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CONTINUOUS-TIME GARCH PROCESSES
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A family of continuous-time generalized autoregressive conditionally
heteroscedastic processes, generalizing the COGARCH(1,1) process of
Klüppelberg, Lindner and Maller [J. Appl. Probab. 41 (2004) 601–622], is in-
troduced and studied. The resulting COGARCH(p, q) processes, q ≥ p ≥ 1,
exhibit many of the characteristic features of observed financial time se-
ries, while their corresponding volatility and squared increment processes
display a broader range of autocorrelation structures than those of the
COGARCH(1,1) process. We establish sufficient conditions for the existence
of a strictly stationary nonnegative solution of the equations for the volatil-
ity process and, under conditions which ensure the finiteness of the required
moments, determine the autocorrelation functions of both the volatility and
the squared increment processes. The volatility process is found to have the
autocorrelation function of a continuous-time autoregressive moving average
process.

1. Introduction. In financial econometrics, discrete-time GARCH (general-
ized autoregressive conditionally heteroscedastic) processes are widely used to
model the returns at regular intervals on stocks, currency investments and other
assets. Specifically, a GARCH process (ξn)n∈N typically represents the increments
lnPn − lnPn−1 of the logarithms of the asset price at times 1,2,3, . . . . These
models capture many of the so-called stylized features of such data, for exam-
ple, tail heaviness, volatility clustering and dependence without correlation. For
GARCH processes with finite fourth moments, the autocorrelation functions of
both the squared process and the associated volatility process are those of autore-
gressive moving average (ARMA) processes. The squared GARCH(1,1) process,
for example, has the autocorrelation function of an ARMA(1,1) process and the
corresponding volatility has the autocorrelation function of an AR(1) process.
Higher-order GARCH(p, q) processes were introduced to allow for the possibility
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of a broader range of autocorrelations for the volatility and the squared increment
processes.

Various attempts have been made to capture the stylized features of financial
time series using continuous-time models. The interest in continuous-time models
stems from their use in modeling irregularly spaced data, their use in financial ap-
plications such as option pricing and the current wide-spread availability of high-
frequency data. In continuous time it is natural to model the logarithm of the asset
price itself, that is, Gt = lnPt , rather than its increments as in discrete time.

Notable among these attempts is the GARCH diffusion approximation of
Nelson [23]. (See also [12] and [13].) Although the GARCH process is driven by
a single noise sequence, the diffusion limit is driven by two independent Brownian
motions (W

(1)
t )t≥0 and (W

(2)
t )t≥0. For example, the GARCH(1,1) diffusion limit

satisfies

dGt = σt dW
(1)
t ,

(1.1)
dσ 2

t = θ(γ − σ 2
t ) + ρσ 2

t dW
(2)
t , t ≥ 0.

The behavior of this diffusion limit is therefore rather different from that of the
GARCH process itself since the volatility process (σ 2

t )t≥0 evolves independently
of the driving process (W

(1)
t )t≥0 in the first of the equations (1.1).

Another approach is via the stochastic volatility model of Barndorff-Nielsen
and Shephard [3, 4] in which the volatility process σ 2 is an Ornstein–Uhlenbeck
(O–U) process driven by a nondecreasing Lévy process and G satisfies an equation
of the form dGt = µdt + σt dWt , where W is a Brownian motion independent of
the Lévy process. The autocorrelation function of the Lévy-driven O–U volatility
process has the form ρ(h) = exp(−c|h|) for some c > 0, but this class can be
extended by specifying the volatility to be a superposition of O–U processes as
in [2] or a Lévy-driven CARMA (continuous-time ARMA) process as in [10]. As
in Nelson’s diffusion limit, the process G is again driven by two independent noise
processes and the volatility process σ 2 evolves independently of the process W in
the equation for G.

A continuous-time analog of the GARCH(1,1) process, denoted
COGARCH(1,1), was recently constructed and studied by Klüppelberg, Lindner
and Maller [19]. Their construction is based on taking a limit of an explicit repre-
sentation of the discrete-time GARCH(1,1) process to obtain a continuous-time
analog. Since no such representation exists for higher-order discrete-time GARCH
processes, a different approach is needed to construct higher-order continuous-
time analogs. In this paper we do this by specifying a system of Lévy-driven
stochastic differential equations for the processes G and σ 2. If the volatility
process σ 2 is strictly stationary we refer to the process G as a COGARCH(p, q)

process. In the special case p = q = 1 we recover the COGARCH(1,1) process
of Klüppelberg, Lindner and Maller [19]. In general we obtain a class of processes
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G with uncorrelated increments but for which the corresponding volatility and
squared increment processes exhibit a broad range of autocorrelation functions.
The volatility process has the autocorrelation function of a continuous-time
ARMA process.

The construction of the COGARCH(1,1) process due to Klüppelberg, Lind-
ner and Maller [19] starts from the defining equations of the discrete-time
GARCH(1,1) process (ξn)n∈N0 ,

ξn = εnσn,
(1.2)

σ 2
n = α0 + α1ξ

2
n−1 + β1σ

2
n−1, n ∈ N0,

where α0, α1 and β1 are all strictly positive, and (εn)n∈N0 is a sequence of i.i.d.
(independent and identically distributed) random variables with mean 0 and vari-
ance 1. The recursions (1.2) can be solved to give

σ 2
n =

(
σ 2

0 + α0

∫ n

0
exp

[
−

�s�∑
j=0

log(β1 + α1ε
2
j )

]
ds

)

× exp

[(
n−1∑
j=0

log(β1 + α1ε
2
j )

)]
,

where �s� denotes the integer part of s ∈ R. The COGARCH(1,1) equations
are then obtained by replacing the driving noise sequence (εn)n∈N0 by the
jumps (	Lt = Lt − Lt−)t≥0 of a Lévy process. More precisely, observing that∑n−1

j=0 log(β1 + α1ε
2
j ) = n logβ1 + ∑n−1

j=0 log(1 + (α1/β1)ε
2
j ) for β1 > 0 and writ-

ing η for − logβ1, ω0 for α0 and ω1 for α1, leads to the equations

dGt = σt dLt , t > 0, G0 = 0,(1.3)

σ 2
t =

(
σ 2

0 + ω0

∫ t

0
eXs ds

)
e−Xt−, t ≥ 0,(1.4)

where

Xt := ηt − ∑
0<s≤t

log
(
1 + ω1e

η(	Ls)
2).(1.5)

Here, ω0 > 0,ω1 ≥ 0, η > 0 and σ 2
0 is independent of (Lt )t≥0. The

COGARCH(1,1) process is the solution G of these equations and, under specified
conditions on the coefficients and the distribution of σ 2

0 , the volatility process σ 2

is strictly stationary and G has stationary increments.
The COGARCH(1,1) process with stationary volatility has been shown to

have many of the features of the discrete time GARCH(1,1) process. As shown
in [19, 20], the COGARCH(1,1) process has uncorrelated increments, while the
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autocorrelation functions of the volatility σ 2 and of the squared increments of G

decay exponentially. Furthermore, the COGARCH(1,1) process has heavy tails
and volatility clusters at high levels; see [14] and [20]. For an overview of the ex-
tremes of stochastic volatility models, see [14] and [21]. Also, observe that many
of the features of the COGARCH(1,1) process can be obtained in a more general
setting, as in [21].

In the next section we specify a system of stochastic differential equations for
the COGARCH(p, q) process G and its associated volatility process, which we
shall denote by V . This is directly motivated by the corresponding structure of the
discrete-time GARCH(p, q) process. We then show that the solution of these equa-
tions coincides with that of the COGARCH(1,1) equations if p = q = 1. Notation
and definitions used throughout the paper are given at the end of Section 2.

In Section 3 we give sufficient conditions for the existence of a strictly station-
ary volatility process. In the COGARCH(1,1) case, these are exactly the necessary
and sufficient conditions obtained by Klüppelberg, Lindner and Maller [19, 20].
More detailed results are given in the special case when the driving Lévy process
is compound Poisson. The proofs rely on the fact that the state vector of the
COGARCH(p, q) process, sampled at uniformly spaced discrete times, satisfies
a multivariate random recurrence equation.

In Section 4 we focus on the autocorrelation structure of the stationary volatil-
ity process. Just as the discrete-time GARCH volatility process has the autocor-
relation function of an ARMA process, the COGARCH volatility process has the
autocorrelation function of a CARMA process.

Section 5 deals with conditions which ensure positivity of the volatility, while
the autocorrelation structure of the squared increments of the COGARCH process
itself is obtained in Section 6. The results are illustrated with simulations in Sec-
tion 7. So as not to disturb the flow of the arguments, proofs of the results are
postponed to Sections 8–11.

2. The COGARCH(p,q) equations. Let (εn)n∈N0 be an i.i.d. sequence of
random variables. Let p,q ≥ 0. Then the GARCH(p, q) process (ξn)n∈N0 is de-
fined by the equations

ξn = σnεn,

σ 2
n = α0 + α1ξ

2
n−1 + · · · + αpξ2

n−p(2.1)

+ β1σ
2
n−1 + · · · + βqσ

2
n−q, n ≥ s,

where s := max(p, q), σ 2
0 , . . . , σ 2

s−1 are i.i.d. and independent of the i.i.d. se-
quence (εn)n≥s , and ξn = Gn+1 − Gn represents the increment at time n of the
log asset price process (Gn)n∈N0 . Note that the continuous-time GARCH process
will be a model for (Gt)t≥0 and not for its increments as in discrete time.

Equation (2.1) shows that the volatility process (σ 2
n )n∈N0 can be viewed

as a “self-exciting” ARMA(q,p − 1) process driven by the noise sequence
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(σ 2
n−1ε

2
n−1)n∈N. Motivated by this observation, we will define a continuous-time

GARCH model for the log asset price process (Gt)t≥0 of order (p, q) by

dGt = σt dLt , t > 0, G0 = 0,

where (σ 2
t )t≥0 is a CARMA(q,p − 1) process driven by a suitable replacement

for the discrete time driving noise sequence (σ 2
n−1ε

2
n−1)n∈N.

The state–space representation of a Lévy-driven CARMA(q,p − 1) process
(ψt )t≥0 with driving Lévy process L, location parameter c, moving average coef-
ficients α1, . . . , αp , autoregressive coefficients β1, . . . , βq and q ≥ p is (see [8])

ψt = c + a′ζt ,

dζt =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . . 0
0 0 0 · · · 1

−βq −βq−1 −βq−2 · · · −β1

 ζt dt +


0
0
...

