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Abstract

Necessary and sufficient conditions for the existence of a strictly stationary so-
lution of the equations defining an ARMA(p, q) process driven by an independent
and identically distributed noise sequence are determined. No moment assumptions
on the driving noise sequence are made.
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1 Introduction

A strict ARMA(p, q) process (autoregressive moving average process of order (p, q)) is

defined as a complex-valued strictly stationary solution Y = (Yt)t∈Z of the difference

equations

Φ(B)Yt = Θ(B)Zt, t ∈ Z, (1.1)

where B denotes the backward shift operator, (Zt)t∈Z is an independent and identically

distributed (i.i.d.) complex-valued sequence and Φ(z) and Θ(z) are the polynomials,

Φ(z) := 1− φ1z − . . .− φpz
p, Θ(z) := 1 + θ1z + . . . + θqz

q, z ∈ C,

with φ1, . . . , φp ∈ C, θ1, . . . , θq ∈ C, φ0 := 1, θ0 := 1, φp 6= 0 and θq 6= 0.

A great deal of attention has been devoted to weak ARMA(p, q) processes which are de-

fined as weakly stationary solutions of the difference equations (1.1) with (Zt)t∈Z assumed

only to be white noise, i.e an uncorrelated sequence of random variables with constant
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mean µ and variance σ2 > 0. It is easy to show, see e.g. Brockwell and Davis [1], that if

(Yt)t∈Z is a weakly stationary solution, then it has a spectral density fY which satisfies,

|Φ(e−iω)|2fY (ω) = |Θ(e−iω)|2σ2/(2π), ω ∈ [−π, π]. (1.2)

Since fY must be integrable on [−π, π], this shows that any zero of Φ(·) on the unit circle

must be removable, i.e. if |λ| = 1 and λ is a zero of order m of Φ(·), then λ must also be

a zero of Θ(·) of order at least m.

Conversely if all the zeroes of Φ(z) on the unit circle are removable and (Zt)t∈Z is white

noise then there exists a weakly stationary solution of (1.1), namely the unique weakly

stationary solution of the equation obtained from (1.1) by cancelling the factors of Φ(B)

corresponding to the zeroes on the unit circle with the corresponding factors of Θ(B).

If Φ(z) has no zeroes on the unit circle then the weakly stationary solution is unique.

Provided the probability space on which (Zt)t∈Z is defined is rich enough to support a

random variable which is uniformly distributed on [0, 1] and uncorrelated with (Zt)t∈Z,

then there is a unique weakly stationary solution of (1.1) only if Φ(z) has no zeroes on the

unit circle. (The last statement can be proved using a slight modification of the argument

in Lemma 2 below.)

In recent years the study of heavy-tailed and asymmetric time series models has be-

come of particular importance, especially in mathematical finance, where series of daily

log returns on assets (the daily log return at time t is defined as log Pt− log Pt−1, where Pt

is the closing price of the asset on day t) show clear evidence of dependence, heavy tails

and asymmetry. Daily realized volatility series also exhibit these features. The interest in

ARMA processes as defined in the first paragraph has increased accordingly, especially

those driven by i.i.d. noise with possible asymmetry and heavy tails.

Although sufficient conditions for the existence of strictly stationary solutions of (1.1)

under the assumption of i.i.d. (Zt)t∈Z with not necessarily finite variance have been given

in the past (see e.g. Cline and Brockwell [3], where it is assumed that the tails of the

distribution of Zt are regularly varying and that neither Φ nor Θ has a zero on the unit

circle), necessary conditions are much more difficult to prescribe since the simple argument

based on the spectral density in (1.2) does not apply. Yohai and Maronna [7], in their

study of estimation for heavy-tailed autoregressive processes, make the assumption that

E log+ |Zt| < ∞ (1.3)

to ensure stationarity and remark that “it seems difficult to relax it”. More recently

Mikosch et al. [6] and Davis [4] have investigated parameter estimation for ARMA pro-

cesses for which Zt is in the domain of attraction of a stable law. In spite of the consid-

erable interest in heavy-tailed ARMA processes there appears however to have been no
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systematic investigation of precise conditions under which the equation (1.1) has a strictly

stationary solution and conditions under which such a solution is unique.

