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Abstract

In this paper we study the tail and the extremal behavior of stationary solutions
of autoregressive threshold (TAR) models. It is shown that a regularly varying noise
sequence leads in general only to an O-regularly varying tail of the stationary solu-
tion. Under further conditions on the partition, it is however shown that TAR(S, 1)
models of order 1 with S regimes have regularly varying tails, provided the noise se-
quence is regularly varying. In these cases, the finite dimensional distribution of the
stationary solution is even multivariate regularly varying and its extremal behavior
is studied via point process convergence. In particular, a TAR model with regularly
varying noise can exhibit extremal clusters. This is in contrast to TAR models with
noise in the maximum domain of attraction of the Gumbel distribution and which
is either subexponential or in L(γ) with γ > 0. In that case it turns out that the tail
of the stationary solution behaves like a constant times that of the noise sequence,
regardless of the order and the specific partition of the TAR model, and that the
process cannot exhibit clusters on high levels.
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1 Introduction

A (self exciting) threshold autoregressive (TAR or SETAR) model of order q with S regimes
is a piecewise AR(q) process with different regimes, where the current regime depends on
the size of the past observations. More precisely, we will consider the following model:
let (Zk)k∈N0 be an independent and identically distributed (i. i. d.) noise sequence, let
q, p, S, d1, . . . , dp ∈ N with d1 < . . . < dp, let {Ji : i = 1, . . . , S} be a partition of Rp into
pairwise disjoint Borel sets and αi, i = 1, . . . , S, as well as βij, i = 1, . . . , S, j = 1, . . . , q,
be real coefficients. Then we call a process (Xk)k∈N0 satisfying

Xk =
S∑

i=1

{αi +

q∑
j=1

βijXk−j}1{(Xk−d1
,...,Xk−dp)∈Ji} +Zk, k ≥ max{q, dp}, (1.1)

and for which the starting vector (X0, . . . , Xmax{q,dp}−1) is independent of (Zk+h)h∈N0 , a
TAR(S, q) process. The current regime at time k is determined by the vector (Xk−d1 , . . . ,

Xk−dp) of the past observations, and within each regime (Xk) follows an AR(qi) process
with qi := max{j ∈ {1, . . . , q} : βij 6= 0}. Sometimes one also allows the variance of
the noise to be regime dependent, by replacing Zk in (1.1) by σiZk, where σi depends
on the past in the same way as αi does, but in this paper we shall not consider such a
specification. Autoregressive threshold models were introduced by Tong [28] in 1977 and
were systematically presented by Tong and Lim [30], who used them as a model for the
lynx data. Since then they have found various applications in many areas, such as financial
economics, physics, population dynamics, or neural sciences, to name just a few; see the
presentation in Fan and Yao [13] for further information and references. In particular,
when used as a model for financial data, it is important to have information about the
tail- and the extremal behavior of these models, since stylized facts of financial data are
heavy tails and clusters on high levels. The present paper will investigate the tail and the
extremal behavior of TAR models for various classes of driving noise sequences.

A somewhat related paper by Diop and Guegan [10] considers the tail behavior of
threshold autoregressive stochastic volatility models. Observe, however, that the threshold
model under consideration in [10] is governed by a different regime switching mechanism,
where the regime is not determined by the size of the previous observation as for the TAR
process, but by the sign of the volatility model.

The paper is organized as follows: in Section 2 we collect some known assumptions
under which the model has a strictly stationary and geometrically ergodic solution. We
then prove that under the given conditions the tail of the stationary solution can be
estimated by the tail of a certain corresponding AR(q) sequence, a lemma which will turn
out to be a crucial ingredient for the determination of the tail behavior.

Next, in Section 3 we derive the tail and the extremal behavior of a TAR process
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with a regularly varying noise. It is shown that the tail of the TAR model is O-regularly
varying but not necessarily regularly varying. For this reason we restrict our attention to
the classical TAR(S,1) model of order 1 with S regimes, where the partition is a partition
into S intervals and the regime is determined by whether Xk−1 is in these intervals. In
that case, we show that the stationary solution has a regularly varying tail, and even that
the finite dimensional distributions are multivariate regularly varying. Furthermore, we
derive the extremal behavior by point process convergence. A result is that the classical
TAR(S,1) process models extremal clusters.

Finally, Section 4 is again on general TAR(S, q) models with noise which has at most
an exponentially decreasing tail without being regularly varying. It is then shown that the
tail of the TAR model is in the same class and its extremal behavior is determined. Here,
the sequence of point processes converges to a Poisson random measure, which reflects,
in contrast to the regularly varying case, the absence of extremal clusters. Some of the
results presented in this paper can also be found in the diploma thesis [3] of the first
named author.

Throughout the paper we shall denote N = {1, 2, . . .}, N0 = N ∪ {0}, R+ = (0,∞),
R = R ∪ {+∞} ∪ {−∞} and use “ w

=⇒” to denote weak convergence. For the integer
part of a real number x we write bxc = sup{n ∈ Z : n ≤ x}. The Dirac measure at a
point x will be denoted by εx. For two strictly positive functions g and h and a constant
c ∈ [0,∞) we write g(t) ∼ ch(t) as t →∞ if the quotient g(t)/h(t) tends to c as t →∞.
For x ∈ Rd we denote by xT the transposed of x and by ‖x‖ the maximum norm of x.
As usual, the positive part and the negative part of x ∈ R is denoted by x+ = max{x, 0}
and x− = max{0,−x}, respectively. The tail of a distribution function F will be written
as F = 1− F .

2 Model assumptions and basic properties

In this paper we restrict our attention to noise sequences (Zk) which are subexponential
(which includes regularly varying noise) or are in the class L(γ) with γ > 0, which
includes tails of the form P(Z1 > x) ∼ Kxbe−γx as x →∞ with b ∈ R and K > 0. When
determining the tail behavior, we shall further assume the following classical tail balance
condition TB, which is standard also for extreme value theory of linear ARMA processes,
as presented, e.g., in Embrechts et al. [12], Section A.3.3.

Condition TB.
There are constants p+, p− ∈ [0, 1] such that p+ + p− = 1 and the tail of Z1 satisfies the
tail balance condition

P(Z1 > x) ∼ p+P(|Z1| > x) and P(Z1 < −x) ∼ p−P(|Z1| > x) as x →∞.
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For the existence of strictly stationary solutions (Xk)k∈N0 we use the following sufficient
condition DC on the distribution of Z1 and the size of the coefficients, which is sufficiently
general for our purposes. That it is not a necessary condition for stationarity can be seen
from the presentation in Chen and Tsay [6].

Condition DC.
Let (Zk)k∈N0 be an i. i. d. sequence, whose marginal distribution has a Lebesgue density
h satisfying infx∈K h(x) > 0 for every compact set K ⊂ R. Furthermore, assume that
E|Z1|min{1,η} < ∞ for some η > 0. Denoting α := maxk=1,...,S |αk| and βj := maxi=1,...,S |βij|
assume further that β :=

∑q
j=1 βj < 1.

Define the function f : Rl → R by

f(xk−1, xk−2, . . . , xk−l) :=
S∑

i=1

{αi +

qi∑
j=1

βijxk−j}1{(xk−d1
,...,xk−dp)∈Ji},

where l := max{q, dp}, and denote
−→
Xk := (Xk, Xk−1, . . . , Xk−l+1)

T . Then the threshold
model (1.1) has the representation

Xk = f(
−→
X k−1) + Zk for k ∈ {l, l + 1, . . .},

with f(
−→
X k−1) being independent of Zk. Furthermore, we write

−→
Z k := (Zk, 0, . . . , 0)T and−→

f (−→x ) := (f(−→x ), x1, . . . , xl−1)
T for −→x := (x1, . . . , xl)

T ∈ Rl. Then (
−→
X k)k≥l−1 is a Markov

chain, where −→
X k =

−→
f (
−→
X k−1) +

−→
Z k for k ≥ l.