0
1

 dLt ,

where a′ = [α1, . . . , αq], αj := 0 for j > p and the coefficient matrix in the last
equation is −β1 if q = 1. (The CARMA(q,p − 1) process (ψt )t≥0 is a strictly sta-
tionary solution of these equations, which exists under conditions found in [9].) To
obtain a continuous-time analog of the equation (2.1), we suppose that the volatil-
ity process (σ 2

t )t≥0 has the state–space representation of a CARMA(q,p − 1)

process in which the driving Lévy process (Lt ) is replaced by a continuous-time
analog of the driving process (σ 2

n−1ε
2
n−1)n∈N in (2.1).

The increments of the driving process in continuous time should correspond to
the increments of the discrete-time process:

R(d)
n :=

n−1∑
i=0

ξ2
i =

n−1∑
i=0

σ 2
i ε2

i .

We therefore replace the innovations εn by the jumps 	Lt of a Lévy process
(Lt )t≥0 to obtain the continuous-time analog

Rt := ∑
0<s≤t

σ 2
s−(	Ls)

2, t > 0.

If L has no Gaussian part [i.e., τ 2
L = 0 in (2.2) below], we recognize R as the

quadratic covariation of G, that is,

Rt = ∑
0<s≤t

σ 2
s−(	Ls)

2 =
∫ t

0
σ 2

s− d[L,L]s = [G,G]t .

If L has a Gaussian part, then still
∑

0<s≤t (	Ls)
2 = [L,L](d), the discrete part of

the quadratic covariation, and we have in general

Rt =
∫ t

0
σ 2

s− d[L,L](d)
s , that is, dRt = σ 2

t− d[L,L](d)
t .
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Recall that for a Lévy process L = (Lt )t≥0 the characteristic function E(eiθLt ),

θ ∈ R, can be written in the form

E(eiθLt ) = exp
(
t

(
iγLθ − τ 2

L

θ2

2
(2.2)

+
∫

R

(
eiθx − 1 − iθx1|x|≤1

)
dνL(x)

))
.

The constants γL ∈ R, τ 2
L ≥ 0 and the measure νL on R form the charac-

teristic triplet of L. As usual, the Lévy measure νL is required to satisfy∫
R

min(1, x2) dνL(x) < ∞. For more information on Lévy processes, we refer
to the books by Applebaum [1], Bertoin [5] or Sato [25].

The COGARCH(p, q) equations will now be obtained by specifying that the
volatility process V (= σ 2) should satisfy continuous-time ARMA equations
driven by the process R defined above. Provided V is nonnegative almost surely
(conditions for which are given in Section 5), we can define a process G by the
equations G0 = 0 and dGt = √

Vt dLt . Under conditions ensuring that V is also
strictly stationary, we refer to G as a COGARCH(p, q) process. As we shall see,
when p = q = 1, the solution of the COGARCH equations coincides with that
of the COGARCH(1,1) equations (1.3)–(1.5) of [19]. [The parameters β1, . . . , βq

and α1, . . . , αp in the following definition should not be confused with the parame-
ters denoted by the same symbols in the defining equation (2.1) of the discrete-time
GARCH process.]

DEFINITION 2.1 [The COGARCH(p, q) equations]. If p and q are integers
such that q ≥ p ≥ 1, α0 > 0, α1, . . . , αp ∈ R, β1, . . . , βq ∈ R, αp 	= 0, βq 	= 0 and
αp+1 = · · · = αq = 0, we define the (q × q) matrix B and the vectors a and e by

B =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−βq −βq−1 −βq−2 . . . −β1

 ,

a =


α1
α2
...

αq−1
αq

 , e =


0
0
...

0
1

 ,

with B := −β1 if q = 1. Then if L = (Lt )t≥0 is a Lévy process with nontrivial
Lévy measure, we define the (left-continuous) volatility process V = (Vt )t≥0 with
parameters B , a, α0 and driving Lévy process L by

Vt = α0 + a′Yt−, t > 0, V0 = α0 + a′Y0,
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where the state process Y = (Yt )t≥0 is the unique cadlag solution of the stochastic
differential equation

dYt = BYt− dt + e(α0 + a′Yt−) d[L,L](d)
t , t > 0,(2.3)

with initial value Y0, independent of the driving Lévy process (Lt )t≥0. If the
process (Vt )t≥0 is strictly stationary and nonnegative almost surely, we say that
G = (Gt)t≥0, given by

dGt = √
Vt dLt , t > 0, G0 = 0,

is a COGARCH(p, q) process with parameters B , a, α0 and driving Lévy
process L.

That there is in fact a unique solution of (2.3) for any starting random vector Y0
follows from standard theorems on stochastic differential equations (e.g., [24],
Chapter V, Theorem 7). The stochastic integrals are interpreted with respect to
the filtration F = (Ft )t≥0, which is defined to be the smallest right-continuous fil-
tration such that F0 contains all the P -null sets of F , (Lt )t≥0 is adapted and Y0 is
F0-measurable.

Without restrictions on α0,a and B , the process V is not necessarily non-
negative, in which case G is undefined. Conditions which ensure that V is nonneg-
ative will be discussed in Section 5. In particular, it will be shown that if a′eBte ≥ 0
for all t ≥ 0 and Y0 is such that V is strictly stationary, then V is nonnegative with
probability 1. Even if V takes negative values, however, the process is of some
interest in its own right and many of our results for V are valid without the non-
negativity restriction.

Conditions for stationarity of V are discussed in Section 3.
We next show that if p = q = 1, the solution of the COGARCH equations in

Definition 2.1 coincides with the solution of the COGARCH(1,1) equations of
Klüppelberg, Lindner and Maller [19].

THEOREM 2.2. Suppose that p = q = 1, and that α0, α1 and β are all strictly
positive. Then the processes (Gt)t≥0 and (Vt )t≥0 of Definition 2.1 are, respectively,
the processes (Gt)t≥0 and (σ 2

t )t≥0 defined by (1.3)–(1.5), with parameters ω0 =
α0β1, ω1 = α1e

−β1 and η = β1.

PROOF. From

dYt = −β1Yt dt + Vt d[L,L](d)
t and Vt+ = α0 + α1Yt

it follows that

dVt+ = α1 dYt = −α1β1
Vt − α0

α1
dt + α1Vt d[L,L](d)

t ,
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and hence that

Vt+ = α0β1t − β1

∫ t

0
Vs ds + α1

∑
0<s≤t

Vs(	Ls)
2 + V0.

However, this equation is also satisfied by the volatility process (σ 2
t )t≥0 of (1.4)

when ω0 = α0β1, η = β1 and ω1 = α1e
−β1 , as shown in Proposition 3.2 of [19],

and uniqueness of the solution gives the claim. �

We conclude this section with a few definitions and some notation which will
be used throughout the paper.

DEFINITION 2.3. Let a and B be as in Definition 2.1. Then the characteristic
polynomials associated with a and B are given by

a(z) := α1 + α2z + · · · + αpzp−1, z ∈ C,

b(z) := zq + β1z
q−1 + · · · + βq, z ∈ C.

The eigenvalues of the matrix B (which are exactly the zeroes of b) will be denoted
by λ1, . . . , λq and assumed to be ordered in such a way that


λq ≤ 
λq−1 ≤ · · · ≤ 
λ1

(where 
λi denotes the real part of λi). Furthermore, define

λ := λ(B) := 
λ1.

For the rest of the paper, convergence in probability will be denoted by “
P→”,

uniform convergence on compacts in probability by “
ucp→” and equality in distribu-

tion by “ d=”. For x ∈ R we shall write log+(x) for log(max{1, x}). The transpose of
a column vector c ∈ C

q will be denoted by c′. If ‖·‖ is a vector norm in C
q , then the

natural matrix norm of the (q × q) matrix C is defined as ‖C‖ = supc∈Cq\{0}
‖Cc‖
‖c‖ .

Correspondingly, for r ∈ [1,∞], we denote by ‖ · ‖r both the vector Lr -norm and
the associated natural matrix norm. Recall that the natural matrix norms of the
L1,L2 and L∞ vector norms are the column-sum norm, the spectral norm and the
row-sum norm, respectively.

The (q × q) identity matrix will be denoted by Iq or simply I , and the canon-
ical vector (0, . . . ,0,1,0, . . . ,0)′, with ith component equal to 1, will be denoted
by ei . For eq we simply write e. By diag(λ1, . . . , λq) we mean the diagonal (q ×q)

matrix with these entries on the diagonal. The Kronecker product of two (q × q)

matrices A and B will be denoted by A⊗B , and by vec(A) we denote the column
vector in C

q2
which arises from A by stacking the columns of A in a vector (start-

ing with the first column). For the properties of the Kronecker product, we refer to
Lütkepohl [22].
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3. Stationarity conditions. In this section we consider conditions under
which the volatility process (Vt )t≥0 specified in Definition 2.1 is strictly station-
ary. The parameters B , a and α0, and the state process (Yt )t≥0 are as specified in
Definition 2.1. The condition (3.2) established in Theorem 3.1 below is necessary
and sufficient for stationarity in the special case p = q = 1. For larger values of p

and q it is sufficient only, but not unduly restrictive, since there is a rich class of
models satisfying the condition. Without serious loss of generality we shall assume
that the matrix B can be diagonalized. Since the only eigenvectors corresponding
to the eigenvalue λi are constant multiples of [1, λi, λ

2
i , . . . , λ

q−1
i ]′, this is equiv-

alent to the assumption that the eigenvalues of B are distinct. Let S be a matrix
such that S−1BS is a diagonal matrix, for example,

S =


1 · · · 1
λ1 · · · λq

... · · · ...

λ
q−1
1 · · · λ

q−1
q

 .(3.1)

[For this particular choice, S−1BS = diag(λ1, . . . , λq).]

THEOREM 3.1. Let (Yt )t≥0 be the state process of the COGARCH(p, q)

process with parameters B , a and α0. Suppose that all the eigenvalues of B are
distinct. Let L be a Lévy process with nontrivial Lévy measure νL and suppose
there is some r ∈ [1,∞] such that∫

R

log(1 + ‖S−1ea′S‖ry
2) dνL(y) < −λ = −λ(B)(3.2)

for some matrix S such that S−1BS is diagonal. Then Yt converges in distribu-

tion to a finite random variable Y∞, as t → ∞. It follows that if Y0
d= Y∞, then

(Yt )t≥0 and (Vt )t≥0 are strictly stationary.