The purposes of this note are to establish necessary and sufficient conditions on both

the i.i.d. noise and the zeroes of the defining polynomials in (1.1) under which a strictly

stationary solution (Yt)t∈Z of the equations (1.1) exists, to specify a solution when these

conditions are satisfied and to give necessary and sufficient conditions for its uniqueness.

Such conditions are given in Theorem 2.1 which shows in particular that the condition

(1.3) cannot be relaxed except in the trivial case when all the singularities of Θ(z)/Φ(z)

are removable. Furthermore, if (Zt)t∈Z is non-deterministic, a strictly stationary solution

of (1.1) cannot exist unless all zeroes of Φ on the unit circle are also zeroes of Θ of at

least the same multiplicity. Under either of these conditions a strictly stationary solution

is given by the expression (familiar from the finite variance case),

Yt =
∞∑

k=−∞
ψkZt−k, (1.4)

where ψk is the coefficient of zk in the Laurent expansion of Θ(z)/Φ(z).

If Φ(z) 6= 0 for all z ∈ C such that |z| = 1 the solution (1.4) is the unique strictly

stationary solution of (1.1). If Φ(z) = 0 for some z ∈ C such that |z| = 1 and there exists

a strictly stationary solution of (1.1) then we show in Lemma 2 that it is not the only one

(assuming that the probability space on which (Zt)t∈Z is defined is rich enough to support

a random variable uniformly distributed on [0, 1] and independent of (Zt)t∈Z).

Lemma 2.2, which justifies the cancellation of common factors of Φ(z) and Θ(z) under

appropriate conditions, plays a key role in the proof of Theorem 2.1. A version with less

restrictive conditions is established as Theorem 3.2.

If (Zt)t∈Z is deterministic, i.e. if there exists a constant c ∈ C such that P (Zt = c) = 1

for all t ∈ Z, the conditions are slightly different. They are specified in Theorem 3.

2 Existence of a strictly stationary solution

The following theorem, which is the main result of the paper, gives necessary and sufficient

conditions for the existence of a strictly stationary solution of (1.1) with non-deterministic

i.i.d. noise (Zt)t∈Z.

Theorem 1. Suppose that (Zt)t∈Z is a non-deterministic i.i.d. sequence. Then the ARMA

equation (1.1) admits a strictly stationary solution (Yt)t∈Z if and only if

(i) all singularities of Θ(z)/Φ(z) on the unit circle are removable and E log+ |Z1| < ∞,

or
(ii) all singularities of Θ(z)/Φ(z) in C are removable.
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If (i) or (ii) above holds, then a strictly stationary solution of (1.1) is given by

Yt =
∞∑

k=−∞
ψkZt−k, t ∈ Z, (2.1)

where ∞∑

k=−∞
ψkz

k =
Θ(z)

Φ(z)
, 1− δ < |z| < 1 + δ for some δ ∈ (0, 1),

is the Laurent expansion of Θ(z)/Φ(z). The sum in (2.1) converges absolutely almost

surely.

If Φ does not have a zero on the unit circle, then (2.1) is the unique strictly stationary

solution of (1.1).

Before proving Theorem 1 we need to establish conditions under which common factors

of Φ(z) and Θ(z) can be cancelled. This is done in the proof of the following lemma.

Lemma 1. [Reduction Lemma] Suppose that Y = (Yt)t∈Z is a strict ARMA(p, q) process

satisfying (1.1). Suppose that λ1 ∈ C is such that Φ(λ1) = Θ(λ1) = 0, and define

Φ1(z) :=
Φ(z)

1− λ−1
1 z

, Θ1(z) :=
Θ(z)

1− λ−1
1 z

, z ∈ C.

If |λ1| = 1 suppose further that all finite dimensional distributions of Y are symmetric,

that Z0 is symmetric and that Φ1(λ1) = 0, i.e. the multiplicity of the zero λ1 of Φ is at

least 2. Then Y is a strict ARMA(p− 1, q− 1) process with autoregressive polynomial Φ1

and moving average polynomial Θ1, i.e.

