5, 5.6
and Theorem 5.1 if η is a subordinator with strictly positive drift or if σ2

η > 0.
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Finally, let us prove injectivity of Φ̃η when η is a compound Poisson process with νη((−∞, 0)) =

0 and
∫ 1

0
x−ε νη(dx) < ∞ for some ε > 0. Denote by T the time of the first jump of η.

Then

V∞ =

∫ ∞

0

e−ξs− dηs = e−ξT−∆ηT + e−ξT

∫ ∞

T

e−(ξs−−ξT ) dηs = e−ξT (∆ηT + V ′
∞) a.s.,

since ξ and η almost surely do not jump together. The random variable V ′
∞ has the same

distribution as V∞, is independent of (e−ξT ,∆ηT ), and observe further that also ξT and
∆ηT are independent. It follows that

ϕlog V∞(u) = ϕ−ξT (u)ϕlog(∆ηT+V ′
∞)(u), u ∈ R.

Since
E(∆ηT + V ′

∞)−ε ≤ E(∆ηT )
−ε <∞

as a consequence of V ′
∞ ≥ 0 and

∫ 1

0
x−ε νη(dx) < ∞, it follows from Lemma 5.5 that

ϕlog(∆ηT+V ′
∞) cannot vanish identically on non-empty open intervals. Since ϕ−ξT (u) ̸= 0 for

all u ∈ R as ξT is infinitely divisible, it follows that ϕlog V∞ cannot vanish identically on
non-empty open intervals. Injectivity of Φ̃η then follows from Theorem 5.1.

We do not know if Φξ and Φ̃η will always be injective, but as we have seen in Theorems
5.3 and 5.7, the mappings Φξ and Φ̃η are injective in many cases. However, if we drop the
condition of independence of ξ and η, an injectivity result does not hold, as shown in the
following. Therefore, additionally to the definitions at the beginning of this section, for a
Lévy process ξ, let

Ddep
ξ := {L(χ1, η1) : (χ, η) biv. LP such that

∫∞
0
e−χs− dηs converges a.s. and L(χ1) = L(ξ1)}

and define the mapping

Φdep
ξ : Ddep

ξ → P(R), L(χ1, η1) 7→ L
(∫ ∞

0

e−χs− dηs

)
.

Then we obtain the following counterexample of injectivity.

Example 5.8. Let ξ = N be a Poisson process. Then Φdep
ξ is not injective.

Proof. Let (χ, η) be a bivariate Lévy process such that L(χ1, η1) ∈ Ddep
ξ . By [12, Thm.

2], this means L(χ1) = L(ξ1) and E log+ |η1| <∞. Denote the time of the first jump of χ
by T = T (χ). Then ∫ ∞

0

e−χt− dηt = ηT + e−1

∫ ∞

T

e−(χt−−χT ) dηt. (5.2)

Since
∫∞
T
e−(χt−−χT ) dηt has the same distribution as

∫∞
0
e−χt− dηt =: W , it follows that

the characteristic function ϕW of W satisfies

ϕW (x) =
∞∏
k=0

ϕηT (e
−kx), x ∈ R
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as shown in [5]. Thus, L(W ) is determined by ρχ,η := L(ηT ) (not necessarily vice versa!).

Now let (χ(1), η(1)) ∈ Ddep
ξ be such that η(1) is independent of χ(1), η(1) is not the zero

process and E log+ |η(1)
T (χ(1))

| < ∞, and let (χ(2), η(2)) be a bivariate compound Poisson

process without drift and Lévy measure

νχ(2),η(2)(dx, dy) = δ1(dx)ρχ(1),η(1)(dy).

Then (χ(2), η(2)) ∈ Ddep
ξ and

ρχ(2),η(2) = L(η(2)
T (χ(2))

) = ρχ(1),η(1) .

It follows that both (χ(1), η(1)) and (χ(2), η(2)) lead to the same distribution, giving an
example that injectivity is violated.

6 Ranges

The results of the previous section may now be used to determine information on the
ranges of the mappings Φξ and Φ̃η as defined in Section 5. We start with an elementary
conclusion, which also follows from [6, Thm. 2.2] or [3, Lemma 3.1].

Proposition 6.1. Let ξ be non-deterministic, then Φξ(Dξ \ {L(0)}) is a subset of the
continuous distributions. Analoguously, if η is non-deterministic, then the range of Φ̃η is
a subset of the continuous distributions.