REMARK 3.2. (a) If (Vt )t≥0 is the volatility of a COGARCH(1,1) process
with parameters B = −β1 < 0, α0 > 0 and α1 > 0, then ‖S−1ea′S‖r = α1 and, as
already indicated, the condition (3.2) is necessary and sufficient for the existence of
a strictly stationary COGARCH(1,1) volatility process. (See [19], Theorem 3.1.)

(b) For general q ≥ 2, the quantity ‖S−1eaS‖r depends on the specific choice
of S and on r . Observe that it is sufficient to find some S and some r such that (3.2)
holds.

The proof of Theorem 3.1 will make heavy use of the general theory of mul-
tivariate random recurrence equations, as discussed by Bougerol and Picard [7],
Kesten [18] and Brandt [6] (in the one-dimensional case). The COGARCH state
vector satisfies such a multivariate random recurrence equation, as indicated in the
following theorem.



CONTINUOUS-TIME GARCH PROCESSES 799

THEOREM 3.3. Let (Yt )t≥0 be the state process of the COGARCH(p, q)

process with parameters B , a and α0, and driving Lévy process L. Then there ex-
ists a family (Js,t ,Ks,t )0≤s≤t of random (q × q) matrices Js,t and random vectors
Ks,t in R

q such that

Yt = Js,tYs + Ks,t , 0 ≤ s ≤ t.(3.3)

Furthermore, the distribution of (Js,t ,Ks,t ) depends only on t − s, (Js1,t1,Ks1,t1)

and (Js2,t2,Ks2,t2) are independent for 0 ≤ s1 ≤ t1 ≤ s2 ≤ t2; and for 0 ≤ s ≤ u ≤ t ,

Js,t = Ju,tJs,u.(3.4)

If additionally the conditions of Theorem 3.1 hold, then the distribution of the
vector Y∞ is, for any h > 0, the unique solution of the random fixed point equation

Y∞ d= J0,hY∞ + K0,h,(3.5)

with Y∞ independent of (J0,h,K0,h) on the right-hand side of (3.5).

REMARK 3.4. (a) The stationarity condition (3.2) is easy to check. However,
as the proofs of Theorems 3.1 and 3.3 show, a weaker stationary condition is the
existence of a vector norm ‖ · ‖ and t0 > 0 such that J0,t0 and K0,t0 satisfy the
conditions

E log
∥∥J0,t0

∥∥ < 0 and E log+ ∥∥K0,t0

∥∥ < ∞.(3.6)

By (3.4), E log‖J0,t0‖ < 0 is equivalent to the requirement that there is a strictly
positive value of t1 such that the Lyapunov exponent of the i.i.d. sequence
(Jt1n,t1(n+1))n∈N0 , that is,

lim
n→∞

1

n
E
(
log

∥∥Jt1(n−1),t1n · · ·J0,t1

∥∥)
= inf

n∈N

(
1

n
E
(
log

∥∥Jt1(n−1),t1n · · ·J0,t1

∥∥)),

(which is independent of the specific norm), is strictly negative. As shown by
Bougerol and Picard [7], provided E log+ ‖J0,t1‖ < ∞, E log+ ‖K0,t1‖ < ∞ and
a certain irreducibility condition holds, then strict negativity of the Lyapunov ex-
ponent is not only sufficient, but also necessary for the existence of stationary
solutions of such random recurrence equations.

(b) The conditions of Theorem 3.1 imply the conditions (3.6) with the matrix
norm defined as the natural norm ‖A‖B,r = ‖S−1AS‖r , corresponding to the vec-
tor norm

‖c‖B,r := ‖S−1 c‖r , c ∈ C
q.(3.7)
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Observe, however, that the conditions of Theorem 3.1 are in general not neces-
sary for stationarity. For example, using methods similar to those in the proofs of
Theorems 3.1 and 3.3, it can be shown that for any vector norm ‖ · ‖ and for t ≥ 0,

‖J0,t‖ ≤ ‖eBt‖ + e‖B‖t exp

( ∑
0<s≤t

log
(
1 + (	Ls)

2‖ea′‖))

× ‖ea′‖ ∑
0<s≤t

(	Ls)
2.

Now if λ(B) < 0, then ‖eBt‖ → 0 as t → ∞, and (3.6) can be satisfied without
assuming that all the eigenvalues of B are distinct, but choosing ‖a‖ sufficiently
small and imposing certain integrability conditions on L. We shall not pursue this
argument here because the conditions of Theorem 3.1 will be sufficient for our
purposes.

The matrices Js,t and the vector Ks,t of Theorem 3.3 will be constructed ex-
plicitly when L is compound-Poisson, and in the general case will be obtained as
the limit of the corresponding quantities for compound-Poisson-driven processes.
In the compound-Poisson case we shall show that the stationary state vector satis-
fies a distributional fixed point equation which is much easier to handle than (3.5).
Also, we compare the stationary distribution of Y∞ with the stationary distribution
of the state vector when sampled at the jump times of the Lévy process. This is the
content of the next theorem.

THEOREM 3.5. (a) Let (Yt )t≥0 be the state process of a COGARCH(p, q)

process with parameters B , a and α0. Suppose that the Lévy measure νL of the
driving Lévy process L is finite and write the compound-Poisson process [L,L](d)

in the form

[L,L](d)
t = ∑

0<s≤t

(	Ls)
2 =

N(t)∑
i=1

Zi,

where N(t) is the number of jumps of L in the time interval (0, t] and Zi is the
square of the ith jump size. Let T1 denote the time at which the first jump occurs
and let Tj , j = 2,3, . . . , be the time intervals between the (j −1)st and j th jumps.
Furthermore, let (T0,Z0) be independent of (Ti,Zi)i∈N with the same distribution
as (T1,Z1). For i ∈ N0, let

Ci = (I + Ziea′)eBTi ,

Di = α0Zie

and �n = ∑n
i=1 Ti (where �0 := 0). Then the discrete time process (Y�n)n∈N0 sat-

isfies the random recurrence equation

Y�n+1 = Cn+1Y�n + Dn+1, n ∈ N0.(3.8)
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Furthermore, for any t > 0,

Yt = eB(t−�N(t))

[
1{N(t) 	=0}DN(t) +

N(t)−2∑
i=0

CN(t) · · ·CN(t)−iDN(t)−i−1

+ CN(t) · · ·C1Y0

]
(3.9)

d= eB(t−�N(t))

[
1{N(t) 	=0}D1 +

N(t)−1∑
i=1

C1 · · ·CiDi+1 + C1 · · ·CN(t)Y0

]
.

(b) Assume additionally that the conditions of Theorem 3.1 are satisfied. Then
the infinite sum

∑∞
i=0 C1 · · ·CiDi+1 converges almost surely absolutely to a ran-

dom vector Ŷ, which has the stationary distribution of the sequence (Y�n)n∈N0 .
The stationary state vector Y∞ satisfies

Y∞ d= eBT Ŷ,(3.10)

where T is independent of (Ti,Zi)i∈N0 and has the distribution of T1. Furthermore,
Y∞ is the unique solution in distribution of the distributional fixed point equation

Y∞ d= QY∞ + R,(3.11)

where Y∞ is independent of (Q,R) and

Q := eBT0(I + Z0ea′),
R := α0 Z0 eBT0e.

The fixed point equation (3.11) will play a crucial role in the determination of
the covariance matrix of Y∞, which is studied in the next section.

4. Second-order properties of the volatility process. In this section (Yt )t≥0
denotes the state process defined by (2.3), with parameters B , a and α0, and driving
Lévy process L with Lévy measure νL. The aim of this section is to study the
autocorrelation function of the volatility process (Vt )t≥0. We shall write

µ :=
∫

R

y2 dνL(y) and ρ :=
∫

R

y4 dνL(y),

and, if µ < ∞ (i.e., EL2
1 < ∞),

B̃ := B + µea′.(4.1)

Observe that B̃ has the same form as B , but with last row given by (−βq +
µα1, . . . ,−β1 +µαq). We first give sufficient conditions for the moments of Yt to
exist.
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PROPOSITION 4.1. Suppose that the eigenvalues of B are distinct, λ =
λ(B) < 0, ‖ · ‖ is any vector norm on C

q and k ∈ N. Then the following results
hold.

(a) If E|L1|2k < ∞ and E‖Y0‖k < ∞,

E‖Yt‖k < ∞ ∀ t ≥ 0.

(b) If E|L1|2k < ∞, r ∈ [1,∞], S is a matrix such that S−1BS is diagonal
and ∫

R

(
(1 + ‖S−1ea′S‖r y2)k − 1

)
dνL(y) < −λk,

then S and r satisfy (3.2) and E‖Y∞‖k < ∞. In particular, E(Y∞) exists if

EL2
1 < ∞ and ‖S−1ea′S‖rµ < −λ,(4.2)

and the covariance matrix cov(Y∞) exists if

EL4
1 < ∞ and ‖S−1ea′S‖2

r ρ < 2(−λ − ‖S−1ea′S‖rµ).(4.3)

Furthermore, (4.3) implies (4.2), and (4.2) implies that all the eigenvalues of B̃

have strictly negative real parts, in particular that B̃ is invertible and βq 	= α1µ.

Next, we determine the autocovariance function of the (not necessarily station-
ary) volatility process of Definition 2.1.

THEOREM 4.2. Let (Vt )t≥0 be the volatility process specified in Defini-
tion 2.1, with state process (Yt )t≥0 and parameters B , a and α0. Suppose that
EL4

1 < ∞ and that E‖Yt‖2 < ∞ ∀ t ≥ 0 (as is the case, e.g., if the conditions of
Proposition 4.1 are satisfied ). Then, with B̃ defined as in (4.1),

cov(Vt+h,Vt ) = a′eB̃h cov(Yt )a, t, h ≥ 0.(4.4)

Since we are primarily interested in the stationary volatility process, we need to
evaluate cov(Y∞). However, first we need an expression for E(Y∞).