Φ1(B)Yt = Θ1(B)Zt, t ∈ Z. (2.2)

(As will be shown in Theorem 2 below, the symmetry conditions imposed in the case

|λ1| = 1 can be eliminated.)

Proof of Lemma 1. Define

Wt := Φ1(B)Yt, t ∈ Z. (2.3)

Then (Wt)t∈Z is strictly stationary and since Φ(z) = (1− λ−1
1 z)Φ1(z) we have

Wt − λ−1
1 Wt−1 = Θ(B)Zt, t ∈ Z.

Iterating gives for n ∈ N0

Wt = λ−n
1 Wt−n +

n−1∑
j=0

λ−j
1 Θ(B)Zt−j, t ∈ Z.
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Writing Θ(B)Zt =
∑q

k=0 θkZt−k (with θ0 := 1), it follows that for n ≥ q

Wt − λ−n
1 Wt−n

=
n−1∑
j=0

λ−j
1

q∑

k=0

θkZt−k−j

=

q−1∑
j=0

λ−j
1

(
j∑

k=0

θkλ
k
1

)
Zt−j +

n−1∑
j=q

λ−j
1

(
q∑

k=0

θkλ
k
1

)
Zt−j

+

q−1∑
j=0

λ−n−j
1

(
q∑

k=j+1

θkλ
k
1

)
Zt−n−j. (2.4)

Introducing the assumption that Θ(λ1) = 0, we easily find that

−
q−1∑
j=0

λ−j
1

(
q∑

k=j+1

θkλ
k
1

)
zj =

q−1∑
j=0

λ−j
1

(
j∑

k=0

θkλ
k
1

)
zj = Θ1(z), z ∈ C,

so that (2.4) can be written in the form

Wt − λ−n
1 Wt−n = Θ1(B)Zt − λ−n

1 Θ1(B)Zt−n, n ≥ q, t ∈ Z. (2.5)

Now if |λ1| > 1, then the strict stationarity of (Wt)t∈Z and an application of Slutsky’s

lemma show that λ−n
1 Wt−n converges in probability to 0 as n → ∞, and similarly for

λ−n
1 Θ1(B)Zt, so that for |λ1| > 1 we have Φ1(B)Yt = Wt = Θ1(B)Zt, t ∈ Z, which is

(2.2). If |λ1| < 1, multiplying (2.5) by −λn
1 and substituting u = t− n gives

Wu − λn
1Wu+n = Θ1(B)Zu − λn

1Θ1(B)Zu+n, n ≥ q, u ∈ Z.

Letting n →∞ shows again that Wu = Θ1(B)Zu, so that (2.2) is true also in this case.

Now let |λ1| = 1 and assume that Φ1(λ1) = 0. Define

Φ2(z) :=
Φ1(z)

1− λ−1
1 z

=
Φ(z)

(1− λ−1
1 z)2

, z ∈ C,

and

Xt := Φ2(B)Yt, t ∈ Z.

Then (Xt)t∈Z is strictly stationary, and

Xt − λ−1
1 Xt−1 = Φ1(B)Yt = Wt. (2.6)

Defining

Ct := Wt −Θ1(B)Zt, t ∈ Z, (2.7)
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it follows from (2.5) that

Ct = λ−n
1 Ct−n = λ−n

1 Wt−n − λ−n
1 Θ1(B)Zt−n, n ≥ q, t ∈ Z. (2.8)

Summing this over n from q to N for N ≥ q and inserting (2.6) gives

(N − q + 1)Ct =
N∑

n=q

λ−n
1 (Xt−n − λ−1

1 Xt−n−1)−
N∑

n=q

λ−n
1 Θ1(B)Zt−n,

so that for t ∈ Z and N ≥ q we get

Ct−(N−q+1)−1
(
λ−q

1 Xt−q − λ
−(N+1)
1 Xt−N−1

)
= −(N−q+1)−1

N∑
n=q

λ−n
1 Θ1(B)Zt−n. (2.9)

But since (Xt)t∈Z is strictly stationary and since |λ1| = 1, Slutsky’s lemma shows that the

left hand side of (2.9) converges in probability to Ct as N → ∞. Hence the right hand

side of (2.9) converges also in probability to Ct. But it is easy to see that the probability

limit as N → ∞ of the right hand side must be measurable with respect to the tail-σ-

algebra
⋂

n∈N σ
(⋃

k≥n σ(Zt−k)
)
, which by Kolmogorov’s zero-one law is P -trivial. Hence

Ct is independent of itself, so that Ct must be deterministic. Using the assumed symmetry

of Y and Z0, it follows that Wt must be symmetric for each t ∈ Z, as is Wt−Ct = Θ1(B)Zt.