Proof. It follows directly from [1, Thm. 1.3] that the distribution of the treated exponential
functional fulfills a pure type theorem, in particular it is either continuous, or a Dirac
measure. Suppose that L1 = η1 ̸≡ 0. Inserting the characteristic function ϕ(u) = eiuk,
k ∈ R, of a Dirac measure in (4.6), one immediately obtains ψL(u) = −ψU(ku) which can
only hold for deterministic processes Lt = −kUt = γLt with k ̸= 0 and hence deterministic
η and ξ.

Recall the definition of Φdep
ξ from the previous section. Also recall that a distribution µ

on (R,B1) is called b-decomposable, where b ∈ (0, 1), if there exists a probability measure
ρ on (R,B1) such that µ̂(z) = µ̂(bz)ρ̂(z) for all z ∈ R.

Proposition 6.2. Let ξ = N be a Poisson process. Then the range of Φdep
ξ is the class of

all e−1-decomposable distributions.

Proof. That all distributions in the range of Φdep
ξ are e−1-decomposable is clear from

(5.2). Conversely, let L(W ) be an e−1-decomposable distribution. Then there exists an
i.i.d. noise sequence (Zn)n∈N0 such that

n∑
k=0

e−kZk
d→ W, n→ ∞, (6.1)
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which follows by iterating the defining equation W
d
= e−1W ′ +Z with W ′ independent of

Z for e−1-decomposability. Hence
∑n

k=0 e
−kZk converges in distribution and hence almost

surely as n → ∞ and the Borel-Cantelli-lemma implies that Z0 must have finite log+-
moment. Now define the compound Poisson process (χ, η) without drift and Lévy measure

νχ,η(dx, dy) = δ1(dx)L(Z0)(dy).

Then L(χ, η) ∈ Ddep
ϕ (due to the finite log moment of Z0), and with the notations of

Example 5.8 it follows that L(ηT (χ)) = L(Z0). Hence Φdep
ξ (L(χ, η)) = L(W ).

Proposition 6.3. Let ξ = N be a Poisson process. Then the range of Φξ is a subset of
the class of e−1-decomposable distributions without Gaussian part.

Proof. By Proposition 6.2 it remains to show thatW =
∫
(0,∞)

e−Ns−dηs has zero Gaussian

part. Therefore denote the time of the first jump of N by T , then Z0 := ηT is infinitely
divisible without Gaussian part as a consequence of [36, Theorem 30.1]. Hence by (6.1)
also the Gaussian part of W is zero.

It is well known that the OU process is a Gaussian process whose stationary distribution
is normally distributed. In particular

∫
(0,∞)

e−tσ2/2d(σWt) for Wt a standard Brownian

motion (Wiener process) is standard normally distributed. The following theorem shows
that this is the only possible choice of (ξ, η)T which leads to a centered normal distribution.

Theorem 6.4. Let ξ and η be two independent Lévy processes such that
∫∞
0
e−ξs− dηs

converges almost surely. Let v > 0. Then L(V∞) = N(0, v2) if and only if there is γξ > 0
such that ξt = γξt and ηt = (2γξ)

1/2vWt, where (Wt)t≥0 is a standard Brownian motion.

Proof. That L(V∞) = N(0, v2) if ξ and η are as described is well known and follows as
discussed above. Let us show the converse and assume that V∞ is N(0, v2)-distributed.
By replacing η by vη we may assume that v = 1. Inserting ϕV∞(u) = e−u2/2 in (4.8), we
obtain for u ∈ R

ψη(u) = −γξu2 − σ2
ξ (u

4 − 2u2)/2−
∫
R

(
e−u2(e−2y−1)/2 − 1− u2y1|y|≤1

)
νξ(dy). (6.2)

For given u ∈ R denote

fu(y) := e−u2(e−2y−1)/2 − 1− u2y1|y|≤1, y ∈ R \ {0}.

We shall first investigate the limit behavior of (6.2) as u→ ∞ when divided by appropriate
powers of u and from that obtain information about the characteristic triplet of ξ. To do
so, observe first that there are constants C1, C2, C3 > 0 such that

|e−x − 1 + x− x2/2| ≤ C1x
2 ∀ x > 0,

|e−2y − 1 + 2y| ≤ C2y
2 ∀ y ∈ [−1, 1], and

(e−2y − 1)2 ≤ C3y
2 ∀ y ∈ [−1, 1].
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Let y0 ∈ [−1, 0). Then |fu(y)| ≤ 1 + u2 for y < y0, and for y ∈ [y0, 0) we can estimate

|fu(y)| ≤
∣∣−u2(e−2y − 1)/2 + u4(e−2y − 1)2/8− u2y

∣∣+ C1u
4(e−2y − 1)2/4

≤ u2C2y
2/2 + u4C3y

2/8 + C1C3u
4y2/4.