LEMMA 4.3. Suppose that all the eigenvalues of B are distinct and that (4.2)
holds. Then

E(Y∞) = −α0µB̃−1e = α0µ

βq − α1µ
e1.(4.5)

The following theorem contains the main results of this section. It demonstrates
that the autocorrelation function of the stationary COGARCH volatility process is
the same as that of a continuous-time ARMA process. This reflects the correspond-
ing discrete-time result that the autocorrelation function of a GARCH volatility
process is the same as that of a discrete-time ARMA process.
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THEOREM 4.4. Suppose that the eigenvalues of the matrix B are distinct,
λ(B) < 0 and (4.3) holds. Then the matrix (I ⊗ B̃) + (B̃ ⊗ I ) + ρ((ea′) ⊗ (ea′))
is invertible and the covariance matrix of Y∞ is the unique solution of[

(I ⊗ B̃) + (B̃ ⊗ I ) + ρ
(
(ea′) ⊗ (ea′)

)]
vec(cov(Y∞))

(4.6)

= −α2
0β2

qρ

(βq − µα1)2 vec(ee′).

Let (ψt )t≥0 be a stationary CARMA(q,p − 1) process (as defined in Section 2)
with location parameter 0, moving average coefficients α1, . . . , αp , autoregressive
coefficients β1 − µαq,β2 − µαq−1, . . . , βq − α1µ, driving Lévy process L̃ and
corresponding state process (ζt )t≥0. Suppose that E(L̃1)

2 < ∞, E(L̃1) = µ and
var(L̃1) = ρ, and define

m := ρ

∫ ∞
0

a′eB̃tee′eB̃ ′tadt = var(ψt ).

Then 0 ≤ m < 1 and

cov(Y∞) = α2
0β2

q

(βq − µα1)2(1 − m)
cov(ζ∞)

(4.7)

= α2
0β2

qρ

(βq − µα1)2(1 − m)

∫ ∞
0

eB̃tee′eB̃ ′t dt,

var(V∞) = α2
0β2

q

(βq − µα1)2

m

1 − m
,(4.8)

E(V∞) = α0βq

βq − µα1
,(4.9)

E(ψ∞) = α1µ

βq − µα1
.(4.10)

If (Vt )t≥0 is the stationary COGARCH volatility process, then

cov(Vt+h,Vt ) = α2
0β2

q

(βq − µα1)2(1 − m)
cov(ψt+h,ψt), t, h ≥ 0,(4.11)

showing, in particular, that V has the same autocorrelation function as ψ . If the
eigenvalues λ̃1, . . . , λ̃q of B̃ are also distinct, and a(z) and b̃(z) are the character-
istic polynomials associated with a and B̃ , then

cov(Vt+h,Vt ) = α2
0β2

qρ

(βq − µα1)2(1 − m)
(4.12)

×
q∑

j=1

a(̃λj )a(−λ̃j )

b̃′(̃λj )b̃(−λ̃j )
eλ̃j h, t, h ≥ 0,
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where b̃′ denotes the derivative of b̃.

5. Positivity conditions for the volatility. For the definition of the
COGARCH price process dGt = √

Vt dt to make sense, it is necessary that Vt be
nonnegative for all t ≥ 0. The following theorem gives necessary and sufficient
conditions for this to occur with probability 1.

THEOREM 5.1. (a) Let (Yt )t≥0 be the state vector of a COGARCH(p, q)

volatility process (Vt )t≥0 with parameters B , a and α0 > 0. Let γ ≥ −α0 be a real
constant. Suppose that the following two conditions hold:

a′eBte ≥ 0 ∀ t ≥ 0,(5.1)

a′eBtY0 ≥ γ a.s. ∀ t ≥ 0.(5.2)

Then for any driving Lévy process, with probability 1,

Vt ≥ α0 + γ ≥ 0 ∀ t ≥ 0.(5.3)

Conversely, if either (5.2) fails or (5.2) holds with γ > −α0 and (5.1) fails, then
there exists a driving compound-Poisson process L and t0 ≥ 0 such that P(Vt0 <

0) > 0.
(b) Suppose that all the eigenvalues of B are distinct and that (3.2) and (5.1)

both hold. Then with probability 1 the stationary COGARCH(p, q) volatility
process (Vt )t≥0 satisfies

Vt ≥ α0 > 0 ∀ t ≥ 0.

For the stationary COGARCH volatility process or for the process with Y0 = 0,
the condition (5.1) alone is sufficient for almost sure nonnegativity. The expression
a′eBte is in fact the kernel of a CARMA process with autoregressive coefficients
b1, . . . , bq and moving average coefficients a1, . . . , aq . Results that pertain to non-
negativity of a CARMA kernel were recently obtained by Tsai and Chan [28].
We state their results in the next theorem in the context of COGARCH rather
than CARMA processes. Statement (e) below was also obtained by Todorov and
Tauchen [27]. Recall that a function φ on (0,∞) is called completely monotone
if it possesses derivatives of all orders and satisfies (−1)n(dnφ/dtn)(t) ≥ 0 for all
t > 0 and all n ∈ N0.

THEOREM 5.2. Let B and a be the parameters of a COGARCH(p, q)

process. If λ(B) < 0, and α1 > 0, we have the following results.

(a) For the COGARCH(p, q) process, (5.1) holds if and only if the ratio of the
characteristic polynomials a(·)/b(·) is completely monotone on (0,∞).
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(b) A sufficient condition for (5.1) to hold for the COGARCH(1, q) process is
that either (i) all eigenvalues of B are real and negative or (ii) if (λi1, λi1+1), . . . ,

(λir , λir+1) is a partition of the set of all pairs of complex conjugate eigen-
values of B (counted with multiplicity), then there exists an injective mapping
u : {1, . . . , r} → {1, . . . , q} such that λu(j) is a real eigenvalue of B satisfying
λu(j) ≥ 
(λij ).

(c) A necessary condition for (5.1) to hold for the COGARCH(1, q) process
is that there exists a real eigenvalue of B not smaller than the real part of all other
eigenvalues of B .

(d) Suppose 2 ≤ p ≤ q , that all eigenvalues of B are negative and ordered
as in Definition 2.3, and that the roots γj of a(z) = 0 are negative and ordered
such that γp−1 ≤ · · · ≤ γ1 < 0. Then a sufficient condition for (5.1) to hold for the
COGARCH(p, q) process is that

k∑
i=1

γi ≤
k∑

i=1

λi ∀ k ∈ {1, . . . , p − 1}.

(e) A necessary and sufficient condition for (5.1) in the COGARCH(2,2) case
is that both eigenvalues of B are real, that α2 ≥ 0 and that α1 ≥ −α2λ(B).

Although characterization (a) may be difficult to check in general, it gives a
method for constructing further pairs (a, B) for which (5.1) holds, since the product
of two completely monotone functions is again completely monotone.

6. The autocorrelation of the squared increments. In Section 4 we investi-
gated the behavior of the autocorrelation function of the volatility process. Since
one of the striking features of observed financial time series is that the returns
have negligible correlation while the squared returns are significantly correlated,
we now turn to the second-order properties of the increments of the COGARCH
process itself. We therefore assume that V is strictly stationary and nonnegative,
and define, for r > 0,

G
(r)
t := Gt+r − Gt =

∫
(t,t+r]

√
Vs dLs, t ≥ 0.

It is easy to see that (G
(r)
t )t≥0 is a stationary process. Let µ and B̃ be defined as in

Section 4. We then have the following theorem.

THEOREM 6.1. Let B , a and α0 be the parameters of a COGARCH(p, q)

process whose driving Lévy process has mean zero. Suppose that the eigenvalues
of B are distinct, that (4.2) and (5.1) hold, and that V is the stationary volatility
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process. Then for any t ≥ 0 and h ≥ r > 0,

E
(
G

(r)
t

) = 0,(6.1)

E
((

G
(r)
t

)2) = α0βqr

βq − µα1
E(L2

1),(6.2)

cov
(
G

(r)
t ,G

(r)
t+h

) = 0.(6.3)

If in addition (4.3) holds, then

cov
((

G
(r)
t

)2
,
(
G

(r)
t+h

)2) = a′eB̃hHr , h ≥ r,(6.4)

where

Hr := E(L2
1) B̃−1(I − e−B̃r) cov(Yr ,G

2
r ).

The autocovariance function (6.4), like that of the CARMA process with para-
meters B̃ and a, is a linear combination of terms of the form eλ̃j h, j = 1, . . . , q ,
where λ̃1, . . . , λ̃q are the eigenvalues of B̃ .

7. An example. In this section we illustrate the properties established above
using the COGARCH(1,3) process driven by a compound-Poisson process with
jump rate 2 and normally distributed jumps with mean 0 and variance 0.74.
The COGARCH coefficients are α0 = α1 = 1, β1 = 1.2, β2 = 0.48 + π2 and
β3 = 0.064 + 0.4π2, from which we find that the eigenvalues of B are −0.4,
−0.4 + πi and −0.4 − πi. With S defined as in (3.1), ‖S−1ea′S‖2 = 0.21493
and it is easy to check from this that the conditions (4.2) and (4.3) are satisfied.
Condition (b)(ii) of Theorem 5.2 also implies that the volatility process is nonneg-
ative.

The eigenvalues of the matrix B̃ = B + µea′ are −0.25038, −0.47481 +
3.14426i and −0.47481 − 3.14426i. From (4.12) we conclude that the autocor-
relation of the volatility in this case is a linear combination of exp(−0.25038t),
and a damped sinusoid with period approximately equal to 2 and damping factor
exp(−0.47481t).

The top graph in Figure 1 shows the values at integer times 101, . . . ,8100 of
a simulated series (Gt) with the parameters specified above, Y0 = (1,1,1)′ and
G(0) = 0. The second graph shows the differenced series (Gt+1 −Gt)t=100,...,8099
and the last graph shows the volatility (σ 2

t )t=101,...,8100.
As is the case for a discrete-time GARCH process, the increments (Gt+1 −

Gt) exhibit no significant correlation, but the squared increments ((Gt+1 − Gt)
2)

have highly significant correlations as shown in the second graph of Figure 2. The
first graph in Figure 2 shows the sample autocorrelation function of the volatility
process at integer lags. This too is highly significant for large lags, reflecting the
long-memory property frequently observed in financial time series. As expected
from the remarks in the first paragraph above, it has the form of an exponentially
decaying term plus a small damped sinusoidal term with period approximately
equal to 2.
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FIG. 1. The simulated compound-Poisson driven COGARCH(1,3) process with jump
rate 2, normally distributed jumps with mean 0 and variance 0.74, and coefficients
α0 = α1 = 1, β1 = 1.2, β2 = 0.48 + π2 and β3 = 0.064 + 0.4π2. The graphs show the process
(Gt ) sampled at integer times (top), the corresponding increments ((Gt+1 − Gt)) (center) and the
corresponding volatility sequence (Vt = σ 2

t ) (bottom).
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FIG. 2. The sample autocorrelation functions of the volatilities (Vt ) (left) and of the squared
COGARCH increments ((Gt+1 − Gt)

2) (right) of a realization of length 1,000,000 of the
COGARCH process with parameters as specified in Figure 1.