The following lemma assures the existence of a geometrically ergodic strictly stationary
solution. Geometric ergodicity was already proved by Chan and Tong [5] (cf. Tong [29],
Example A1.2, p. 464), and An and Huang [1], Theorem 3.2 and Example 3.6, under the
slightly more restrictive condition that E|Z1| < ∞. However, the proof in [1] can easily be
generalized to the case where only finiteness of E|Z1|min{1,η} for some η > 0 is assumed:
simply replace the test function (x1, . . . , xp) 7→ max{|x1|, . . . , |xp|} appearing in the proof
of Theorem 3.2 in An and Huang [1] by (x1, . . . , xp) 7→ (max{|x1|, . . . , |xp|})min{1,η}. Also
note that the proof in [1] carries over to the more general partitions considered in (1.1)
without change. That geometric ergodicity of the stationary solution then implies strong
mixing with geometrically decreasing mixing rate in the sense that

sup
A∈σ(Xj :j≤m)

B∈σ(Xj :j≥k+m)

|P(A ∩B)− P(A)P(B)| ≤ Kγk , k,m ∈ N, (2.1)

for some 0 < γ < 1 and K > 0, then follows from Meyn and Tweedie [21], Theorem 16.1.5.
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Lemma 2.1 Let (Xk)k∈N0 be a TAR process as given in (1.1), and suppose that Condition
DC holds. Then (Xk)k∈N0 is geometrically ergodic and admits a unique strictly stationary
solution, which is strongly mixing with geometrically decreasing mixing rate in the sense
of (2.1) .

The next lemma is crucial for the analysis of extremes of TAR models. It states that
under our assumptions, there is a causal AR(q) process whose stationary solution has a
tail which is not smaller than that of the stationary solution of the TAR process.

Lemma 2.2 Suppose that condition DC holds and let (Xk)k∈N0 be the stationary solution
of the TAR model (1.1). Let (Z̃k)k∈Z be an i. i. d. sequence such that Z̃k = |Zk| + α for
k ∈ N0. Denote by (X̃k)k∈Z the unique strictly stationary solution of the causal AR(q)

process

X̃k :=

q∑
j=1

βjX̃k−j + Z̃k, k ∈ Z. (2.2)

Then (X̃k)k∈Z has the almost surely convergent MA representation

X̃k =
∞∑

j=0

ψjZ̃k−j, (2.3)

where ψ0 = 1, 0 ≤ ψj < 1 for j ∈ N and (ψj)j∈N0 is bounded by a geometrically decreasing
sequence, i. e. ψj ≤ K γj for some 0 < γ < 1 and K > 0. Furthermore, for any m ∈ N,
k1, . . . , km ∈ N0 and x1, . . . , xm ∈ R it holds

P(|Xk1| > x1, . . . , |Xkm | > xm) ≤ P(X̃k1 > x1, . . . , X̃km > xm). (2.4)

Proof. Since the polynomial Φ(z) := 1 − ∑q
j=1 βjz

j has no zeroes for |z| ≤ 1 as a
consequence of

∑q
j=1 βj < 1, it follows that the process (2.2) is causal. Expanding

Φ(z)−1 =
∑∞

j=0 ψjz
j in a power series around the origin gives ψ0 = 1, ψ1 = β1 and

the recursions ψm =
∑m−1

j=max{0,m−q} βm−jψj for m ≥ 2. A simple induction argument then
shows that 0 ≤ ψj < 1 for j ≥ 1 and that (ψm) can be dominated by an exponen-
tially decreasing sequence. In particular,

∑∞
j=0 ψ

min{1,η}
j < ∞. Since E|Z̃1|min{1,η} < ∞ by

assumption, this gives almost sure convergence of (2.3).
Define the sequence (X∗

k)k∈N0 by X∗
0 := |X0|, . . . , X∗

q−1 := |Xq−1|, and

X∗
k :=

q∑
j=1

βj X∗
k−j + Z̃k, k ≥ q.

Then it follows by induction that

|Xk| ≤ X∗
k ∀ k ∈ N0, (2.5)
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since

|Xk| ≤ max
i=1,...,S

αi +

q∑
j=1

max
i=1,...,S

|βij| |Xk−j|+ |Zk| ≤
q∑

j=1

βjX
∗
k−j + Z̃k = X∗

k .

Observe that (X∗
t1+n, . . . , X

∗
tm+n) converges in distribution as n → ∞ to the stationary

solution (X̃t1 , . . . , X̃tm) of the causal AR(q) process (2.2), and that the topological bound-
ary of the set [x1,∞) × . . . × [xm,∞) has P(X̃t1 ,...,X̃tm ) measure zero as a consequence of
the absolute continuity of the distribution of Z1. Thus, we conclude from (2.5) that

P(Xt1 > x1, . . . , Xtm > xm) = lim
n→∞

P(Xt1+n > x1, . . . , Xtm+n > xm)

≤ lim sup
n→∞

P(X∗
t1+n > x1, . . . , X

∗
tm+n > xm) = P(X̃t1 > x1, . . . , X̃tm > xm),

showing (2.4) ¤

3 Regularly varying noise

Recall that a measurable function f : (0,∞) → (0,∞) is said to be regularly varying (at
∞) with index −κ ∈ R, written f ∈ R−κ, if

lim
x→∞

f(xu)

f(x)
= u−κ ∀u > 0. (3.1)

Functions in R0 are also called slowly varying functions, and for κ ≥ 0 it holds f ∈ R−κ if
and only if f(x) = x−κL(x) for all x > 0 with a slowly varying function L. For a random
variable Z with distribution function FZ we also write Z ∈ R−κ to indicate that Z has
a regularly varying tail, i. e. that FZ ∈ R−κ. Examples of distributions having regularly
varying tails include Pareto distributions and α-stable distributions with α ∈ (0, 2).

3.1 O-regular variation of TAR models

Unlike for linear models such as ARMA processes, stationary solutions of general TAR
models with regularly varying noise give only O-regularly varying tails. Recall that a
measurable function f : (0,∞) → (0,∞) is called O-regularly varying (at ∞), if

0 < lim inf
x→∞

f(xu)

f(x)
≤ lim sup

x→∞

f(xu)

f(x)
< ∞ ∀ u > 0.

Clearly, every regularly varying function is O-regularly varying. For TAR processes with
regularly varying noise, we now have:
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Lemma 3.1 (O-regular variation) Suppose that conditions TB and DC hold, and let
(Xk)k∈N0 be a stationary version of the TAR process as given in (1.1). Suppose further
that |Z1| ∈ R−κ for some κ > 0. Then

p+2−κ ≤ lim inf
x→∞

P(X0 > x)

P(|Z1| > x)
≤ lim sup

x→∞

P(X0 > x)

P(|Z1| > x)
≤

∞∑
j=0

ψκ
j , (3.2)

where (ψj)j∈N0 is given as in Lemma 2.2. In particular, FX is O-regularly varying if p+ > 0.

Proof. From Lemma 2.2 and Resnick [24], Lemma 4.24, we obtain

lim sup
x→∞

P(X0 > x)

P(|Z1| > x)
≤ lim sup

x→∞

P(X̃0 > x)

P(|Z1| > x)
=

∞∑
j=0

ψκ
j .

On the other hand, since Xk − Zk is independent of Zk, it also holds

lim inf
x→∞

P(X0 > x)

P(|Z1| > x)
≥ lim inf

x→∞
P(Z1 > 2x)

P(|Z1| > x)
P(X1 − Z1 > −x) = p+2−κ.

This gives (3.2), implying O-regular variation of the tail of X0 if p+ > 0. ¤

The next proposition shows that without specific assumptions on the partition, regular
variation of the stationary distribution cannot be expected, even for a TAR(2,1) model.

Proposition 3.2 Let (Zk)k∈N0 be an i. i. d. sequence such that P(Z1 > x) ∼ x−κ as
x → ∞ for some κ > 0 and that conditions DC and TB hold with p+ > 0. For the
partition J1 :=

⋃
m∈N0

(
4m, 4m+1/2

]
, J2 := R \ J1, consider the TAR(2,1) model

Xk =





β1Xk−1 + Zk, for Xk−1 ∈ J1,

Zk, for Xk−1 ∈ J2,
k ∈ N,

where 0 < β1 < 1. Then there are constants 0 < c1 < c2 < ∞ such that the stationary
solution (Xk)k∈N0 of the TAR(2,1) model with distribution function FX satisfies

c1x
−κ ≤ FX(x) ≤ c2x

−κ, x ≥ 1, (3.3)

but FX is not regularly varying.

Proof. Equation (3.3) follows immediately from Lemma 3.1. Let L be the function
satisfying

FX(x) = P(X0 > x) = L(x) x−κ, x > 0.
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By (3.3) it follows that c1 ≤ L(x) ≤ c2 for x ≥ 1. For k ∈ N0, define

Wk :=





β1Xk, for Xk ∈ J1,

0, for Xk ∈ J2.