Using dominated convergence, this gives

lim sup
u→∞

u−4

∫ 0

−∞
|fu(y)| νξ(dy) ≤ (C3/8 + C1C3/4)

∫
[y0,0)

y2 νξ(dy),

and letting y0 ↑ 0 we see that

lim
u→∞

u−4

∫ 0

−∞
|fu(y)| νξ(dy) = 0. (6.3)

Now let y > 0. Then

fu(y) ≥
(
u2(1− e−2y)/2− u2y

)
1(0,1](y) ≥ −u2(C2/2)y

21(0,1](y).

Hence we can apply Fatou’s lemma and obtain

lim inf
u→∞

u−5

∫
(0,∞)

fu(y) νξ(dy) ≥
∫
(0,∞)

lim inf
u→∞

u−5fu(y) νξ(dy) = ∞ νξ((0,∞)).

Dividing (6.2) by u5 and observing that limu→∞ u−2ψη(u) = −σ2
η/2 < ∞ (cf. [36, Lem.

43.11]), this together with (6.3) gives νξ((0,∞)) = 0. Similarly, dividing (6.2) by u4, we
obtain σ2

ξ = 0 by (6.3).

It remains to show that νξ((−∞, 0)) = 0. In doing so, we shall first establish that ξ must
be of finite variation. Recall that

e−x − 1 + x ≥ 0 ∀ x ≥ 0 and

e−x − 1 + x ≥ x/2 ∀ x ≥ 4.

Let y < 0. Then fu(y) ≥ −1 for y < −1, and for y ∈ [−1, 0) we estimate

fu(y) = e−u2(e−2y−1)/2 − 1 + u2(e−2y − 1)/2− u2(e−2y − 1)/2− u2y

≥ u2(e−2y − 1)/41{u2(e−2y−1)/2≥4} − C2u
2y2/2.

An application of Fatou’s lemma then shows

lim inf
u→∞

u−2

∫
(−∞,0)

fu(y) νξ(dy) ≥ −C2/2

∫
[−1,0)

y2 νξ(dy) +

∫
[−1,0)

(e−2y − 1)/4 νξ(dy).

But since limu→∞ u−2|ψη(u)| <∞, dividing (6.2) by u2 and letting u→ ∞ gives
∫
[−1,0)

(e−2y−
1) νξ(dy) <∞, hence

∫
[−1,0)

|y| νξ(dy) <∞, so that ξ is of finite variation. Equation (6.2)

can now be rewritten as

ψη(u) +

∫
(−∞,0)

(
e−u2(e−2y−1)/2 − 1

)
νξ(dy) = −γ0ξu2, (6.4)
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where γ0ξ is the drift of ξ. Since ξt → ∞ as t → ∞ and ξ is spectrally negative, we must
have γ0ξ > 0.

Let ρ denote the standard normal distribution and define the mapping T by

T : R× (−∞, 0) → R, (x, y) 7→ x
√
e−2y − 1.

Then for any ε > 0,∫
(−∞,−ε]

(
e−u2(e−2y−1)/2 − 1

)
νξ(dy)

=

∫
R

∫
R

(
eiux

√
e−2y−1 − 1

)
ρ(dx) νξ|(−∞,−ε](dy)

=

∫
R
(eiuz − 1)T (ρ⊗ νξ|(−∞,−ε])(dz).

With

ψε(u) := ψη(u) +

∫
R
(eiuz − 1)T (ρ⊗ νξ|(−∞,−ε])(dz)

it follows from (6.4) that limε↓0 ψε(u) = −γ0ξu2. But since ψε is the Lévy-Khintchine expo-
nent of an infinitely divisible distribution with Lévy measure νη +T (ρ⊗ νξ|(−∞,−ε]), since
T (ρ⊗νξ|(−∞,−ε]) is increasing as ε ↓ 0, and since u 7→ −γ0ξu2 is the Lévy-Khintchine expo-
nent of a Gaussian random variable, it follows from [36, Thm. 8.7] that T (ρ⊗νξ|(−∞,−ε]) =
0 for any ε > 0, hence νξ((−∞, 0)) = 0.