8. Proofs for Section 3. We start by proving Theorem 3.5, since (3.9) will be
needed in the proof of Theorems 3.1 and 3.3.

PROOF OF THEOREM 3.5. (a) It follows from (2.3) that Yt satisfies dYt =
BYt dt for t ∈ [�n,�n+1), so that

Yt = eB(t−�n)Y�n, t ∈ [�n,�n+1), n ∈ N0.(8.1)

At time �n+1 a jump of size e(α0 + a′Y�n+1−)Zn+1 occurs, so that

Y�n+1 = Y�n+1− + e
(
α0 + a′Y�n+1−

)
Zn+1

= (I + Zn+1ea′)Y�n+1− + α0Zn+1e

= Cn+1Y�n + Dn+1, n ∈ N0,

which is (3.8). Solving this recursion gives

Y�n = Dn +
n−2∑
i=0

Cn · · ·Cn−iDn−i−1 + Cn · · ·C1Y0, n ∈ N,

and the first equality in (3.9) follows from this and Yt = eB(t−�N(t))Y�N(t)
. The

second equality in (3.9) is a consequence of the fact that the infinite random el-
ement (N(t),�N(t),CN(t),DN(t), . . . ,C1,D1,0,0, . . .) has the same distribution
as (N(t),�N(t),C1,D1, . . . ,CN(t),DN(t),0,0, . . .); indeed, for any n ∈ N0 and
c ≥ 0, the random vectors (C1,D1), . . . , (Cn,Dn) are i.i.d. and depend on the re-
striction {N(t) = n, �N(t) ≥ c} only in terms of

∑n
i=1 Ti and Tn+1, but not on the

Ti , i = 1, . . . , n, individually.
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(b) Let S be such that S−1BS =: � is diagonal and define the vector norm
‖c‖B,r = ‖S−1c‖r as in (3.7), so that the associated natural matrix norm is
‖A‖B,r = ‖S−1AS‖r . Then we have for t ≥ 0,

‖eBt‖B,r = ‖Se�tS−1‖B,r = ‖e�t‖r = eλt .(8.2)

This gives ‖C1‖B,r ≤ (1 + Z1‖ea′‖B,r)e
λT1 and ‖D1‖B,r = α0‖e‖B,r Z1, so that,

using ν[L,L]([x,∞)) = νL{y ∈ R : |y| ≥ √
x } for x ≥ 0,

E log‖C1‖B,r ≤ λE(T1) + E log(1 + Z1‖ea′‖B,r)

= λ

νL(R)
+ 1

νL(R)

∫
(0,∞)

log(1 + ‖ea′‖B,r y2) dνL(y) < 0

by (3.2) and

E log+(Z1) = 1

νL(R)

∫
R

log+(y2) dνL(y) < ∞.

From the general theory of random recurrence equations, this implies the almost
sure absolute convergence of

∑∞
i=0 C1 · · ·CiDi+1 to Ŷ, which has the stationary

distribution of (Y�n)n∈N (see, e.g., [7]).
To prove (3.10), for m ∈ N, let

Ŷm :=
m−1∑
i=0

C1 · · ·CiDi+1 + C1 · · ·CmY0

and

Yt,m := eB(t−�N(t))Ŷm, t ≥ 0.

Since the random variable (t −�N(t)) is asymptotically independent of T1,Z1, . . . ,

Tm,Zm (for t → ∞, m fixed), it follows that eB(t−�N(t)) is asymptotically indepen-
dent of Ŷm and, hence, Yt,m converges in distribution to eBT Ŷm as t → ∞, where
T is exponentially distributed with parameter νL(R) (e.g., [26], Section 7.4.4) and
is independent of T1,Z1, . . . , Tm,Zm and, hence, can be chosen to be independent

of (Ti)i∈N, (Yi)i∈N (as in the statement of the theorem). Moreover, eBT Ŷm con-

verges almost surely, hence in distribution to eBT Ŷ, as m → ∞. Denote by Ỹt the
expression in the lower line of (3.9). Then (3.10) and, in particular, the existence
of the limit variable Y∞ in the compound-Poisson case follow from (3.9) and a
variant of Slutsky’s theorem (e.g., [11], Proposition 6.3.9), provided

lim
m→∞ lim sup

t→∞
P(‖Ỹt − Yt,m‖B,r > ε) = 0 ∀ ε > 0.(8.3)
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Since ‖eB(t−�N(t))‖B,r ≤ 1 and 1{N(t) 	=0}D1 + ∑N(t)−1
i=1 C1 · · ·CiDi+1 + C1 · · ·

CN(t)Y0 − Ŷm converges almost surely, hence in probability as t → ∞ to∑∞
i=m C1 · · ·CiDi+1 − C1 · · ·CmY0, which itself converges almost surely to 0

as m → ∞, (8.3) is true and (3.10) follows. That Y∞ satisfies (3.11) is clear
from (3.10); that it is the unique solution follows from E log‖Q‖B,r < 0 and
E log+ ‖R‖B,r < ∞. �

The proof of Theorem 3.5(b) already showed the existence of the limit variable
Y∞ for the case of a driving compound-Poisson process. Nevertheless, this ex-
istence will be reestablished in the proof of Theorems 3.1 and 3.3 for the general
case, making use of Theorem 3.5(a) only. We shall use an approximation argument
and introduce the following notation:

DEFINITION 8.1. Let L be a Lévy process. Then for any ε > 0, the
√

ε-cut
Lévy process (L

(ε)
t )t≥0 is defined by

L
(ε)
t := ∑

0<s≤t,|	Ls |≥√
ε

	Ls, t ≥ 0.

If (Yt )t≥0 is a state process of a COGARCH(p, q) process driven by L, then the
state process of the COGARCH(p, q) process with the same parameters and start-
ing vector but driving Lévy process (L

(ε)
t )t≥0 will be denoted by (Y(ε)

t )t≥0.

The quadratic covariation of L(ε) is given by[
L(ε),L(ε)]

t = [
L(ε),L(ε)](d)

t

= ∑
0<s≤t,|	Ls |2≥ε

|	Ls |2.

In particular, the corresponding COGARCH volatility is driven by a compound-
Poisson process. With this notation, we have the following lemma:

LEMMA 8.2. Let (Yt )t≥0 be the state process of a COGARCH(p, q) process.
Then Y(ε)

t converges in ucp to Yt as ε → 0.

PROOF. This is an easy consequence of perturbation results in stochastic
differential equations: recalling the definition of prelocal convergence in Hp ,
1 ≤ p < ∞, as in [24], page 260, it is easy to see that [L(ε),L(ε)] converges prelo-
cally to [L,L](d) in Hp , 1 ≤ p < ∞, as ε → 0 (e.g., with stopping times Tk = k).
The claim then follows from Theorems 14 and 15 of Chapter V in [24]. �
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PROOF OF THEOREMS 3.1 AND 3.3. We shall first concentrate on (3.3)
and (3.4), and then prove Theorem 3.1 and the rest of Theorem 3.3 simultaneously.
Let ε > 0 and assume the representation

[
L(ε),L(ε)]

t =
Nε(t)∑
i=1

Z
(ε)
i ,

where L(ε) is the
√

ε-cut Lévy process of Definition 8.1. Define C
(ε)
i and D(ε)

i

similarly as in Theorem 3.5. Furthermore, let

J
(ε)
0,t := e

B(t−�
(ε)
Nε(t))C

(ε)
Nε(t)

· · ·C(ε)
1 ,

K(ε)
0,t := e

B(t−�
(ε)
Nε(t))

[
1{Nε(t) 	=0}D(ε)

Nε(t)

+
Nε(t)−2∑

i=0

C
(ε)
Nε(t)

· · ·C(ε)
Nε(t)−iD

(ε)
Nε(t)−i−1

]
.

Then, by Theorem 3.5(a),

Y(ε)
t = J

(ε)
0,t Y0 + K(ε)

0,t .(8.4)

From the previous lemma we know that Y(ε)
t converges in ucp to Yt as ε → 0.

Since this is true for any starting value Y0, it holds in particular for Y0 = 0, and
from (8.4) it follows that K(ε)

0,t converges in ucp to some K0,t as ε → 0. Hence,
again from (8.4), it follows that for arbitrary Y0,

J
(ε)
0,t Y0 = Y(ε)

t − K(ε)
0,t

ucp→ Yt − K0,t as ε → 0.

Since this holds for arbitrary Y0, we conclude that J
(ε)
0,t converges in ucp to some

J0,t as ε → 0. From (8.4) it then follows that

Yt = J0,tY0 + K0,t .