We will show that the assumption that FX is regularly varying gives an O-regularly
varying tail of Wk−1 which is not regularly varying, and then obtain a contradiction of
the tail behavior of Xk = Wk−1 + Zk, where Wk−1 and Zk are independent.

So we assume that FX is regularly varying. Then it follows that L must be slowly
varying. We shall show first that there are constants 0 < d1 ≤ d2 < ∞ such that

d1 x−κ ≤ P(Wk > x) ≤ d2x
−κ, x ≥ 1. (3.4)

Here, the right-hand inequality follows easily from P(Wk > x) ≤ P(β1Xk > x) and
Equation (3.3). For the left-hand inequality, observe that the regular variation of FX

implies

lim
x→∞

P(Xk ∈ (x, 2x])

P(Xk ∈ (x, 4x])
= lim

x→∞
P(Xk > x)− P(Xk > 2x)

P(Xk > x)− P(Xk > 4x)

= lim
x→∞

[P(Xk > x)− P(Xk > 2x)]/P(Xk > x)

[P(Xk > x)− P(Xk > 4x)]/P(Xk > x)

=
1− 2−κ

1− 4−κ
.

For x > 0 denote by m(x) the unique non-negative integer such that 4m(x)−1 < x/β1 ≤
4m(x). Then, given ε > 0, it follows that for large enough x ≥ x(ε),

P(Wk > x) =
∞∑

m=0

P(Xk > x/β1, Xk ∈
(
4m, 4m+1/2

]
)

≥
∞∑

m=m(x)

P(Xk ∈
(
4m, 4m+1/2

]
)

≥ (1− ε)
1− 2−κ

1− 4−κ

∞∑

m=m(x)

P(Xk ∈
(
4m, 4m+1

]
)

= (1− ε)
1− 2−κ

1− 4−κ
P(Xk > 4m(x)).

The left-hand inequality in (3.4) then follows from the corresponding one in (3.3) and
4m(x) < 4x/β1. Thus, it follows from (3.4) that we can write

P(Wk > x) = r(x) x−κ, x ∈ R, (3.5)
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where d1 ≤ r(x) ≤ d2 for x ≥ 1. Now, let (xm)m∈N be a sequence of numbers such that
xm/β1 ∈ [4m+4/6, 4m+5/6]. Then λxm/β1 ∈ (4m+1/2, 4m+1) for every λ ∈ (4−1/6, 41/6), so
that

P(Wk > λxm) = P(Xk > λxm/β1, Xk ∈ J1) = P(Xk > xm/β1, Xk ∈ J1) = P(Wk > xm),

giving
r(λxm) = λκ r(xm), ∀ λ ∈ (4−1/6, 41/6), m ∈ N. (3.6)

This implies in particular that r is not slowly varying, so that the distribution function
of Wk cannot have a regularly varying tail by (3.5).

Choose δ > 0 such that 4−1/6 < 1 − δ < 1 + δ < 41/6, and let x′ := (1 + δ)x,
x′′ := (1− δ)x. Write P(Z1 > x) = q(x)x−κ, so that limx→∞ q(x) = 1. Then, with exactly
the same proof as in Feller [17], pp. 278, it follows that for given ε > 0 and large enough
x ≥ x(ε), the tail of Xk = Wk−1 + Zk satisfies

(1− ε) (r(x′) + q(x′)) (x′)−κ ≤ P(Xk > x) ≤ (1 + ε) (r(x′′) + q(x′′)) (x′′)−κ. (3.7)

Choosing xm as before, the left-hand inequality of (3.7) together with (3.6) show that for
large enough m,

P(Xk > xm)

(r(xm) + q(xm))x−κ
m

≥ (1− ε)(1 + δ)−κ r(xm)(1 + δ)κ + q(x′m)

r(xm) + q(xm)

= (1− ε)(1 + δ)−κ

(
1 +

r(xm)((1 + δ)κ − 1) + q(x′m)− q(xm)

r(xm) + q(xm)

)
.

Using d1 ≤ r(x) ≤ d2 for x ≥ 1, limx→∞ q(x) = 1 and limδ→0(1+ δ)κ− 1 = 0, we conclude
that

lim inf
m→∞

P(Xk > xm)

(r(xm) + q(xm))x−κ
m

≥ 1.

A similar argument holds for the limes superior, so that

L(xm) ∼ (r(xm) + q(xm)), m →∞. (3.8)

Taking for xm the sequences um := 4m+9/12β1 and vm := 4m+10/12β1 = 41/12um, it follows
from (3.6) and (3.8) that

L(vm)

L(um)
∼ r(vm) + q(vm)

r(um) + q(um)
∼ 4κ/12r(um) + q(um)

r(um) + q(um)
= 1 +

(4κ/12 − 1)r(um)

r(um) + q(um)
, m →∞,

and the latter does not converge to 1 as m →∞, since d1 ≤ r(um) ≤ d2 and limx→∞ q(x) =

1. Hence, L cannot be slowly varying, contradicting the regular variation of FX . ¤
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3.2 Regular variation of TAR(S,1) models with specific partitions

In this and the next subsection we restrict our attention to stationary TAR(S,1) models
with representation

Xk =
S∑

i=1

{αi + βiXk−1}1{Xk−1∈Ji} +Zk for k ∈ N, (3.9)

where J1 = (−∞, r1], J2 = (r2,∞) for some r1, r2 ∈ R, r1 ≤ r2, and {Ji : i = 3, . . . , S} is
a measurable partition of (r1, r2]. For this model we are able to compute the tail behavior
explicitly as we will show in the next lemma.

Lemma 3.3 (Regular variation) Suppose that conditions TB and DC hold, and let
(Xk)k∈N0 be a stationary version of the TAR(S,1) process as given in (3.9). Suppose
further that |Z1| ∈ R−κ for some κ > 0. Then |X0| ∈ R−κ. More precisely, denoting

β+
i :=





βi, βi > 0,

0, βi ≤ 0,
and β−i :=




|βi|, βi < 0,

0, βi ≥ 0,

for i = 1, 2, it holds

lim
x→∞

P(X0 > x)

P(|Z1| > x)
=

p+ + p−(β−1 )κ

1− (β+
2 )κ − (β−1 )κ(β−2 )κ

=: p̃+ (3.10)

and
lim

x→∞
P(X0 < −x)

P(|Z1| > x)
=

p− + p+(β−2 )κ

1− (β+
1 )κ − (β−2 )κ(β−1 )κ

=: p̃−. (3.11)

In particular, X0 ∈ R−κ if p̃+ > 0. Furthermore, p̃+ ≥ p+ and p̃− ≥ p−.

Proof. Let x > 0 be fixed and (an)n∈N be a sequence of positive real numbers tending to
∞ as n →∞. Then for any δ > 0, we can write

P(X1 > xan) = P(X1 > xan, |Z1| > δan, |X0| > δan)

+P(X1 > xan, |Z1| > δan, |X0| ≤ δan)

+P(X1 > xan, |Z1| ≤ δan, |X0| ≤ δan)

+P(X1 > xan, |Z1| ≤ δan, X0 > δan)

+P(X1 > xan, |Z1| ≤ δan, X0 < −δan)

= (I) + (II) + (III) + (IV ) + (V ), say. (3.12)

We shall study the tail behavior of the five summands of (3.12). Using the independence
of Z1 and X0, we obtain for the first term

lim
n→∞

(I)

P(|Z1| > xan)
≤ lim

n→∞
P(|Z1| > δan)P(|X0| > δan)

P(|Z1| > xan)
= 0. (3.13)
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For the second term of (3.12), observe that

lim sup
n→∞

P(X1 > xan, |Z1| > δan, |X0| ≤ δan)

P(|Z1| > xan)
≤ lim sup

n→∞

P(Z1 > (x− βδ)an − α)

P(|Z1| > xan)

= p+ (x− βδ)−κ

x−κ
.

On the other hand,

lim inf
n→∞

P(X1 > xan, |Z1| > δan, |X0| ≤ δan)

P(|Z1| > xan)

≥ lim inf
n→∞

P(Z1 > (x + βδ)an + α)− P(Z1 > (x + βδ)an + α, |X0| > δan)

P(|Z1| > xan)

= p+ (x + βδ)−κ

x−κ
,

for 0 < δ < x, and we conclude

lim
δ↓0

lim inf
n→∞

(II)

P(|Z1| > xan)
= lim

δ↓0
lim sup

n→∞

(II)

P(|Z1| > xan)
= p+. (3.14)

The third term of (3.12) is zero provided δ < x/2. For the investigation of (IV) and (V)
we define

A = lim sup
u→∞

P(X0 > u)

P(|Z1| > u)
, A = lim inf

u→∞
P(X0 > u)

P(|Z1| > u)
,

B = lim sup
u→∞

P(X0 < −u)

P(|Z1| > u)
, B = lim inf

u→∞
P(X0 < −u)

P(|Z1| > u)
.