We have shown that ξt = γ0ξ t. Injectivity of the mapping Φξ (cf. Theorem 5.3) together

with the sufficiency part show that necessarily ηt = (2γξ)
1/2vWt, completing the proof.

7 Continuity

Another natural question about the mappings Φξ and Φ̃η as defined in Section 5 is, whether
they are continuous. Hereby we say, that Φξ is continuous, if for each sequence of Lévy

processes (η(n))n∈N such that η
(n)
1

d→ η1 as n → ∞ and L(η(n)1 ) ∈ Dξ, L(η1) ∈ Dξ, the

sequence Φξ(L(η(n)1 )) converges weakly to Φξ(L(η1)) as n→ ∞, denoted as Φξ(L(η(n)1 )) ⇒
Φξ(L(η1)) in the following. Continuity of Φ̃η is defined similarly.
In general Φξ is not continuous as proven by the following counterexample. We expect
that failure of continuity of Φξt=t is known as it is a very well studied mapping, but since
we were unable to find a ready reference we give a short proof.

Example 7.1. Let (ξt = t)t≥0 be deterministic. Then Φξ is not continuous.

Proof. In the given setting we have that Dξ is IDlog, the set of infinitely divisible distri-

butions with finite log-moment. Now let (Y
(n)
i )i∈N be sequences of i.i.d. random variables

such that

ν(n) := L(Y (n)
1 ) = (1− 1

n
)

(
1

2
δ1 +

1

2
δ−1

)
+

1

n

(
1

2
δnn +

1

2
δ−nn

)
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and define the sequence (Y
(0)
i )i∈N of i.i.d. random variables with

ν(0) := L(Y (0)
1 ) =

(
1

2
δ1 +

1

2
δ−1

)
.

Then obviously we have Y
(n)
i

d→ Y
(0)
i as n→ ∞. Now for all n ∈ N0 define the compound

Poisson process η
(n)
t :=

∑Nt

i=1 Y
(n)
i where N is a Poisson process with rate 1, independent

of (Y
(n)
i )i∈N. Then µ(n) := L(η(n)1 ) ∈ Dξ for all n ∈ N0 and in particular for n ≥ 1 and

z ∈ R we have that

µ̂(n)(z) = exp(

∫
R
(eizx − 1) ν(n)(dx)) = exp(P̂

Y
(n)
1

(z)− 1)

n→∞→ exp(P̂
Y

(0)
1

(z)− 1) = µ̂(0)(z)

such that µ(n) → µ(0) as n → ∞. But ϕξ(µ
(n)) does not converge to ϕξ(µ

(0)) as will be
shown in the following. Herefore observe that by [36, Eq. (17.14)] the Lévy measure ν̃(n)

of ϕξ(µ
(n)) fulfills for all n ≥ 0

ν̃(n)([1,∞)) =

∫
R

∫ ∞

0

1[1,∞)(e
−sy)ds ν(n)(dy) =

∫
(0,∞)

log y ν(n)(dy)

such that for all n ≥ 1

ν̃(n)([1,∞)) =
1

2
log n→ ∞ as n→ ∞,

whereas ν̃(0)([1,∞)) = 0. Using [36, Theorem 8.7] this shows that Φξ(µ
(n)) ̸⇒ Φξ(µ) as

n→ ∞, so that Φξ is not continuous.

Continuity of stationary solutions of random recurrence equations has been studied by
Brandt [8, Thm. 2]. The following is a special case of his result for i.i.d. sequences, but does

not assume that E[log |B(n)
0 |], E[| logB0|] are finite and that E[log |B(n)

0 |] → E[| log |B0|]
as n → ∞. That these conditions can be omitted follows readily by an inspection of
Brandt’s proof [8, Thm. 2].

Proposition 7.2. Let the sequences (Ai, Bi)i∈N0, (A
(1)
i , B

(1)
i )i∈N0 (A

(2)
i , B

(2)
i )i∈N0, . . . be

i.i.d. such that E[log+ |A(n)
0 |] < ∞, E[log+ |B(n)

0 |] < ∞ for all n, E[log+ |A0|] < ∞ and
E[log+ |B0|] <∞. Assume further that

−∞ < E[log |A(n)
0 |] < 0 for all n, −∞ < E[log |A0|] < 0

and that for n→ ∞

(A
(n)
0 , B

(n)
0 )

d→ (A0, B0),

E[log+ |A(n)
0 |] → E[log+ |A0|],

E[log+ |B(n)
0 |] → E[log+ |B0|]
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and E[log |A(n)
0 |] → E[log |A0|].