By starting at an arbitrary time s instead of at time 0, we obtain (3.3). For example,
J

(ε)
s,t is given by

J
(ε)
s,t = e

B(t−�
(ε)
Nε(t))CNε(t) · · ·CNε(s)+2

(
I + ZNε(s)+1ea′)eB(�

(ε)
Nε(s)+1−s)

,

0 ≤ s ≤ t,

giving (3.4). The independence and stationarity assertions on (Js,t ,Ks,t ) are clear,
since Js,t and Ks,t are constructed only from the segment (Lu)s<u≤t of the Lévy
process L.
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Now assume that all eigenvalues of B are distinct and that (3.2) holds. Apply-
ing (8.2) to J

(ε)
0,t gives

∥∥J (ε)
0,t

∥∥
B,r ≤ ∥∥eB(t−�

(ε)
Nε(t))

∥∥
B,r

∥∥C(ε)
Nε(t)

∥∥
B,r · · ·∥∥C(ε)

1

∥∥
B,r

≤ e
λ(t−�

(ε)
Nε(t))

Nε(t)∏
i=1

((
1 + Z

(ε)
i ‖ea′‖B,r

)
eλ(�

(ε)
i −�

(ε)
i−1)

)

= eλt exp

(
Nε(t)∑
i=1

log
(
1 + Z

(ε)
i ‖S−1ea′S‖r

))
(8.5)

≤ eλt exp

( ∑
0<s≤t

log
(
1 + (	Ls)

2‖S−1ea′S‖r

))
.(8.6)

Since ‖J0,t‖B,r ≤ lim supε→0 ‖J (ε)
0,t ‖B,r , we conclude that

log‖J0,t‖B,r ≤ λt + ∑
0<s≤t

log
(
1 + (	Ls)

2‖S−1ea′S‖r

)
,(8.7)

giving

E log‖J0,t‖B,r ≤ t

(
λ +

∫
R

log(1 + ‖Sea′S−1‖y2) dνL(y)

)
< 0

by (3.2) (see, e.g., [24], Chapter I, Theorems 36 and 38). This is the left-hand
inequality of (3.6). To show that E log+ ‖K0,t‖B,r < ∞, observe that∥∥K(ε)

0,t

∥∥
B,r ≤ e

λ(t−�
(ε)
Nε(t))1{Nε(t) 	=0}α0‖e‖B,rZ

(ε)
Nε(t)

+ α0‖e‖B,r

Nε(t)−2∑
i=0

e
λ(t−�

(ε)
Nε(t)−i−1)

(
1 + Z

(ε)
Nε(t)

‖ea′‖B,r

)
(8.8)

× · · · × (
1 + Z

(ε)
Nε(t)−i‖ea′‖B,r

)
Z

(ε)
Nε(t)−i−1

≤ α0‖e‖B,r1{Nε(t) 	=0}Z(ε)
Nε(t)

+ α0‖e‖B,r

Nε(t)−2∑
i=0

exp

[ ∑
0<s≤t

log
(
1 + (	Ls)

2‖ea′‖B,r

)]
Z

(ε)
Nε(t)−i−1

≤ α0‖S−1e‖r exp

[ ∑
0<s≤t

log
(
1 + (	Ls)

2‖S−1ea′S‖r

)]
(8.9)

× ∑
0<s≤t

(	Ls)
2.
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From this it follows that

log‖K0,t‖B,r ≤ log(α0‖S−1e‖r )

+ ∑
0<s≤t

log
(
1 + (	Ls)

2‖S−1ea′S‖r

) + log[L,L](d)
t .

The expectation of the second summand is finite as shown above and E(log[L,

L](d)
t ) < ∞ since

∫
(1,∞) logx dν[L,L](x) = ∫

R\[−1,1] logx2 dνL(x) < ∞, showing
the right-hand inequality of (3.6).

Let (Jn,Kn)n∈N be an i.i.d. sequence with distribution (J0,1,K0,1), independent
of L and Y0. Let γ ∈ [0,1) and n ∈ N. Then it follows from (3.3) that

Yn+γ = Kn+γ−1,n+γ +
n−2∑
i=0

Jn+γ−1,n+γ · · ·Jn+γ−i−1,n+γ−iKn+γ−i−2,n+γ−i−1

+ Jn+γ−1,n+γ · · ·Jγ,γ+1Yγ

d= K1 +
n−1∑
i=1

J1 · · ·JiKi+1 + J1 · · ·JnYγ

=: Gn + HnYγ , say.

Since E log‖J1‖B,r < 0 and E log+ ‖K1‖B,r < ∞, it follows from the general
theory of random recurrence equations (e.g., [7]) that Hn converges almost surely
to 0 as n → ∞ and that Gn converges almost surely absolutely to some random
vector G as n → ∞. Since Y has cadlag paths, it follows that supγ∈[0,1) ‖Yγ ‖B,r

is almost surely finite. Hence

lim
n→∞ sup

γ∈[0,1)

‖HnYγ ‖B,r = 0 a.s.,

and it follows that Yt converges in distribution to Y∞ := G as t → ∞. That Y∞
satisfies (3.5) and is the unique solution is clear by the theory of random recurrence

equations. Equations (3.5) and (3.3) then imply that if Y0
d= Y∞, then Yt

d= Y∞
for all t > 0, showing strict stationarity of (Yt )t≥0 since it is a Markov process.

�

9. Proofs for Section 4. To prove Proposition 4.1, we will show that the
state process (Yt )t≥0 can be majorized by the state process of a COGARCH(1,1)

process, for which we can apply the moment conditions of Klüppelberg, Lindner
and Maller [19]. We further show that under the conditions of Theorem 3.1, the
stationary distribution Y∞ can be approximated by stationary distributions of
compound Poisson-driven COGARCH processes and that there is a majorant for
this approximation. This will allow us to restrict attention to compound Poisson-
driven processes when calculating autocorrelations, the general case following
from Lebesgue’s dominated convergence theorem. This is the content of the next
lemma.
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LEMMA 9.1. Let (Yt )t≥0 be the state process of a COGARCH(p, q) process
with parameters B , a and α0 > 0 such that all eigenvalues of B are distinct
and that λ = λ(B) < 0. Let r ∈ [1,∞] and let S be such that S−1BS is diago-
nal. Denote by ‖ · ‖B,r the vector norm defined in (3.7). Furthermore, denote by
(Yt )t≥0 the state process of a COGARCH(1,1) process satisfying (2.3) with the
parameters (B,a, α0) replaced by (λ,‖ea′‖B,r , α0‖e‖B,r) and initial state vector
Y0 := ‖Y0‖B,r . Then

‖Yt‖B,r ≤ Yt , t ≥ 0.(9.1)

If (3.2) is satisfied for this r , then there exist versions of Y∞ and Y∞ such that

‖Y∞‖B,r ≤ Y∞.(9.2)

Furthermore, if (Y(ε)
t )t≥0 is the process defined in Definition 8.1 for ε > 0, then

versions of Y(ε)∞ can be chosen such that ‖Y(ε)∞ ‖B,r ≤ Y∞ for all ε > 0 and

Y(ε)∞
P→ Y∞, as ε → 0.

PROOF. We use the notation and setup of the proof of Theorems 3.1 and 3.3.

Let ε > 0 and define a COGARCH(1,1) state process Y
(ε)

similarly as above

(with respect to Y(ε)). Let J
(ε)

0,t and K
(ε)

0,t be defined similarly as J
(ε)
0,t and K(ε)

0,t (with

respect to Y
(ε)

). Then it is easy to see that J
(ε)

0,t and K
(ε)

0,t are the right-hand sides of

(8.5) and (8.8), respectively. In particular, ‖J (ε)
0,t ‖B,r ≤ J

(ε)

0,t and ‖K(ε)
0,t‖B,r ≤ K

(ε)

0,t ,

and since J
(ε)

0,t and K
(ε)

0,t converge in ucp as ε → 0 to some J 0,t and K0,t such that

Yt = J 0,tY0 + K0,t ,

it follows that ‖Yt‖B,r ≤ Yt for fixed t ≥ 0, giving (9.1).

Similar quantities such as J
(ε)

s,t and J s,t can be defined when going from time s

to time t , and similar results hold. Let V
(ε)

t := α0‖e‖B,r + ‖ea′‖B,r Y
(ε)

t− be the

COGARCH(1,1) volatility corresponding to Y
(ε)

. Define

Xt := −λt − ∑
0<s≤t

log
(
1 + (	Ls)

2‖ea′‖B,r

)
,

X
(ε)
t := −λt − ∑

0<s≤t,(	Ls)2≥ε

log
(
1 + (	Ls)

2‖ea′‖B,r

)
.

Then it follows from Theorem 2.2 and (1.4), that

V
(ε)

t+ =
(
V 0 − α0‖e‖B,rλ

∫ t

0
eX

(ε)
s ds

)
e−X

(ε)
t .
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Thus we have J
(ε)

0,t = e−X
(ε)
t and obtain another formula for K

(ε)

0,t , namely

K
(ε)

0,t = ‖ea′‖−1
B,r

[
α0‖e‖B,r e−X

(ε)
t − α0‖e‖B,rλ

∫ t

0
e−(X

(ε)
t −X

(ε)
s ) ds − α0‖e‖B,r

]
.

From this it can be seen that J
(ε)

0,t and K
(ε)

0,t are bounded by J 0,t = e−Xt and

K0,t = ‖ea′‖−1
B,r α0‖e‖B,r

[
e−Xt − λ

∫ t

0
e−(Xt−Xs) ds − 1

]
,

respectively. Now define the versions

Y∞ :=
∞∑
i=0

J 0,1 · · ·J i−1,iKi,i+1,

Y(ε)∞ :=
∞∑
i=0

J
(ε)
0,1 · · ·J (ε)

i−1,iK
(ε)
i,i+1,

Y∞ :=
∞∑
i=0

J0,1 · · ·Ji−1,iKi,i+1.

In the proof of Theorems 3.1 and 3.3 we have seen that (3.2) implies that the sum
defining Y∞ converges almost surely. This then gives the claim, since

‖Ji−1,i‖B,r ,
∥∥J (ε)

i−1,i

∥∥
B,r ≤ J i−1,i ,

‖Ki,i+1‖B,r ,
∥∥K(ε)

i,i+1

∥∥
B,r ≤ Ki,i+1,

and J
(ε)
i−1,i and K(ε)

i,i+1 converge in probability to Ji−1,i and Ki,i+1 as ε → 0, re-
spectively. �

PROOF OF PROPOSITION 4.1. All assertions apart from the implication
“(4.2) �⇒ λ(B̃) < 0” follow immediately from Lemma 9.1 (observing that the
existence of E‖Yt‖k is independent of the specific matrix norm) and the cor-
responding properties of the COGARCH(1,1) process; see Section 4 in [19].
That (4.2) implies λ(B̃) < 0 is a consequence of the Bauer–Fike perturbation result
on eigenvalues, stating that for every eigenvalue λ̃j of B̃ we have

min
i=1,...,q

|λi − λ̃j | ≤ ‖S−1(B̃ − B)S‖r = µ‖S−1ea′S‖r

(see, e.g., Theorem 7.2.2 and its proof in [17]). �

PROOF OF THEOREM 4.2. Since for fixed t , almost surely Vt = Vt+ = α0 +
a′Yt , we obtain

cov(Vt+h,Vt ) = a′ cov(Yt+h,Yt )a.(9.3)
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For ease of notation, we will assume that t = 0. Let Jh := J0,h and Kh := K0,h as
constructed in the proof of Theorem 3.3. Then, using that ‖eBt‖ ≤ e‖B‖t for any
vector norm ‖ · ‖, it follows as in the proof of (8.6) that

E‖Jh‖ ≤ e‖B‖tE
{

exp

( ∑
0<s≤h

log
(
1 + (	Ls)

2‖ea′‖))} < ∞(9.4)

by Klüppelberg, Lindner and Maller ([19], Lemma 4.1(a)). Using that Yh =
JhY0 + Kh, we conclude that E‖Kh‖ < ∞ and that

E(YhY′
0) = E

(
E(YhY′

0|Jh,Kh)
)

= E
(
JhE(Y0Y′

0) + Kh E(Y′
0)
)

= E(Jh)E(Y0Y′
0) + E(Kh)E(Y′

0).