All these terms are finite by Lemma 3.1. Then we obtain

lim
δ↓0

lim sup
n→∞

(IV )

P(|Z1| > xan)
≤ lim

δ↓0
lim sup

n→∞

P(α2 + β+
2 X0 > (x− δ)an)

P(|Z1| > xan)
= A(β+

2 )κ, (3.15)

and similarly,

lim
δ↓0

lim inf
n→∞

(IV )

P(|Z1| > xan)
≥ lim

δ↓0
lim inf
n→∞

P(α2 + β+
2 X0 > (x + δ)an)

P(|Z1| > xan)
P(|Z1| ≤ δan)

= A(β+
2 )κ. (3.16)

The bounds of (V) are

lim
δ↓0

lim sup
n→∞

(V )

P(|Z1| > xan)
≤ lim

δ↓0
lim sup

n→∞

P(α1 − β−1 X0 > (x− δ)an)

P(|Z1| > xan)
= B(β−1 )κ, (3.17)

and

lim
δ↓0

lim inf
n→∞

(V )

P(|Z1| > xan)
≥ lim

δ↓0
lim inf
n→∞

P(α1 − β−1 X0 > (x + δ)an)

P(|Z1| > xan)
P(|Z1| ≤ δan)

= B(β−1 )κ. (3.18)

11



Then (3.12)–(3.18) give

p+ + A(β+
2 )κ + B(β−1 )κ ≤ A ≤ A ≤ p+ + A(β+

2 )κ + B(β−1 )κ. (3.19)

Since

−Xk =
S∑

i=1

(−αi) + βi(−Xk−1)1{−Xk−1∈−Ji}−Zk,

we obtain by symmetry

p− + B(β+
1 )κ + A(β−2 )κ ≤ B ≤ B ≤ p− + B(β+

1 )κ + A(β−2 )κ. (3.20)

If β1 ≥ 0, then (3.19) gives

A = A =
p+

1− (β+
2 )κ

.

In the case β1 < 0 we obtain by (3.20),

p− + A(β−2 )κ ≤ B and B ≤ p− + A(β−2 )κ. (3.21)

Inserting (3.21) in (3.19) yields

p+ + p−(β−1 )κ

1− (β+
2 )κ − (β−2 )κ(β−1 )κ

≤ A ≤ A ≤ p+ + p−(β−1 )κ

1− (β+
2 )κ − (β−2 )κ(β−1 )κ

,

which gives the result A = A = p̃+. Inserting this in (3.20) gives also B = B = p̃−. That
p̃+ ≥ p+ and p̃− ≥ p− is clear. ¤

Denote by ‖·‖ the maximum norm and by Sm = {x ∈ Rm+1 : ‖x‖ = 1} the unit sphere
with respect to the maximum norm in Rm+1. Recall that a random vector Y ∈ Rm+1 is
multivariate regularly varying with index −κ < 0 (sometimes also termed with index
κ > 0) if there exists a random vector Θ with values in Sm such that for every x > 0, the
measures

P(‖Y‖ > ux, Y/‖Y‖ ∈ ·)
P(‖Y‖ > u)

on B(Sm) converge weakly to a measure x−κP(Θ ∈ ·) as u → ∞. The distribution of Θ

is called the spectral measure of Y (with respect to the maximum norm). Multivariate
regular variation can be defined with respect to any other norm on Rm+1, but since all these
definitions are equivalent (only the form of the spectral measure differs), we have chosen
to work with the maximum norm which is particularly convenient for our calculations. It
is further known that a random vector Y is regularly varying with index −κ if and only

12



if there exists a non-zero Radon measure σ on Rm+1 \ {0} with σ(Rm+1 \Rm+1) = 0 and
a sequence (an)n∈N of positive numbers increasing to ∞ such that

nP(a−1
n Y ∈ ·) υ

=⇒ σ(·) as n →∞, (3.22)

where υ
=⇒ denotes vague convergence on B(Rm+1\{0}). For further information regarding

multivariate regular variation, we refer to Resnick [23] or Basrak et al. [2].
Using Lemma 3.3 we will prove that the finite dimensional distributions X(m) =

(X0, X1, . . . , Xm)T ∈ Rm+1 of the stationary TAR(S,1) process (3.9) are multivariate
regularly varying for every m ∈ N0. For this, we need the definition of the following
matrices: let

I =

(
1 0

0 1

)
, B =

(
β+

2 β−1
β−2 β+

1

)
∈ R2×2,

and for m ∈ N0 define

C(m) =




I 0 0 · · · 0

B I 0
. . . ...

B2 B I
. . . ...

...
... . . . . . . 0

Bm Bm−1 · · · B I




, S(m) =




1 −1 0 0 · · · 0

0 0 1 −1 0
...

... . . . . . . . . . ...
0 0 · · · 0 1 −1




,

where C(m) ∈ R2(m+1)×2(m+1) and S(m) ∈ R(m+1)×2(m+1), and Bm denotes the m’th power
of B (with B0 = I). Finally, define

C̃(m) := S(m)C(m) =: (c+
0 , c−0 , . . . , c+

m, c−m) ∈ R(m+1)×2(m+1). (3.23)

The vectors c+
k and c−k (k = 0, . . . , m) will be used to describe the spectral measure of

(X0, . . . , Xm)T . Insight into their structure can be obtained by writing

Bm =

(
b
(m)
11 b

(m)
12

b
(m)
21 b

(m)
22

)
∈ R2×2

for m ∈ N0. Then b
(m)
ij ≥ 0 for m ∈ N0, i, j = 1, 2, and Bm has at most one non-zero

element in every column. Putting

b
(m)
1 := b

(m)
11 − b

(m)
21 and b

(m)
2 := b

(m)
12 − b

(m)
22 for m ∈ N0, (3.24)

we see that the j’th component (c±k )j of c±k satisfies

(c+
k )j = 0 for j ≤ k, (c+

k )j = b
(j−k−1)
1 for k + 1 ≤ j ≤ m + 1,

(c−k )j = 0 for j ≤ k, (c−k )j = b
(j−k−1)
2 for k + 1 ≤ j ≤ m + 1.

13



It is easy to check that (|b(m)
1 |)m∈N0 and (|b(m)

2 |)m∈N0 are decreasing sequences, and that
|b(m)

1 | ≤ βm and |b(m)
2 | ≤ βm. In particular, it follows that c±k ∈ Sm for 0 ≤ k ≤ m. With

these preparations, we can now show that the stationary version of the TAR(S, 1)-model
(3.9) is multivariate regularly varying.

Theorem 3.4 (Multivariate regular variation) Suppose that conditions TB and DC
hold, and let (Xk)k∈N0 be a stationary version of the TAR(S,1) process as given in (3.9).
Suppose further that |Z1| ∈ R−κ for some κ > 0. Then X(m) = (X0, . . . , Xm)T is mul-
tivariate regularly varying with index −κ, and its spectral measure with respect to the
maximum norm is given by

P(Θ(m) ∈ ·) =
1

p̃+ + p̃− + m

[
p̃+ 1{c+

0 ∈·} +p̃− 1{c−0 ∈·} +
m∑

j=1

(
p+ 1{c+

j ∈·} +p− 1{c−j ∈·}
)]

(3.25)

where p̃+ and p̃− are defined as in Lemma 3.3 and c±j (j = 0, . . . ,m) as above.

Proof. We define Z(m) =
(
X+

0 , X−
0 , Z+

1 , Z−
1 , . . . , Z+

m, Z−
m

)T ∈ R2(m+1) for m ∈ N0, which
by Lemma 3.3 is multivariate regularly varying of index −κ with spectral measure

P(Θ̃(m) ∈ ·) =
1

p̃+ + p̃− + m

[
p̃+ 1{e1∈·} +p̃− 1{e2∈·} +

m∑
j=1

(
p+ 1{e2j+1∈·} +p− 1{e2j+2∈·}

)
]

,

where ej ∈ R2(m+1), j = 1, . . . , 2(m + 1), is one in the j-th component and else zero.
Furthermore, we define (Yk)k∈N0 by Y0 := X0 and

Yk = β2Yk−1 1{Yk−1>0} +β1Yk−1 1{Yk−1<0} +Zk = β2Y
+
k−1 − β1Y

−
k−1 + Zk , k ∈ N.