Let Y
(n)
∞ be the unique stationary marginal distribution of the random recurrence equation

Y
(n)
i+1 = A

(n)
i Y

(n)
i +B

(n)
i , i ∈ N0, and define Y∞ analoguously. Then

(A
(n)
0 , B

(n)
0 , Y (n)

∞ )
d→ (A0, B0, Y∞) as n→ ∞

such that in particular Y
(n)
∞

d→ Y∞ as n→ ∞.

Due to the fact that generalized Ornstein-Uhlenbeck processes are the continuous-time
analogon of the solutions to random recurrence equations with i.i.d. coefficients, we can
use the above proposition in our setting to obtain the following.

Theorem 7.3. Let (ξ(n), η(n)), n ∈ N, and (ξ, η) be bivariate Lévy processes such that

(ξ
(n)
1 , η

(n)
1 )

d→ (ξ1, η1), n→ ∞.

Suppose there exists δ > 0 such that

sup
n∈N

∫
R\[−1,1]

(log+ |x|)1+δ νη(n)(dx) < ∞ (7.1)

and sup
n∈N

E[|ξ(n)1 |1+δ] < ∞. (7.2)

Then E log+ |η1| <∞ and E|ξ1| <∞. Assume further that

Eξ1 > 0 and Eξ
(n)
1 > 0, n ∈ N. (7.3)

Then
∫∞
0
e−ξ

(n)
s− dη

(n)
s converges almost surely absolutely for each n ∈ N, as does

∫∞
0
e−ξs− dηs,

and ∫ ∞

0

e−ξ
(n)
s− dη(n)s

d→
∫ ∞

0

e−ξs− dηs, n→ ∞. (7.4)

For the proof of Theorem 7.3 we need the following Lemma, which is of its own interest.

Lemma 7.4. Let L = (Lt)t≥0 be a Lévy process in R with characteristic triplet (γL, AL, νL).
Let b > 0. Then there exist universal constants C1, C2, C3 ∈ (0,∞), depending only on b,
such that for every adapted càdlàg process H satisfying

E

(
log+ sup

0≤s≤1
|Hs|

)b

<∞

the following estimate holds:

E

(
log+ sup

0<s≤1

∣∣∣∣∫ s

0

Hu− dLu

∣∣∣∣)b

≤ C1

(
1 + AL +

∫
|x|≤1

x2 νL(dx) + log+ |γL|+ exp

{
C2

∫
|x|>1

(log+ |x|)b νL(dx)
})

+C3E

(
log+ sup

0≤s≤1
|Hs|

)b

. (7.5)
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Proof. Write Lt = L♯
t + L♭

t, where L
♯ = (L♯

t)t≥0 has characteristic triplet

(γ♯L := 0, A♯
L := AL, ν

♯
L := νL|[−1,1])

and L♭ = (L♭
t)t≥0 has characteristic triplet

(γ♭L := γL, A
♭
L := 0, ν♭L := νL|R\[−1,1]).

Then L♯ has expectation zero (e.g. [36], Ex. 25.12) and is a square integrable martingale,
and L♭ is a compound Poisson process together with drift γL. Observe that for proving
(7.5) it is obviously sufficient to prove it for L♯ and L♭ separately, which we shall do.

For the estimate for L♯, let x > 0. Then

P

((
log+ sup

0<s≤1

∣∣∣∣∫ s

0

Hu− dL
♯
u

∣∣∣∣)b

> x

)

= P

(
sup
0<s≤1

∣∣∣∣∫ s

0

Hu− dL
♯
u

∣∣∣∣ > exp(x1/b)

)
≤ P

(
sup
0<s≤1

∣∣∣∣∫ s

0

Hu− dL
♯
u

∣∣∣∣ > exp(x1/b), sup
0≤s≤1

|Hs| ≤ exp(x1/b/2)

)
+P

(
sup
0≤s≤1

|Hs| > exp(x1/b/2)

)
. (7.6)

Denote H
(x)
s := Hs ∧ exp(x1/b/2). Then on {sup0≤s≤1 |Hs| ≤ exp(x1/b/2)},

∫ s

0
Hu− dL

♯
u =∫ s

0
H

(x)
u− dL

♯
u for all 0 ≤ s ≤ 1, so that by Markov’s inequality and Doob’s maximal

quadratic inequality, we obtain

P

(
sup
0<s≤1

∣∣∣∣∫ s

0

Hu− dL
♯
u

∣∣∣∣ > exp(x1/b), sup
0≤s≤1

|Hs| ≤ exp(x1/b/2)