On the other hand,

E(Yh)E(Y′
0) = E(Jh)E(Y0)E(Y′

0) + E(Kh)E(Y′
0),

so that cov(Yh,Y0) = E(Jh) cov(Y0) and (4.4) will follow from (9.3) once we
have shown that

E(Jt ) = eB̃t , t ≥ 0.(9.5)

To do that, it suffices to assume that [L,L]t is a compound-Poisson process.
The general case then follows from the fact that J

(ε)
t as defined in the proof

of Theorem 3.1 converges to Jt in L1 as ε → 0, since it converges stochasti-
cally and since there is an integrable majorant by (9.4) and its proof. So sup-
pose that [L,L]t = ∑N(t)

i=1 Zi is compound-Poisson with intensity c > 0 and let
Ci = (I + Ziea′)eB(�i−�i−1). Then, for 0 ≤ s, t , it follows from (3.4) and the inde-
pendence of J0,s and Js,s+t that

E(Js+t ) = E(Js)E(Jt ).

It is easy to see that E(Jt ) is a continuous function in t ∈ [0,∞). Furthermore,
E(J0) = I and we conclude that (E(Jt ))t≥0 is a semigroup. We shall show that its
generator AJ satisfies

AJ := lim
t→0

1

t

(
E(Jt ) − I

) = B +
∫

R

y2 dνL(y) ea′ = B̃.(9.6)

This then implies (9.5), since E(Jt ) = etAJ (see, e.g., [16], Proposition 2.5). To
show (9.6), write

Jt = eBt1{N(t)=0} + eB(t−�1)C11{N(t)=1}
(9.7)

+ eB(t−�N(t))CN(t) · · ·C11{N(t)≥2}.
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Since N(t) is Poisson distributed with parameter ct , we have P(N(t) = k) =
e−ct (ct)k/(k!). Then by (9.4),

E
(
eB(t−�N(t))CN(t) · · ·C11{N(t)≥2}

)
≤ e‖B‖tE

(
exp

(
N(t)∑
i=1

log(1 + Zi‖ea′‖)
)

1{N(t)≥2}
)

= e‖B‖tE
(

exp

(
N(t)∑
i=1

log(1 + Zi‖ea′‖)
)∣∣∣N(t) ≥ 2

)
P
(
N(t) ≥ 2

)

≤ e‖B‖tE
(

exp

(
N(t)+2∑

i=1

log(1 + Zi‖ea′‖)
))

P
(
N(t) ≥ 2

)
(9.8)

= e‖B‖tE
(
(1 + Z1‖ea′‖)(1 + Z2‖ea′‖))

× E

(
exp

( ∑
0<s≤t

log
(
1 + (	Ls)

2‖ea′‖)))P
(
N(t) ≥ 2

)
= o(t) as t → 0,

since P(N(t) ≥ 2) = o(t) as t → 0. Furthermore, since �1 is uniformly distributed
on (0, t), conditional on N(t) = 1, it follows that

E
(
eB(t−�1)C1 1{N(t)=1}

)
= E

(
eB(t−�1)(I + Z1ea′)eB�1 |N(t) = 1

)
P
(
N(t) = 1

)
=

∫ t

0
eB(t−s)(I + E(Z1)ea′)eBs ds

t
e−ct ct.

Since sup0≤s≤t ‖eBs − I‖ converges to 0 as t → 0, we conclude that

lim
t→0

1

t
E
(
eB(t−�1)C11{N(t)=1}

) = (
I + E(Z1)ea′)c.

Now (9.7) and (9.8) give (9.6), since

lim
t→0

E(Jt ) − I

t
= lim

t→0

eBte−ct − I

t
+ c

(
I + E(Z1)ea′)

= −cI + B + c
(
I + E(Z1)ea′) = B̃. �

We now need the following lemma:

LEMMA 9.2. Let T be exponentially distributed with parameter c, and sup-
pose that λ(B) < 0. Let

M := E(eBT ⊗ eBT ).
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Then

E(eBT ) = (I − c−1B)−1,(9.9)

M−1 = Iq2 − (
I ⊗ (c−1B)

) − (
(c−1B) ⊗ I

)
.(9.10)

Furthermore, (I ⊗ B) + (B ⊗ I ) is invertible and, for any real (q × q) matrix U ,
the unique solution of ((I ⊗ B) + (B ⊗ I ))x = vec(U) is given by

x = vec
(
−
∫ ∞

0
eBtUeB ′t dt

)
.(9.11)

Here, we denote by I the (q × q) identity matrix and denote by Iq2 the (q2 × q2)

identity matrix.

PROOF. Equations (9.9) and (9.10) follow by simple calculations and a di-
agonalization argument, while invertibility of (I ⊗ B) + (B ⊗ I ) and (9.11) is a
consequence of Lyapunov’s theorem for the solution of Lyapunov equations (see,
e.g., Section 9.3 in [15]). �

PROOF OF LEMMA 4.3. Suppose first that the Lévy measure of L is finite,
and let Q and R be as in Theorem 3.5(b) [writing (T ,Z) instead of (T0,Z0)].
Then, by Lemma 9.2,

E(Q) = (I − c−1B)−1(I + E(Z)ea′),
E(R) = α0E(Z)(I − c−1B)−1e,

and (3.11) gives (
I − E(Q)

)
E(Y∞) = E(R).

Furthermore,

(I − c−1B)
(
I − E(Q)

) = [(I − c−1B) − I − E(Z)ea′]
= −1

c
(B + µea′),

giving

E(Y∞) = −c(B + µea′)−1(I − c−1B)E(R) = −α0µ(B + µea′)−1e.

Denoting u = (u1, . . . , uq)
′ := (B + µea′)−1e, it is easy to see that u2 = · · · =

uq = 0 and u1 = 1/(α1µ − βq). In the case when νL is infinite, the result follows
from Lemma 9.1, using that Y∞ is an integrable majorant by (4.2). �

PROOF OF THEOREM 4.4. By Lemma 9.1 and the dominated convergence
theorem, for showing (4.6) it is sufficient to assume that [L,L] is a compound-
Poisson process. Hence, let Q and R be as in Theorem 3.5, writing (T ,Z) instead
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of (T0,Z0), where T is exponentially distributed with parameter c > 0. Then

E(Y∞Y′∞) − E(QY∞Y′∞Q′)
(9.12)

= E(QY∞R′) + E(RY′∞Q′) + E(RR′)

by (3.11) and all these expectations exist by (4.3). Now

E(QY∞Y′∞Q′) = E(E[QY∞Y′∞Q′|Q])
= E

(
E[QE(Y∞Y′∞)Q′|T ])

= E
(
eBT E[(I + Zea′)E(Y∞Y′∞)(I + Zae′)]eB ′T )

.

Using that vec(A1A2A3) = (A′
3 ⊗ A1)vec(A2) for matrices A1,A2 and A3, it fol-

lows with M as in Lemma 9.2 that

vec(E(QY∞Y′∞Q′))
= M vec

(
E
(
(I + Zea′)E(Y∞Y′∞)(I + Zae′)

))
= M

(
E
(
(I + Zea′) ⊗ (I + Zea′)

))
vec(E(Y∞Y′∞))

= M
(
Iq2 + E(Z)

(
(ea′) ⊗ I

) + E(Z)
(
I ⊗ (ea′)

) + E(Z2)
(
(ea′) ⊗ (ea′)

))
× vec(E(Y∞Y′∞)).

Similar expressions can be obtained for vec(E(QY∞R′)), vec(E(RY′∞Q′)) and
vec(E(RR′)), and we obtain from (9.12) that[

Iq2 − M
(
Iq2 + E(Z)

(
(ea′) ⊗ I

) + E(Z)
(
I ⊗ (ea′)

) + E(Z2)
(
(ea′) ⊗ (ea′)

))]
× vec(E(Y∞Y′∞))

= M vec
[
α2

0E(Z2)ee′ + α0
(
E(Z)I + E(Z2)ea′)E(Y∞)e′

+ α0eE(Y′∞)
(
E(Z)I + E(Z2)ae′)].

Multiplying this equation by cM−1, using (9.10) and (4.5) as well as µ = cE(Z)

and ρ = cE(Z2), we obtain

−[(
I ⊗ (B + µea′)

) + (
(B + µea′) ⊗ I

) + ρ
(
(ea′) ⊗ (ea′)

)]
vec(E(Y∞Y′∞))

= vec[α2
0ρee′ − α2

0(µI + ρea′)µ(B + µea′)−1ee′

− α2
0ee′(B ′ + µae′)−1µ(µI + ρae′)].

Adding to this[
(I ⊗ B̃) + (B̃ ⊗ I ) + ρ

(
(ea′) ⊗ (ea′)

)]
vec(E(Y∞)E(Y′∞))

= vec[B̃ E(Y∞)E(Y′∞) + E(Y∞)E(Y′∞)B̃ ′ + ρea′E(Y∞)E(Y′∞)ae′]
= α2

0 vec[µ2ee′(B̃ ′)−1 + µ2B̃−1ee′ + ρµ2ea′B̃−1ee′(B̃ ′)−1ae′]
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on both sides results in

−[
(I ⊗ B̃) + (B̃ ⊗ I ) + ρ

(
(ea′) ⊗ (ea′)

)]
vec(cov(Y0))

= α2
0ρ[1 − µ(a′B̃−1e)]2 vec(ee′)

= α2
0β2

qρ

(βq − µα1)2 vec(ee′),

which is (4.6), where we used (4.5) in the last equation.
Now let A := (I ⊗ B̃) + (B̃ ⊗ I ) and x := vec(cov(Y∞)). By Proposition 4.1

and Lemma 9.2, A is invertible. Observe that the matrix ρ((ea′) ⊗ (ea′)) has
nonzero entries only in the last row. Denote this row by c′. Furthermore, set
γ := ρα2

0β
2
q (µα1 − βq)−2. Then (4.6) can be written as

Ax + (c′x)eq2 = −γ eq2 .