Let

W̃ := C̃(m)Z(m) =: (W̃0, . . . , W̃m), Ỹ := (Y0, . . . , Ym),

W := C(m)Z(m) =: (W+
0 ,W−

0 , . . . , W+
m ,W−

m), Y := (Y +
0 , Y −

0 , . . . , Y +
m , Y −

m ).

Since W̃ is obtained from Z(m) by a linear transformation, it is easy to see that W̃ is
again multivariate regularly varying with spectral measure Θ(m) as given in (3.25), see
e.g. Proposition A.1 in Basrak et al. [2] and Fasen [14], Lemma 2.1. We shall show that
Ỹ is regularly varying with the same spectral measure as W̃. Further, observe that by
the definition of the matrix C(m), it holds

W+
0 = X+

0 , W−
0 = X−

0 , and

W+
k+1 = β+

2 W+
k + β−1 W−

k + Z+
k+1, W−

k+1 = β−2 W+
k + β+

1 W−
k + Z−

k+1

for k = 0, . . . ,m− 1.
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Let (an)n∈N be a sequence of positive numbers increasing to∞ such that limn→∞ nP(|Z1| >
an) = 1, and let 0 < δ < 1. Then

P(‖W̃ − Ỹ‖ > 2δan) ≤ P(‖W −Y‖ > δan) (3.26)

≤
m∑

k=1

[P(|W+
k − Y +

k | > δan) + P(|W−
k − Y −

k | > δan)].

Let ∆±
k := W±

k − Y ±
k for k ∈ N0. First, we will show that

P(|∆+
1 | > δan) = o(P(|Z1| > an)) as n →∞, (3.27)

for any δ > 0, and hence, by symmetry the same arguments lead to

P(|∆−
1 | > δan) = o(P(|Z1| > an)) as n →∞.

Then we use induction to prove that for any δ > 0,

P(|∆±
k | > δan) = o(P(|Z1| > an)) as n →∞, k ∈ N. (3.28)

Since the result is trivial if β = 0, i. e. β1 = β2 = 0, we shall assume that β 6= 0 from now
on. In order to study (3.27), let 0 < βδ2 < δ1 < δ. Then

P(|∆+
1 | > δan) ≤ P(|∆+

1 | > δan, Z1 > δ1an, |Y0| ≤ δ2an)

+P(|∆+
1 | > δan, Z1 < −δ1an, |Y0| ≤ δ2an)

+P(|∆+
1 | > δan, |Z1| ≤ δ1an, Y0 > δ2an)

+P(|∆+
1 | > δan, |Z1| ≤ δ1an, Y0 < −δ2an)

+P(|∆+
1 | > δan, |Z1| ≤ δ1an, |Y0| ≤ δ2an)

+P(|Z1| > δ1an, |Y0| > δ2an)

=: (I) + (II) + (III) + (IV ) + (V ) + (V I), say. (3.29)

The summand (I) can be estimated by

(I) ≤ P(β|Y0| > δan, Z1 > δ1an, |Y0| ≤ δ2an) = 0, (3.30)

since βδ2 < δ. Similarly, we obtain

(II) ≤ P(β|Y0| > δan, |Y0| ≤ δ2an) = 0. (3.31)

That also (III) = 0 can be seen from

(III) ≤ P(|∆+
1 | > δan, |Z1| ≤ δ1an, |β2|Y0 > δ1an)

+P(|∆+
1 | > δan, |Z1| ≤ δ1an, δ2|β2|an < |β2|Y0 ≤ δ1an)

= 0 + 0 = 0 (3.32)
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if β2 6= 0, and from W+
1 = Y +

1 if β2 = 0 and Y0 > 0. By symmetry, also

(IV ) = 0. (3.33)

Provided δ1, δ2 are small, we further have

(V ) = 0, (3.34)

and finally we estimate

(V I) = P(|Z1| > δ1an)P(|Y0| > δ2an) = o(P(|Z1| > an)) as n →∞. (3.35)

Hence, (3.29)–(3.35) give

P(|∆+
1 | > δan) = o(P(|Z1| > an)) as n →∞. (3.36)

Next, we assume (3.28) holds for some k ∈ N and every δ > 0. Define W
+

k+1 := β+
2 Y +

k +

β−1 Y −
k + Z+

k+1 for k ∈ N0, and let δ3 ∈ (β, 1). Then

P(|∆+
k+1| > δan) ≤ P(|∆+

k | ≤ δ/2an, |∆−
k | ≤ δ/2an, |W+

k+1 − Y +
k+1| > (1− δ3)δan)

+P(|∆+
k | ≤ δ/2an, |∆−

k | ≤ δ/2an, |W+
k+1 −W

+

k+1| > δ3δan)

+P(|∆+
k | > δ/2an) + P(|∆−

k | > δ/2an)

=: (V II) + (V III) + (XI) + (X), say. (3.37)

With exactly the same reasoning that led to (3.36) we obtain

(V II) ≤ P(|W+

k+1 − Y +
k+1| > (1− δ3)δan) = o(P(|Z1| > an)) as n →∞. (3.38)

On the other hand,

(V III) = P(|∆+
k | ≤ δ/2an, |∆−

k | ≤ δ/2an, |β+
2 ∆+

k + β−1 ∆−
k | > δ3δan) = 0. (3.39)

Furthermore,

(XI) = o(P(|Z1| > an)) and (X) = o(P(|Z1| > an)) as n →∞, (3.40)

by induction hypothesis. Equations (3.37)–(3.40) then give (3.28). Using (3.26) and (3.28)
we hence obtain

P(‖W̃ − Ỹ‖ > 2δan) ≤ P(‖W −Y‖ > δan) = o(P(|Z1| > an)) as n →∞.

Since δ can be arbitrary small, Ỹ is multivariate regularly varying with the same spec-
tral measure as W̃. Finally, ‖X(m) − Ỹ‖ ≤ ∑m

k=1

(
(2β)k max{|r1|, |r2|}+ α

∑k−1
j=0(2β)j

)
,

which follows again by induction, shows that X(m) is multivariate regularly varying with
the same spectral measure as Ỹ and hence, as W̃. ¤
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3.3 Extremal behavior of the TAR(S,1) model with specific par-
titions

For a locally compact Hausdorff space E we denote by MP (E) the space of all point
measures on E. A point process is then a random element with values in MP (E), and a
Poisson point process (= Poisson random measure) with mean measure ϑ will be denoted
by PRM(ϑ). In extreme value theory, the space E is often R \ {0}, R, [0,∞)× (R \ {0})
or [0,∞) × R, and the extremal behavior of a stationary sequence (ξk)k∈N is described
by the weak limit of the point process

∑∞
k=1 εa−1

n (ξk−bn) in MP (R \ {0}) or MP (R), re-
spectively, as n → ∞, or still more informative by the weak limit of the point process∑∞

k=1 ε(k/n,a−1
n (ξk−bn)) in MP ([0,∞)×(R\{0})) or MP ([0,∞)×R), respectively, as n →∞.

Here, an > 0 and bn ∈ R are the norming constants of an associated i. i. d. sequence (ξ̃k)k∈N
with distribution ξ̃1

d
= ξ1, such that

exp
(
− lim

n→∞
nP(ξ1 > anx + bn)

)
= lim

n→∞
P

(
a−1

n

(
n∨

k=1

ξ̃k − bn

)
≤ x

)
= G(x) (3.41)

for x in the support of G, where G is an extreme value distribution, i. e. either a Fréchet
distribution, a Gumbel distribution or a Weibull distribution. For further information
about extreme value theory and point processes, we refer to Resnick [23, 25]. Observe
in particular that Equation (3.41) holds for G being the Fréchet distribution Φκ(x) =

exp(−x−κ)1(0,∞)(x) with κ > 0 if and only if ξ1 is in R−κ, in which case the norming
constants can be chosen to be bn = 0 and an subject to limn→∞ nP(ξ1 > an) = 1.

Now we describe the extremal behavior of the stationary TAR(S, 1) model (3.9) via
point processes. Observe that the constants an defined in (3.42) below are the norming
constants of an i. i. d. sequence with the same distribution as |X0|, rather than that of X0.