)
≤ P

(
sup
0≤s≤1

∣∣∣∣∫ 1

0

H
(x)
u− dL

♯
u

∣∣∣∣ > exp(x1/b)

)
≤ exp(−2x1/b)E sup

0≤s≤1

∣∣∣∣∫ 1

0

H
(x)
u− dL

♯
u

∣∣∣∣2
≤ 4 exp(−2x1/b)E

∣∣∣∣∫ 1

0

H
(x)
u− dL

♯
u

∣∣∣∣2
= 4 exp(−2x1/b)

∫ 1

0

E|H(x)
u− |2 dL♯

u Var(L♯
1)

≤ 4 exp(−2x1/b) exp(x1/b) Var(L♯
1)

= 4 exp(−x1/b) (AL +

∫
|y|≤1

y2 νL(dy)),

where we used Example 25.12 in Sato [36] to express the variance Var(L♯
1) in terms of the

characteristic triplet. Combining this with (7.6), we obtain

E

(
log+ sup

0<s≤1

∣∣∣∣∫ s

0

Hu− dL
♯
u

∣∣∣∣)b
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≤ 4

(
AL +

∫
|y|≤1

y2 νL(dy)

)∫ ∞

0

exp(−x1/b) dx+
∫ ∞

0

P

((
log+ sup

0≤s≤1
|Hs|

)b

> x2−b

)
dx

= 4

(
AL +

∫
|y|≤1

y2 νL(dy)

)∫ ∞

0

exp(−x1/b) dx+ 2bE

(
log+ sup

0≤s≤1
|Hs|

)b

,

establishing (7.5) for L♯.

In order to obtain (7.5) for L♭, denote

Rt := |γL|t+
∑
0<s≤t

|∆L♭
s|.

Then R = (Rt)t≥0 is a subordinator and(
log+ sup

0≤s≤1

∣∣∣∣∫ s

0

Hu− dL
♭
u

∣∣∣∣)b

≤
(
log+

(
R1 sup

0≤s≤1
|Hs|

))b

≤
(
log+R1 + log+ sup

0<s≤1
|Hs|

)b

≤ (2b−1 ∨ 1)(log+R1)
b + (2b−1 ∨ 1)

(
log+ sup

0≤s≤1
|Hs|

)b

. (7.7)

Since the function x 7→ (log(x ∨ e))b is submultiplicative (cf. Sato [36, Prop. 25.4]), it
follows from the proof of Theorem 25.3 in Sato [36] that there is a constant C2 = C2(b),
depending only on b, such that

E

(
log

(
e ∨

∑
0<s≤1

|∆L♭
s|

))b

≤ exp

{
C2

∫
|x|>1

(log+ |x|)b ν(dx)
}
.

Hence, there is a constant C4 = C4(b) ∈ (0,∞) such that

E(log+R1)
b

≤ 1 + E(log(e ∨R1))
b

≤ C4

(
1 + (log+ |γL|)b + exp

{
C2

∫
|x|>1

(log+ |x|)b ν(dx)
})

.

Together with (7.7) this gives (7.5) for L♭.

Proof of Theorem 7.3. Recall that for any real numbers a and b and δ > 0 it holds

|a+ b|1+δ ≤ Cδ(|a|1+δ + |b|1+δ)

for some constant Cδ. Using this together with Doob’s martingale inequality (c.f. [36, Eq.
(25.16)]) and Jensen’s inequality we obtain

E[ sup
0<s≤1

|ξ(n)s |1+δ] ≤ Cδ

(
E[ sup

0<s≤1
|ξ(n)s − sE[ξ

(n)
1 ]|1+δ] + |E[ξ(n)1 ]|1+δ

)
29



≤ Cδ

(
8E[|ξ(n)1 − E[ξ

(n)
1 ]|1+δ] + |E[ξ(n)1 ]|1+δ

)
≤ 8C2

δE[|ξ
(n)
1 |1+δ] + (8C2

δ + Cδ)|E[ξ(n)1 ]|1+δ

≤ (16C2
δ + Cδ)E[|ξ(n)1 |1+δ].