We know already that a solution to this equation exists. Suppose there are two solu-
tions, call them x1 and x2. Then Ax1 = −(γ +c′x1)eq2 and Ax2 = −(γ +c′x2)eq2 .
Denoting the unique solution of Ay = −n eq2 by y(n), n ∈ R, it follows that
x1 = y(γ + c′x1) and x2 = y(γ + c′x2). Since x1 	= 0 	= x2, this implies γ + c′x1 	=
0 	= γ + c′x2, and using the linearity of the solution y(n) in n, it follows that
there is κ 	= 0 such that x2 = κx1. Thus we have Ax1 = −(γ + c′x1)eq2 and
κAx1 = −(γ + κc′x1)eq2 , and this is only possible if κ = 1, so x1 = x2. So the
solution of (4.6) is unique, implying that the matrix A + ρ((ea′) ⊗ (ea′)) is invert-
ible.

By (9.11), the solution y(n) of Ay = −neq2 is given by

y(n) = vec
(
n

∫ ∞
0

eB̃tee′eB̃ ′t dt

)
.(9.13)

This gives

cov(Y∞) = (
γ + c′ vec(cov(Y∞))

) ∫ ∞
0

eB̃tee′eB̃ ′t dt.

Since both cov(Y∞) and
∫ ∞

0 eB̃tee′eB̃ ′t dt are positive semidefinite, it follows that
γ + c′ vec(cov(Y∞)) > 0. By Brockwell [9], the stationary CARMA state vector
ζ∞ has covariance matrix

cov(ζ∞) = ρ

∫ ∞
0

eB̃tee′eB̃ ′t dt,

so that there is u > 0 such that

cov(Y∞) = u cov(ζ∞).(9.14)
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Inserting (9.14) into (4.6) and using (9.13) shows

−uρ vec(ee′) + uρ2 vec
(

ea′
∫ ∞

0
eB̃tee′eB̃ ′t dt ae′

)

= −α2
0β2

qρ

(βq − µα1)2 vec(ee′),

so that

−u(1 − m)vec(ee′) = −α2
0β2

q

(βq − µα1)2 vec(ee′).

Since u > 0 and α0, βq 	= 0, it follows that 0 ≤ m < 1 and that

u = α2
0β2

q

(βq − µα1)2(1 − m)
,

giving (4.7). This implies (4.8), using V∞ = α0 + a′Y∞, and (4.9) follows
from (4.5). Finally,

E(ψ∞) = a′E
∫ ∞

0
eB̃tedL̃t = µ

∫ ∞
0

a′eB̃tedt = −µa′B̃−1e,

giving (4.10), and (4.11) and (4.12) are direct consequences of (4.4), (4.7) and the
autocovariance function of a CARMA process (see [9]). �

10. Proofs for Section 5.

PROOF OF THEOREM 5.1. (a) Suppose that (5.1) and (5.2) both hold. By
Lemma 8.2, it suffices to show (5.3) for the case that [L,L] = ∑N(t)

i=1 Zi is a
compound-Poisson process, with jump times (�n)n∈N. Then it follows easily by
induction from (2.3) and (8.1) that

Yt = eBtY0 +
N(t)∑
i=1

eB(t−�i)eV�i
Zi, t ≥ 0.

In view of the proof of (b) below, let s ≥ 0. Then

a′eBsYt = a′eB(s+t)Y0 +
N(t)∑
i=1

a′eB(s+t−�i)eV�i
Zi(10.1)

≥ γ +
N(t)∑
i=1

a′eB(s+t−�i)eV�i
Zi.(10.2)

Setting s = 0, it follows that Vt = α0 + a′Yt− ≥ α0 + γ for t ∈ [0,�1]; hence also
V�1+ ≥ α0 + γ ≥ 0 by (5.1) and (10.2), and an induction argument shows that
Vt ≥ α0 + γ for all t ≥ 0, that is, (5.3) holds.
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For the converse, suppose first that (5.2) fails. Then, using the continuity
of the function t �→ eBt , it follows that there is (t1, t2) ⊂ (0,∞) such that
P(α0 + a′eBtY0 < 0 ∀ t ∈ (t1, t2)) > 0, and since P(�1 > t2) > 0 we get the claim
from (10.1). So suppose that (5.2) holds with γ > −α0, but (5.1) fails. Suppose
that the support of the Lévy measure of the compound-Poisson process [L,L] (and
hence the support distribution of the jumps, Zi) is unbounded. Let (t3, t4) ⊂ (0,∞)

be an interval such that a′eBte ≤ −c1 < 0 for all t ∈ (t3, t4) for some c1 < 0. Let
t5 > t4. By (5.2) we have P(V�1 ≥ α0 + γ ) = 1, so that it is easy to see that the set

A := {
�1 < t5 < �2, t5 − �1 ∈ (t3, t4),V�1 ≥ α0 + γ

}
has positive probability. On A we have, by (10.1),

Vt5 = α0 + a′eBt5Y0 + a′eB(t5−�1) eV�1Z1.

Now a′eB(t5−�1)e ≤ −c1 and by choosing Z1 (which is independent of �1,�2

and Y0) large enough, we obtain P(Vt5 < 0) > 0.
(b) In view of (a) it remains to show that Y∞ satisfies (5.2). For the proof of this,

it suffices by Lemma 9.1 to assume that [L,L] is compound-Poisson. Let (Ỹt )t≥0

be a state process with Ỹ0 = 0. Then (5.2) holds for Ỹ0 with γ = 0, and it follows

from (10.2), (5.1) and (5.3) that a′eBsỸt ≥ 0 for all s, t ≥ 0. Since Ỹt converges in
distribution to Y∞ as t → ∞, (5.2) follows with γ = 0. �

11. Proof for Section 6.

PROOF OF THEOREM 6.1. We mimic the proof of Proposition 5.1 of [19],
that is, in the COGARCH(1,1) case. Observe that (6.1) and (6.3) follow immedi-
ately, since (Lt )t≥0 is a zero-mean martingale. Furthermore, (Gt)t≥0 is a square
integrable martingale so that

EG2
r = E

∫ r

0
Vs d[L,L]s = E(L1)

2rE(V∞),

and (6.2) follows from (4.9). Before showing (6.4), we verify that EG4
t < ∞

if (4.3) is satisfied: it follows from the Burkholder–Davis–Gundy inequality (see,
e.g., [24], page 222) that EG4

t < ∞ if E[G,G]2
t < ∞. Let V t = α0‖e‖B,r +

‖ea′‖B,rYt− be the volatility of the COGARCH(1,1) process constructed in

Lemma 9.1 and let Gt = ∫ t
0

√
V t dLt be the corresponding COGARCH(1,1) price

process. Then it follows from Lemma 9.1 that there is C1 > 0 such that

0 ≤ Vs = α0 + a′Ys− ≤ α0 + C1Ys− = α0 + C1
V s − α0‖e‖B,r

‖ea′‖B,r

.
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Then

[G,G]t =
∫ t

0
Vs d[L,L]s

≤ C1

‖ea′‖B,r

∫ t

0
V s d[L,L]s +

(
α0 − C1α0‖e‖B,r

‖ea′‖B,r

)
[L,L]t

= C1

‖ea′‖B,r

[G,G]t +
(
α0 − C1α0‖e‖B,r

‖ea′‖B,r

)
[L,L]t ,

so that again by the Burkholder–Davis–Gundy inequality and Doob’s maximal

inequality, finiteness of EG
4
t implies finiteness of E[G,G]2

t and hence of EG4
t .

The fact that EG
4
t < ∞ was used in [19] in the case when L has no Gaussian

component, but it also holds in the general case.
Denote by Er the conditional expectation with respect to the σ -algebra Fr .

Using partial integration, we have(
G

(r)
h

)2 = 2
∫ h+r

h+
Gs− dGs + [G,G]h+r

h+

= 2
∫ h+r

h
Gs−

√
Vs dLs +

∫ h+r

h+
Vs d[L,L]s .

Since the increments of L on the interval (h,h + r] are independent of Fr and
since L has expectation 0, it follows that

Er

∫ h+r

h+
Gs−

√
Vs dLs = 0.

Recall that Ys = Jr,sYr + Kr,s by (3.3). Hence we also have Ys− = Jr,s−Yr +
Kr,s−, so that, by the compensation formula,

Er

(
G

(r)
h

)2 = Er

∫ h+r

h+
(α0 + a′Ys−) d[L,L]

= Er

∫ h+r

h+
(α0 + a′Jr,s−Yr + a′Kr,s−) d[L,L]

= E(L2
1)α0r + E(L2

1)a
′
∫ h+r

h+
(EJr,s−)Yr ds(11.1)

+ E(L2
1)a

′
∫ h+r

h+
(EKr,s−) ds

= E(L2
1)

∫ h+r

h
Er(Vs) ds.

Since Y∞ d= Jr,sY∞ + Kr,s by (3.5), with Y∞ independent of (Jr,s,Kr,s) on
the right-hand side, and EJr,s = eB̃(s−r) by the proof of Theorem 4.2, it follows
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from (4.5) that

EKr,s = (
I − eB̃(s−r)) α0µ

βq − α1µ
e1.

Hence

Er(Vs) = α0 + a′eB̃(s−r)Yr + a′ α0µ

βq − α1µ

(
I − eB̃(r−s))e1

(11.2)

= α0βq

βq − α1µ
+ a′eB̃(s−r)

(
Yr − α0µ

βq − α1µ
e1

)
.

Combining
∫ h+r
h eB̃(s−r) ds = eB̃hB̃−1(I − e−B̃r ) with (11.1), (11.2) and (4.5)

gives

Er

(
G

(r)
h

)2 = E(L2
1)

(
α0rβq

βq − α1µ
+ a′eB̃hB̃−1(I − e−B̃r)(Yr − EYr )

)
,

and we conclude with (6.2) that

E
((

G
(r)
0

)2(
G

(r)
h

)2)
= E

(
Er

((
G

(r)
h

)2
G2

r

))
= E(L2

1)E

(
α0rβq

βq − α1µ
G2

r + a′eB̃hB̃−1(I − e−B̃r)(Yr − EYr )G
2
r

)
= (E(G2

r ))
2 + E(L2

1)a
′eB̃hB̃−1(I − e−B̃r)[E(YrG

2
r ) − (EYr )(EG2

r )],
showing (6.4). �
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