Theorem 3.5 (Point process behavior) Suppose that conditions TB and DC hold,
and let (Xk)k∈N0 be a stationary version of the TAR(S, 1) process as given in (3.9). Suppose
further that |Z1| ∈ R−κ for some κ > 0. Let 0 < an ↑ ∞ be a sequence of constants such
that

lim
n→∞

nP(|X0| > an) = 1. (3.42)

Then as n →∞,
∞∑

k=1

ε(k/n,a−1
n Xk)

w
=⇒

∞∑

k=1

∞∑
j=0

ε
(sk,b

(j)
1 P+

k +b
(j)
2 P−k )

in MP ([0,∞)× (R\{0})),

where b
(j)
1 and b

(j)
2 are given by (3.24),

∑∞
k=1 ε(sk,Pk) is PRM(ϑ) in MP ([0,∞)× (R \ {0}))

with
ϑ(dt× dx) = dt× κθ(p+x−κ−1 1(0,∞)(x) + p−(−x)−κ−1 1(−∞,0)(x)) dx
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and

θ =

(
p+

∞∑
j=0

|b(j)
1 |κ + p−

∞∑
j=0

|b(j)
2 |κ

)−1

= (p̃+ + p̃−)−1 ∈ (0, 1] .

Here, p̃+ and p̃− are given by (3.10) and (3.11), respectively.

Proof. We apply the results of Davis and Hsing [7], Theorem 2.7. By Lemma 2.1 (Xk)k∈N0

is geometrically strongly mixing. Hence, the mixing conditionA(an) of Davis and Hsing [7],
p. 882, is satisfied meaning that there exists a sequence of positive integers (vn)n∈N such
that limn→∞ vn = ∞, limn→∞ vn/n = 0, and

lim
n→∞

E exp

(
−

n∑
j=1

f(Xj/an)

)
−

(
E exp

(
−

vn∑
j=1

f(Xj/an)

))bn/vnc

= 0

holds for all step functions f on R \ {0} with bounded support which is bounded away
from 0. Furthermore, for x > 0,

P

( ∨

m≤k≤vn

|Xk| > xan, |X0| > xan

)
(3.43)

≤
∑

m≤k≤vn

P(|Xk| > xan, |X0| > xan)

≤
∑

m≤k≤vn

P

(
βk|X0|+ α

k−1∑
j=0

βj +
k∑

j=1

βk−j|Zj| > xan, |X0| > xan

)

≤
∑

m≤k≤vn

P

(
βk|X0|+ α/(1− β) +

∞∑
j=0

βj|Zj| > xan, |X0| > xan

)
.

Let δ ∈ (0, x). Then (3.43) and the independence of X0 and (Zk)k∈N0 result in

P

( ∨

m≤k≤vn

|Xk| > xan, |X0| > xan

)

≤
∑

m≤k≤vn

P
(
βk|X0|+ α/(1− β) > δan

)

+
∑

m≤k≤vn

P

( ∞∑
j=0

βj|Zj| > (x− δ)an

)
P(|X0| > xan)

=: J1(n) + J2(n), say.

Since |X0| ∈ R−κ by Lemma 3.3, and since the limit in (3.1) is uniform for u ∈ [u0,∞)

for every u0 > 0 (see e.g. Resnick [23], Proposition 0.5), it follows using dominated
convergence that

lim sup
m→∞

lim
n→∞

J1(n)

P(|X0| > xan)
≤ lim sup

m→∞

∑

k≥m

(
β−kδ

x

)−κ

≤ lim sup
m→∞

(
δ

x

)−κ ∑

k≥m

(βκ)k = 0.
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J2(n) can be estimated by

lim sup
m→∞

lim
n→∞

J2(n)

P(|X0| > xan)
≤ lim sup

m→∞
lim

n→∞
vnP

( ∞∑
j=0

βj|Zj| > (x− δ)an

)
= 0,

since limn→∞ vn/n = 0 and since

P(|X0| > x) ∼ (p̃+ + p̃−)P(|Z1| > x) ∼ (p̃+ + p̃−)(1− βκ)P

( ∞∑
j=0

βj|Zj| > x

)
, x →∞.

Hence, we conclude

lim
m→∞

lim
n→∞

P

( ∨

m≤k≤vn

|Xk| > xan

∣∣∣∣∣ |X0| > xan

)
= 0, x > 0,

which is Equation (2.8) of Davis and Hsing [7]. Since X(2m+1) is multivariate regularly
varying of index −κ and spectral measure described by the vector Θ(2m) = (Θ

(2m)
j )j=0,...,2m

as given in Theorem 3.4 we obtain

E|Θ(2m)
m |κ =

1

p̃+ + p̃− + 2m

(
p̃+|b(m)

1 |κ + p̃−|b(m)
2 |κ + p+

m−1∑
j=0

|b(j)
1 |κ + p−

m−1∑
j=0

|b(j)
2 |κ

)
.

Using further that (|b(m)
1 |)m≥0 and (|b(m)

2 |)m≥0 are non-increasing sequences, we get

E

(
2m∨

k=m

|Θ(2m)
k |κ −

2m∨

k=m+1

|Θ(2m)
k |κ

)

=
1

p̃+ + p̃− + 2m

[
p̃+(|b(m)

1 |κ − |b(m+1)
1 |κ) + p̃−(|b(m)

2 |κ − |b(m+1)
2 |κ)

+ p+

m−1∑
j=0

(|b(j)
1 |κ − |b(j+1)

1 |κ) + p−
m−1∑
j=0

(|b(j)
2 |κ − |b(j+1)

2 |κ)
]

=
1− p+|b(m)

1 |κ − p−|b(m)
2 |κ + p̃+(|b(m)

1 |κ − |b(m+1)
1 |κ) + p̃−(|b(m)

2 |κ − |b(m+1)
2 |κ)

p̃+ + p̃− + 2m
.

Then

lim
m→∞

E
(∨2m

k=m |Θ(2m)
k |κ −∨2m

k=m+1 |Θ(2m)
k |κ

)

E|Θ2m
m |κ =

1

p+
∑∞

j=0 |b(j)
1 |κ + p−

∑∞
j=0 |b(j)

2 |κ
= θ,

where θ ∈ (1− βκ, 1] since |b(j)
1 |, |b(j)

2 | ≤ βj and |b(0)
1 | = |b(0)

2 | = 1.
Similarly, defining the probability measures Rm on MP (R \ {0}) by

Rm(·) =
E

([∨2m
k=m |Θ(2m)

k |κ −∨2m
k=m+1 |Θ(2m)

k |κ
]
1{∑2m

j=0 ε
Θ

(2m)
j

∈ ·}
)

E
(∨2m

k=m |Θ(2m)
k |κ −∨2m

k=m+1 |Θ(2m)
k |κ

)
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it follows that Rm converges weakly as m → ∞ to the distribution of the point process∑∞
j=0 εQj

∈ MP (R \ {0}), where
∞∑

j=0

εQj
= χ1

∞∑
j=0

ε
b
(j)
1

+ (1− χ1)
∞∑

j=0

ε
b
(j)
2

with P(χ1 = 1) = p+ and P(χ1 = 0) = p−. Hence, the assumptions of Davis and Hsing [7],
Theorem 2.7, are all satisfied. Let

∑∞
k=1 ε(s̃k,P̃k) be PRM(ϑ̃) on [0,∞)× (R \ {0}) with

ϑ̃(dt× dx) = dt× κθx−κ−1 1(0,∞)(x) dx

and (
∑∞

j=0 εQkj
)k∈N be an i. i. d. sequence with

∑∞
j=0 εQkj

d
=

∑∞
j=0 εQj

, independent of∑∞
k=1 ε(s̃k,P̃k). Then Theorem 2.7, Corollary 2.4 and Remark 2.3 of Davis and Hsing [7]

imply that
∞∑

k=1

ε(k/n,a−1
n Xk)

w
=⇒

∞∑

k=1

∞∑
j=0

ε(s̃k,Qkj P̃k) in MP ([0,∞)× (R \ {0})), n →∞

(see also Lemma 4.1.2 in Hsing [18] for the connection between the convergence of the
process

∑∞
k=1 ε(k/n,a−1

n Xk) and that of
∑∞

k=1 εa−1
n Xk

as n →∞). Since

∞∑

k=1

∞∑
j=0

ε(s̃k,Qkj P̃k)

d
=

∞∑

k=1

∞∑
j=0

ε
(sk,b

(j)
1 P+

k +b
(j)
2 P−k )

,

the result follows apart from the representation θ = (p̃++p̃−)−1. To see the latter, suppose,
e.g., that β1 ≤ 0 and β2 > 0. Then

p̃+ + p̃− =
p+ + p−(−β1)

κ

1− βκ
2

+ p− = p+ 1

1− βκ
2

+ p−
1− βκ

2 + (−β1)
κ

1− βκ
2

.