Hence from (7.2) we conclude

sup
n∈N

E[( sup
0<s≤1

|ξ(n)s |)1+δ] <∞ (7.8)

and therefore also
sup
n∈N

E[( sup
0<s≤1

|ξ(n)s ∨ 0|)1+δ] <∞. (7.9)

Denote by (γη(n) , σ2
η(n) , νη(n)) and (γη, σ

2
η, νη) the characteristic triplets of η

(n) and η, respec-

tively. Denote by h the continuous truncation function h(x) = x1|x|≤1+(2−|x|)sgn(x)1|x|∈(1,2].
Set

βη(n) := γη(n) +

∫
[−2,2]

(h(x)− x1|x|≤1) νη(n)(dx) = γη(n) +

∫
[−2,2]

x(
h(x)

x
− 1|x|≤1) νη(n)(dx),

i.e. the constant term in the Lévy-Khintchine triplet of η(n) with respect to the truncation

function h (c.f. [36, Eqs. (8.5), (8.6)]). Define βη similarly. Since η
(n)
1

d→ η1, it follows from
Theorem VII.2.9 in [15, p.396] that βη(n) → βη,

σ2
η(n) +

∫
|x|≤1

x2νη(n)(dx) +

∫
1<|x|≤2

(2− |x|)2 νη(n)(dx)

→ σ2
η +

∫
|x|≤1

x2νη(dx) +

∫
1<|x|≤2

(2− |x|)2 νη(dx)

and
∫
R f(x) νξ(n)(dx) →

∫
R f(x) νξ(dx) as n → ∞ for every continuous bounded function

f vanishing in a neighbourhood of zero. In particular,

sup
n∈N

σ2
η(n) <∞, sup

n∈N

∫
[−1,1]

x2 νη(n)(dx) <∞ and sup
n∈N

|γη(n) | <∞. (7.10)

Applying Lemma 7.4 with b = 1 + δ and Hs = 1 and using (7.1) then shows that

supn∈NE(log
+ |η(n)1 |)1+δ < ∞, and hence that E(log+ |η1|)1+δ < ∞ by Fatou’s lemma for

weak convergence (cf. Kallenberg [17, Lemma 4.11]), and similarly we obtain E|ξ1|1+δ <∞
from (7.8).

Since E log+ |η1| <∞, Eξ1 > 0, E log+ |η(n)1 | <∞ and Eξ
(n)
1 > 0, the integrals

∫∞
0
e−ξs− dηs

and
∫∞
0
e−ξ

(n)
s− dη

(n)
s converge almost surely absolutely (cf. [12, Thm. 2]). Writing∫ ∞

0

e−ξ
(n)
s− dη(n)s =

∫ 1

0

e−ξ
(n)
s− dη(n)s + e−ξ

(n)
1

∫ ∞

1

e−(ξ
(n)
s− −ξ

(n)
1 ) d(η(n)s − η

(n)
1 ),

we have ∫ ∞

0

e−ξ
(n)
s− dη(n)s

d
=

∞∑
k=0

(
k−1∏
i=0

A
(n)
i

)
B

(n)
k
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with some i.i.d. sequences (A
(n)
k , B

(n)
k )k∈N0 such that

(A
(n)
0 , B

(n)
0 )=(e−ξ

(n)
1 ,

∫ 1

0

e−ξ
(n)
s− dη(n)s ),

and a similar statement holds for
∫∞
0
e−ξs− dηs with (Ak, Bk)k∈N0 i.i.d. such that (A0, B0) =

(e−ξ1 ,
∫ 1

0
e−ξs− dηs).

Now, to apply Proposition 7.2, we have to check its conditions on the sequences (A
(n)
0 )n∈N

and (B
(n)
0 )n∈N which we shall do in the following.

Since (ξ
(n)
1 , η

(n)
1 )

d→ (ξ1, η1), n → ∞, it follows from Corollary VII.3.6 in [15, p. 415]

that (ξ(n), η(n))
L→ (ξ, η), where “

L→” denotes convergence in the Skorokhod topology.
Additionally, the sequences (ξ(n)), n ∈ N, and (η(n)), n ∈ N, satisfy the P-UT condition
(cf. Def. VI.6.1 in [15, p. 377]). To see this, let h : R2 → R2 be a continuous bounded
function satisfying h(x) = x in a neighbourhood of 0. Then if (γh, A, ν)h is the Lévy-
Khintchine triplet of (ξ, η) with respect to h (we use the notations here as in [15, Eq.
4.21, p. 107]), then (γht, At, dt ν(dx)), t ≥ 0, is the semimartingale characteristic of (ξ, η)
with respect to h, cf. Cor. II.4.19 in [15, p. 107]. A similar statement holds for (ξ(n), η(n)).