But this is only possible if the deterministic Ct is zero. Equation (2.7) then shows that

Φ1(B)Yt = Wt = Θ1(B)Zt, t ∈ Z,

which is (2.2). 2

Proof of Theorem 1. Sufficiency of condition (ii) can be established by writing equation

(1.1) as

Φ(B)Yt = Φ(B)Θ∗(B)Zt,

where Θ∗(z) is a polynomial. It is then clear that Yt := Θ∗(B)Zt, t ∈ Z, is a strictly

stationary solution of (1.1) regardless of the distribution of Z0. To establish the sufficiency

of condition (i), define (Yt)t∈Z as in (2.1). To see that the defining sum converges absolutely

with probability one, observe that there are constants c, d > 0 such that |ψk| ≤ de−c|k| for

all k ∈ Z. For c′ ∈ (0, c) this gives

∑

k∈Z
P

(
|ψkZt−k| > e−c′|k|

)
≤

∑

k∈Z
P (log+(d|Zt−k|) > (c− c′)|k|)

=
∑

k∈Z
P (log+(d|Z0|) > (c− c′)|k|) < ∞,

the last inequality being due to the condition E log+ |Z0| < ∞. The Borel-Cantelli lemma

then shows that the event {|ψkZt−k| > e−c′|k| infinitely often} has probability zero, giving
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the almost sure absolute convergence of the series. It is clear that (Yt)t∈Z as defined by

(2.1) is strictly stationary and, from the absolute convergence of the series, that it satisfies

(1.1). The uniqueness of the strictly stationary solution under either of the conditions (i)

or (ii) when Φ has no zeroes on the unit circle is guaranteed by Lemma 3.1 of Brockwell

and Lindner [2].

To show that the conditions are necessary, let (Yt)t∈Z be a strictly stationary solution

of Φ(B)Yt = Θ(B)Zt. We shall mimic the proofs of Proposition 2.5 and Theorem 4.2 in

[2]. Let λ1 be a zero of Φ of multiplicity mΦ ≥ 1, and denote by mΘ ∈ N0 the multiplicity

of λ1 as a zero of Θ. We shall assume that the singularity of Θ/Φ at λ1 is not removable,

i.e. that mΦ > mΘ, and show that this implies E log+ |Z0| < ∞ in each of the cases (a)

|λ1| > 1 and (b) |λ1| < 1, while we derive a contradiction in the case (c) |λ1| = 1.

(a) Let |λ1| > 1. By Lemma 1, we may assume without loss of generality that mΘ = 0

and mΦ ≥ 1. Define Wt = Φ1(B)Yt as in (2.3) with Φ1(z) = Φ(z)/(1 − λ−1
1 z). Then it

follows from (2.4) that

Wt − λ−n
1 Wt−n −

q−1∑
j=0

λ−j
1

(
j∑

k=0

θkλ
k
1

)
Zt−j − λ−n

1

q−1∑
j=0

λ−j
1

(
q∑

k=j+1

θkλ
k
1

)
Zt−n−j

= Θ(λ1)
n−1∑
j=q

λ−j
1 Zt−j. (2.10)

Due to the stationarity of (Wt)t∈Z and of (Zt)t∈Z, the left hand side of (2.10) converges

in probability as n → ∞. Hence so does the right hand side. But since mΘ = 0 we have

Θ(λ1) 6= 0, so that
∑∞

j=q λ−j
1 Zt−j converges in probability and hence almost surely as a

sum with independent summands. Since (Zt)t∈Z is i.i.d., it follows from the Borel-Cantelli-

Lemma that

∞∑
n=0

P (log+ |Z0| > n log |λ1|) =
∞∑

n=0

P (|Z0| > |λ1|n)

=
∞∑

n=0

P (|λ−n
1 Z−n| > 1) < ∞,

so that E log+ |Z0| < ∞ as claimed.