On the other hand,

b
(j)
1 = βj

2 , j ∈ N0, b
(0)
2 = −1, b

(j)
2 = (−β1)β

j−1
2 , j ∈ N,

so that

p+

∞∑
j=0

|b(j)
1 |κ + p−

∞∑
j=0

|b(j)
2 |κ = p+ 1

1− βκ
2

+ p−
1− βκ

2 + (−β1)
κ

1− βκ
2

= p̃+ + p̃−.

The other cases follow similarly. ¤

Having the point process convergence in Theorem 3.5, it is standard to derive many
results about the asymptotic behavior of the stationary sequence (Xk)k∈N0 , such as con-
vergence of the maxima to extremal processes, the asymptotic distribution of the order
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statistics or of exceedances over high thresholds, or the determination of the extremal
index. We shall concentrate here on the latter. Recall that a stationary sequence (ξk)k∈N
has extremal index ρ ∈ (0, 1], if there exist norming constants an > 0 and bn ∈ R, and
a non-degenerate distribution function G such that (3.41) holds for an associated i. i. d.
sequence (ξ̃k)k∈N with ξ̃1

d
= ξ1, and

lim
n→∞

P

(
a−1

n

(
n∨

k=1

ξk − bn

)
≤ x

)
= G(x)ρ for all x ∈ R.

Under weak mixing conditions (which are satisfied in our case), it is known that the recip-
rocal ρ−1 of the extremal index can be interpreted as the mean cluster size of exceedances
over high thresholds. In particular, an extremal index of size 1 says that high exceedances
of a stationary sequence behave asymptotically like that of an i. i. d. sequence with the
same marginals, while an extremal index which is less than 1 shows that clusters occur. We
refer to Leadbetter et al. [20] and Embrechts et al. [12] for further information regarding
the extremal index.

The following result gives the asymptotic behavior of the maxima of the stationary
TAR(S, 1) model and its extremal index.

Corollary 3.6 Let the assumptions of Theorem 3.5 hold with (an)n∈N as defined in (3.42),
and denote Mn = maxk=1,...,n Xk for n ∈ N. Then for x > 0

lim
n→∞

P(a−1
n Mn ≤ x) = exp(−θ(p+ + p−(β−1 )κ)x−κ) = exp

(
−p+ + p−(β−1 )κ

p̃+ + p̃−
x−κ

)
,

with p̃+ and p̃− as defined in (3.10) and (3.11). In particular, if p̃+ > 0, then (Xk)k∈N0

has extremal index ρ = 1− (β+
2 )κ − (β−1 )κ(β−2 )κ.

Proof. Applying the continuous mapping theorem for the functional

T1 : MP ([0,∞)× (R \ {0})) → R,

∞∑

k=1

ε(tk,jk) 7→ sup{jk : tk ≤ 1},

it follows from Theorem 3.5 that

a−1
n Mn

w
=⇒ Y := sup{b(j)

1 P+
k + b

(j)
2 P−

k : sk ≤ 1, j ∈ N0} (n →∞)

= sup{P+
k , β−1 P−

k : sk ≤ 1} = T1(N),

where N :=
∑∞

k=1 ε(sk,P+
k ) + ε(sk,β−1 P−k ). Here, we used that sup{0, b(j)

1 : j ∈ N0} = 1 and

sup{0, b(j)
2 : j ∈ N0} = β−1 . Since N is PRM(ϑ) with mean measure

ϑ(dt× dx) = dt× κθ(p+ + p−(β−1 )κ)x−κ−11(0,∞)(x) dx,
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we conclude that for fixed x > 0

lim
n→∞

P(a−1
n Mn ≤ x) = P(Y ≤ x) = P

(
N((0, 1]× (x,∞)) = 0

)

= exp{−θ(p+ + p−(β−1 )κ)x−κ}.

The extremal index ρ of (Xk)k∈N0 is then given by

ρ =
p+ + p−(β−1 )κ

p̃+ + p̃−

/ p̃+

p̃+ + p̃−
= 1− (β+

2 )κ − (β−1 )κ(β−2 )κ,

which is the claim. ¤

We can also compute the asymptotic cluster probabilities P(ζ1 = j) of exceedances
Xk > anx of length j ∈ N for fixed x > 0 explicitly, considering the limit behavior of
the rescaled times k/n for which Xk > anx. This is done using the same arguments as in
Davis and Resnick [8], Section 3.D. We omit the proof.

Corollary 3.7 Let the assumptions of Theorem 3.5 hold with (an)n∈N as defined in (3.42),
and suppose that p̃+ > 0, i. e. p++p−(β−1 )κ > 0. Let (s̃k)k∈N be the jump times of a Poisson
process with intensity θ(p+ + p−(β−1 )κ)x−κ, x > 0 fixed. Let (ζk)k∈N be an N-valued i. i. d.
sequence, independent of (s̃k)k∈N, with distribution

P(ζ1 = j) =
p+((̃b

(j−1)
1 )κ − (̃b

(j)
1 )κ) + p−((̃b

(j−1)
2 )κ − (̃b

(j)
2 )κ)

p+ + p−(β−1 )κ
for j ∈ N,

where 1 = b̃
(0)
1 ≥ b̃

(1)
1 ≥ . . . is the order statistic of the sequence (max{0, b(j)

1 })j∈N0 and
β−1 = b̃

(0)
2 ≥ b̃

(1)
2 ≥ . . . is the order statistic of the sequence (max{0, b(j)

2 })j∈N0 . Then

∞∑

k=1

ε(k/n,a−1
n Xk)(· × (x,∞))

w
=⇒

∞∑

k=1

ζkεs̃k
in MP ([0,∞)) as n →∞.

Remark 3.8

(i) If β1 = β2 = . . . = βS = β ∈ (−1, 1) and α1 = . . . = αS = 0, then the process (3.9)
is a causal AR(1) process Xk = βXk−1 + Zk, which can be written as an infinite
moving average process Xk =

∑∞
j=0 βjZk−j. It is then easy to see that the results

obtained in this paper are in line with those of Davis and Resnick [8] for infinite
moving average processes with regularly varying noise.

(ii) Provided p̃+ > 0, the extremal index ρ of Corollary 3.6 is strictly less than 1 if and
only if β2 > 0 or β1β2 > 0. In these cases, the TAR(S, 1) model can model clusters.

(iii) The value θ is the extremal index of (|Xk|)k∈N0 .
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4 Noise with at most exponentially decreasing tail

In this section we shall be interested in noise sequences which are lighter tailed than reg-
ularly varying functions, but whose tail is still not too light. Since distributions which are
not regularly varying and do not have a finite right endpoint can only be in the maxi-
mum domain of attraction of the Gumbel distribution if they are in the maximum domain
of attraction of some extreme value distribution at all, we shall concentrate on specific
i. i. d. noise sequences (Zk)k∈N0 for which (3.41) holds with G(x) = Λ(x) = exp(−e−x) and
ξk = Zk, which we denote by Z1 ∈ MDA(Λ). Besides the tail balance condition on Z1, we
shall look at distributions which are either subexponential or have a tail which is close to
that of an exponential distribution. More precisely, we shall look at distribution functions
F in the class L(γ) ≥ 0 with γ ∈ [0,∞), i. e. distribution functions which satisfy F (x) < 1

for all x ∈ R and for which

lim
x→∞

F (x + y)/F (x) = exp(−γy) (4.1)

holds locally uniformly in y ∈ R. For γ > 0 this means that F has a tail which is
close to that of an exponential distribution. For γ = 0 we need a further assump-
tion: a distribution function F (defined on R) is called subexponential, if F ∈ L(0)

and limx→∞ F ∗ F (x)/F (x) = 2. The class of subexponential distributions will be de-
noted by S. For a random variable Z with distribution function F we simply write
X ∈ S or Z ∈ L(γ) if F has the corresponding property. Subexponential distributions
and those which are in L(γ) for γ > 0 are handy classes of (semi-)heavy tailed dis-
tributions, and the extremal and the tail behavior of infinite moving average processes
associated with such noise sequences have been studied by Davis and Resnick [9] and
Rootzén [26], respectively. Examples of distributions in MDA(Λ) ∩ S include tails of the
form F (x) ∼ exp{−x/(log x)a}, a > 0, or F (x) ∼ Kxbe−xp where p ∈ (0, 1), K > 0

and b ∈ R (x → ∞), or the lognormal distribution. The class of subexponential dis-
tributions includes also those which have regularly varying tails, but these are not in
MDA(Λ). Examples in L(γ) with γ > 0 include distribution functions with tails of the
form F (x) ∼ Kxbe−γx (x → ∞) with K > 0, b ∈ R, or certain generalized inverse
Gaussian distributions. Observe that L(γ) ⊂ MDA(Λ) for γ > 0 since by (4.1) equation
(3.41) holds with an = γ−1 and bn = F

←
(1/n). Also observe that whether a distribution

function is in S ∩MDA(Λ) or in L(γ) with γ > 0, respectively, is completely determined
by its tail behavior. More precisely, if G(x) ∼ cF (x) (x → ∞) for some c ∈ (0,∞), then
F ∈ S ∩MDA(Λ) or F ∈ L(γ) implies the same for G; see Pakes [22], Lemma 2.4, for the
subexponential case (the case L(γ) follows from the definition of L(γ)).