Since (ξ(n), η(n))
L→ (ξ, η) as n→ ∞, the sequence (ξ(n), η(n)), n ∈ N, is tight. Furthermore,

since again by Corollary VII.3.6 in [15, p. 415], γ
(n)
h → γh as n → ∞, and since the total

variation of s 7→ γ
(n)
h s on [0, t] is |γ(n)h |t, condition (iii) of Theorem VI.6.15 in [15, p. 380]

is satisfied, and it follows from Theorem VI.6.21 in [15, p. 382] that (ξ(n), η(n)), n ∈ N, is
P-UT. Then also (η(n))n∈N is P-UT (cf. VI.6.3 in [15, p. 377]).
From Theorem VI.6.22 in [15, p. 383] it now follows that

(ξ(n), η(n),

∫ ·

0

e−ξ
(n)
s− dη(n)s )

L→ (ξ, η,

∫ ·

0

e−ξs− dηs), n→ ∞, (7.11)

in the Skorokhod topology. Since none of the components has a discontinuity at fixed
t ≥ 0 with positive probability, this implies

(A
(n)
0 , B

(n)
0 )

d→ (A0, B0), n→ ∞. (7.12)

By assumption we have log |A(n)
0 | = −ξ(n)1

d→ −ξ1 = log |A0|. Since additionally the

sequence (log |A(n)
0 |)n∈N is uniformly integrable by (7.2) (see e.g. [7, Condition (3.18)]),

this yields by [7, Thm. 3.5]

E[log |A(n)
0 |] → E[log |A0|], n→ ∞. (7.13)

Since (7.9) implies supnE[| log+ |A(n)
0 ||1+δ] <∞ we obtain similarly

E[log+ |A(n)
0 |] → E[log+ |A0|], n→ ∞. (7.14)

Also, it is obvious that (7.3) and (7.2) yield

−∞ < E[log |A0|] < 0 and −∞ < E[log |A(n)
0 |] < 0. (7.15)
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Finally, observe that (7.9) implies

sup
n∈N

E[log+ sup
0<s≤1

|e−ξ
(n)
s |]1+δ <∞

which, together with (7.1) and (7.10), yields by Lemma 7.4

sup
n∈N

E[log+ |B(n)
0 |]1+δ <∞.

Again, this gives E[log+ |B0|]1+δ <∞ and

E[log+ |B(n)
0 |] → E[log+ |B0|] <∞, n→ ∞. (7.16)

Now, by Proposition 7.2 we obtain the stated result from (7.12), (7.13), (7.14), (7.15) and
(7.16).

From the above theorem we immediately obtain the following corollary on injectivity of
Φξ and Φ̃η. Observe that the conditions in part (i) have been violated in Example 7.1.

Corollary 7.5. (i) Let (ξt)t≥0 be a Lévy process such that E[ξ1] > 0 and E[|ξ1|1+δ] <∞
for some δ > 0. Let (η(n))n∈N be a sequence of Lévy processes such that η

(n)
1

d→ η1 as

n→ ∞, L(η(n)1 ) ∈ Dξ, L(η1) ∈ Dξ and

sup
n∈N

∫
|x|>1

(log+ |x|)1+δνη(n)(dx) <∞.

Then Φξ(L(η(n)1 )) ⇒ Φξ(L(η1)) as n→ ∞.

(ii) Let (ηt)t≥0 be a Lévy process such that E[log+ |η1|1+δ] < ∞ for some δ > 0. Let

(ξ(n))n∈N be a sequence of Lévy processes such that ξ
(n)
1

d→ ξ1 as n → ∞, L(ξ(n)1 ) ∈
D̃η, L(ξ1) ∈ D̃η and

sup
n∈N

E[|ξ(n)1 |1+δ] <∞.

Then Φ̃η(L(ξ(n)1 )) ⇒ Φ̃η(L(ξ1)) as n→ ∞.

Acknowledgement

The authors would like to thank Makoto Maejima for fruitful discussions which initiated
the investigations of this paper.

References

[1] G. Alsmeyer, A. Iksanov and U. Rösler (2009) On distributional properties of perpe-
tuities. J. Theoret. Probab. 22, 666–682.

32
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tial functionals of Lévy processes. Electron. J. Probab. 17, 1–35.

[24] A. Kyprianou (2006) Introductory Lectures on Fluctuations of Lévy Processes with
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