(b) The case |λ1| < 1 can be treated similarly, multiplying (2.10) by λn
1 , substituting

u = t− n, and letting n →∞ with u fixed.

(c) Let |λ1| = 1. We shall show that the assumption mΦ > mΘ leads to a contradiction.

By taking an independent copy (Y ′
t , Z

′
t)t∈Z of (Yt, Zt)t∈Z, we see that Φ(B)Y ′

t = Θ(B)Z ′
t
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and hence that the symmetrized versions Y sym
t := Yt − Y ′

t and Zsym
t := Zt − Z ′

t satisfy

Φ(B)Y sym
t = Θ(B)Zsym

t , t ∈ Z.

Hence we may assume without loss of generality that all finite dimensional distributions

of Y are symmetric and that Z0 is symmetric, with Z0 6= 0 due to the assumption that

Z0 is not deterministic. By Lemma 1 we may hence assume that mΦ ≥ 1 and mΘ = 0, so

that Θ(λ1) 6= 0. Defining Wt as in (2.3), it follows from the stationarity of (Wt)t∈Z and

of (Zt)t∈Z and from |λ1| = 1 that there exists a constant K > 0 such that the probability

that the modulus of the left hand side of (2.10) is less than K is greater than or equal to

1/2 for all n ≥ q, so that by (2.10) also

P

(∣∣∣∣∣Θ(λ1)
n−1∑
j=q

λ−j
1 Z−j

∣∣∣∣∣ < K

)
≥ 1

2
∀ n ≥ q.

In particular,
∣∣∣Θ(λ1)

∑n−1
j=q λ−j

1 Z−j

∣∣∣ does not converge in probability to +∞ as n → ∞.

Since Θ(λ1) = 0 and since
∑n−1

j=q λ−j
1 Z−j is a sum of independent symmetric terms, this

implies that
∑∞

j=0 λ−j
1 Z−j converges almost surely (see Kallenberg [5], Theorem 4.17).

The Borel-Cantelli lemma then shows that

∞∑
j=0

P (|Z0| > r) =
∞∑

j=0

P
(∣∣λ−j

1 Z−j

∣∣ > r
)

< ∞.

Hence it follows that P (|Z0| > r) = 0 for each r > 0, so that Z0 = 0 a.s., which is

impossible since Z0 (and hence its symmetrisation) was assumed to be non-deterministic.

2

3 Uniqueness, order reduction and deterministic Z

In Theorem 2.1 we gave necessary and sufficient conditions for the existence of a strictly

stationary solution of (1.1) and a sufficient condition, namely Φ(z) 6= 0 for all z ∈ C such

that |z| = 1, for uniqueness of the strictly stationary solution. In the following lemma

we show that the latter condition is also necessary for uniqueness if the probability space

(Ω,F , P ) on which (Zt)t∈Z is defined is sufficiently rich.

Lemma 2. If equation (1.1) has a strictly stationary solution, if Φ(z) has a zero λ1 on

the unit circle and if there exists a random variable U on the probability space (Ω,F , P )

which is uniformly distributed on the interval [0, 1] and independent of (Zt)t∈Z, then the

strictly stationary solution is not unique.
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Proof. Define

Ỹt := λ−t
1 exp(2πiU), t ∈ Z.

It is clear that (Ỹt)t∈Z is strictly stationary since |λ1| = 1 and Ỹt − λ−1
1 Ỹt−1 = 0 so that

Φ(B)Ỹt = 0. Consequently, if (Yt)t∈Z denotes the solution of (1.1) given by (2.1), then

(Yt + Ỹt)t∈Z is another solution of (1.1) and is strictly stationary since it is the sum of two

independent strictly stationary processes.