As in Section 3 we shall first present the tail behavior of the TAR model if Z has the
described noise. But unlike there we do not have to restrict to specific TAR(S, 1) models
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to remain in the same noise class, but can handle the general TAR(S, q) model.

Proposition 4.1 (Tail behavior) Suppose that conditions DC and TB hold with p+ >

0, and let (Xk)k∈N0 be a stationary version of the TAR(S, q) process as given in (1.1).
Suppose further that Z1 ∈ L(γ) with γ > 0, or that Z1 ∈ S ∩MDA(Λ), in which case we
put γ := 0. Then Eeγ(X1−Z1) is finite, and

P(X1 > x) ∼ Eeγ(X1−Z1)P(Z1 > x) as x →∞. (4.2)

In particular, if Z1 ∈ L(γ) or Z1 ∈ S ∩MDA(Λ), respectively, then so is X1.

Proof. Similarly to and with the same notations as in Lemma 2.2 we obtain

P(|Xk − Zk| > x) ≤ P(|X̃k + α− Z̃k| > x) = P

( ∞∑
j=1

ψjZ̃j + α > x

)
, (4.3)

so that

lim sup
x→∞

P(|Xk − Zk| > x)

P(Z1 > x)
≤ 1

p+
lim sup

x→∞

P
(∑∞

j=1 ψjZ̃j + α > x
)

P(Z̃1 > x)
(4.4)

by condition TB. Since 0 ≤ ψj < 1 for j ∈ N and (ψj) are exponentially decreasing, it
follows from Proposition 1.3 of Davis and Resnick [9] that the right hand side of (4.4)
is 0 if Z1 ∈ S ∩ MDA(Λ) and TB is valid, and hence that (4.2) holds in the case Z1 ∈
S ∩MDA(Λ) (γ = 0) by Embrechts et al. [11], Proposition 1 (for subexponentials on R
see also Pakes [22], Lemma 5.1).

Now, suppose that γ > 0 and that Z1 ∈ L(γ). Together with TB this implies that
ψZ̃1 ∈ L(γ/ψ) for 0 < ψ < 1, so that EeδZ̃1 < ∞ for 0 ≤ δ < γ. Observe that 0 ≤ ψj < 1

for j ∈ N and that
∑∞

j=1 ψj < ∞. Choosing 0 < ε < γ such that (γ + ε)−1(γ − ε) >

maxj∈N{ψj}, it follows from (4.3) and Jensen’s inequality that

Ee(γ+ε)|X1−Z1| ≤ e(γ+ε)α

∞∏
j=1

Ee(γ+ε)ψjZ̃j

≤ e(γ+ε)α

∞∏
j=1

(
Ee(γ−ε)Z̃j

) γ+ε
γ−ε

ψj

< ∞.

But since Z1 ∈ L(γ) if and only if eZ1 ∈ R−γ, and since Ee|X1−Z1|(γ+ε) < ∞, it follows
from Breiman’s [4] result on products of regularly varying distributions that

P
(
eX1 > x

)
= P

(
eZ1 eX1−Z1 > x

) ∼ Eeγ(X1−Z1) P
(
eZ1 > x

)
, as x →∞,

which is Equation (4.2) (the latter equation can also be derived from Proposition 1.1 of
Davis and Resnick [9] and Pakes [22], Lemma 2.1). ¤
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Similarly to the regularly varying TAR(S, 1) model, the tail of the TAR process is
equivalent to the tail of the noise. Next, analog to the regularly varying case we show
the convergence of a sequence of point processes. In contrast to Theorem 3.5 we obtain
the convergence to a Poisson random measure. Thus, this model cannot exhibit extremal
clusters.

Theorem 4.2 (Point process behavior) Suppose that conditions DC and TB hold
with p+ > 0, and let (Xk)k∈N0 be a stationary version of the TAR(S, q) process as given
in (1.1). Suppose further that Z1 ∈ L(γ) with γ > 0, or that Z1 ∈ S ∩ MDA(Λ). Let
an > 0 and bn ∈ R be sequences of constants such that

lim
n→∞

nP(X0 > anx + bn) = exp(−x) for x ∈ R.

Then as n →∞,

∞∑

k=1

ε(k/n,a−1
n (Xk−bn))

w
=⇒

∞∑

k=1

ε(sk,Pk) in MP ([0,∞)× R),

where
∑∞

k=1 ε(sk,Pk) is a PRM(dt× e−xdx).

Proof. First, we investigate the case Z1 ∈ L(γ) with γ > 0. Let un = anx + bn, n ∈ N.
Since (Xk)k∈N0 is geometrically strongly mixing by Lemma 2.1, the mixing condition
Dr(un) of Leadbetter et al. [20], Theorem 5.5.1, holds for (Xk)k∈N0 . It remains to show
the anti-cluster condition D′(un), i. e.

lim
k→∞

lim
n→∞

n

bn/kc∑
j=2

P(Xj > un, X1 > un) = 0.

By Lemma 2.2 we have

n

bn/kc∑
j=2

P(Xj > un, X1 > un) ≤ n

bn/kc∑
j=2

P(X̃j > un, X̃1 > un).

Furthermore, P(X̃1 > un) ∼ CP(X1 > un) as n → ∞ and some constant C > 0 by
Proposition 4.1. Analog to the proof of Theorem 7.4 in Rootzén [26] (cf. Fasen et al. [16],
proof of Lemma 2) we have that the MA process (X̃k)k∈N0 satisfies the D′(un) condition,
and, hence, also (Xk)k∈N0 satisfies the D′(un) condition. The conclusion then follows by
Leadbetter et al. [20], Theorem 5.5.1.

In the remaining case Z1 ∈ S∩MDA(Λ) the conclusion follows from Fasen [15], Propo-
sition 9, and (4.3)-(4.4), which converges to 0 as x →∞. ¤
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We can now obtain the behavior of the running maxima of the stationary sequence
and hence identify the extremal index to be equal to 1, which implies that the model
cannot exhibit clusters on high levels in this case. We omit the proof, which is along the
lines of that of Corollary 3.6.

Corollary 4.3 Let the assumptions of Theorem 4.2 hold and Mn = maxk=1,...,n Xk for
n ∈ N. Then

lim
n→∞

P(a−1
n (Mn − bn) ≤ x) = exp(−e−x) for x ∈ R.

In particular, the extremal index of (Xk)k∈N0 is equal to 1.

5 Conclusion

We have shown that stationary TAR models with noise in S∩MDA(Λ) or L(γ) with γ > 0

are tail equivalent to their noise sequence, and that they have extremal index equal to one,
hence cannot cluster. On the other hand, if the noise sequence is regularly varying, then
the tail is in general only O-regularly varying, but for TAR(S, 1) models with intervals as
partitions it is tail equivalent to its noise (in particular it is regularly varying). Moreover,
in this case the extremal index is less than 1 in many cases depending on the coefficients
of the TAR model. In those cases the TAR(S, 1) model can exhibit cluster behavior.

It would be interesting to obtain similar results for noise sequences which are super-
exponential, such as distribution functions F with tails like F (x) = Kxb exp(−xp) for
p ∈ (1,∞). However, already the analysis for infinite moving average processes with such
noise sequences is very involved and has been carried out by Rootzén [26, 27]. See also
Klüppelberg and Lindner [19] for such moving average processes. But for the TAR model,
due to the nonlinear regime switch, it seems an open problem how to determine the pre-
cise tail behavior of the stationary TAR model even for Gaussian noise, apart from simple
situations such as symmetric TAR models.
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