The following theorem is a strengthened version of the Reduction Lemma (Lemma

2.2) which was used in the proof of Theorem 2.1. The proof makes use of Theorem 2.1 to

extend the lemma so as to allow cancellation of factors corresponding to autoregressive

and moving average roots on the unit circle under less restrictive conditions.

Theorem 2. [Order Reduction] Let Λ denote the set of distinct zeroes of the autoregressive

polynomial Φ(z) in (1.1). For each λ ∈ Λ denote by mΦ(λ) ∈ N the multiplicity of λ as a

zero of Φ, and by mΘ(λ) ∈ N0 the multiplicity of λ as a zero of Θ(z) (with mΘ(λ) := 0

if Θ(λ) 6= 0). Let (Zt)t∈Z be a non-deterministic i.i.d. sequence and Y = (Yt)t∈Z be a

strictly stationary solution of the ARMA(p, q)-equations (1.1). Then (by Theorem 2.1)

mΘ(λ) ≥ mΦ(λ) for all λ ∈ Λ such that |λ| = 1. If we define the reduced polynomials

Φred(z) := Φ(z)
∏

λ∈Λ:|λ|6=1

(1− λ−1z)−min(mΦ(λ),mΘ(λ))
∏

λ∈Λ:|λ|=1

(1− λ−1z)1−mΦ(λ), z ∈ C,

Θred(z) := Θ(z)
∏

λ∈Λ:|λ|6=1

(1− λ−1z)−min(mΦ(λ),mΘ(λ))
∏

λ∈Λ:|λ|=1

(1− λ−1z)1−mΦ(λ), z ∈ C,

then Y is also a strictly stationary solution of the reduced ARMA equations

Φred(B)Yt = Θred(B)Zt, t ∈ Z. (3.1)

Conversely, if mΦ(λ) ≤ mΘ(λ) for all λ ∈ Λ such that |λ| = 1 and Y is a strictly

stationary solution of (3.1), then Y is also a strictly stationary solution of (1.1).

Proof. Let Y = (Yt)t∈Z be a strictly stationary solution of (1.1). Then mΘ(λ) ≥ mΦ(λ) for

all λ ∈ Λ such that |λ| = 1 by Theorem 1, so that Θred is indeed a polynomial. To show

that Y satisfies (3.1), it is sufficient to show that Lemma 1 is true without the symmetry

assumptions on Y and Z0 if |λ1| = 1, since (3.1) will then follow by induction (removing

one factor at a time).

Suppose therefore that λ1 ∈ Λ with |λ1| = 1 and mΘ(λ1) ≥ mΦ(λ1) ≥ 2. With Wt and

Ct as defined in (2.3) and (2.7), respectively, it follows from the proof of Lemma 1 that

Ct is deterministic for every t ∈ Z (this conclusion did not use the symmetry). From (2.8)

we have Ct = λ−n
1 Ct−n for each t ∈ Z and n ≥ q, from which it follows that

Ct = λ−t
1 C0, t ∈ Z,
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for some complex number C0, and the proof of (2.2) and hence of (3.1) is finished once

C0 is established to be 0.

To show that C0 = 0, observe from (2.7) that

Wt = Θ1(B)Zt + λ−t
1 C0,

where (Wt)t∈Z and (Θ1(B)Zt)t∈Z are both strictly stationary. Hence λ−t
1 C0 must be inde-

pendent of t, which is possible only if λ1 = 1 or C0 = 0.

To show that C0 = 0 in either case, suppose that λ1 = 1, in which case (2.3) and (2.7)

give

Yt − Yt−1 = Θ1(B)Zt + C0, t ∈ Z.

But since mΘ(1) ≥ mΦ(1) ≥ 2, we can define the polynomial Θ2(z) := (1− z)−2Θ(z) and

Vt := Θ2(B)Zt, t ∈ Z. Then (Vt)t∈Z is strictly stationary, and

Yt − Yt−1 = Θ1(B)Zt + C0 = Vt − Vt−1 + C0, t ∈ Z.

This implies that

Yt − Yt−n = Vt − Vt−n + C0n, n ∈ N.

If we divide this equation by n and let n tend to infinity, we see that the left hand side

converges in probability to 0, and the right hand side to C0. Consequently C0 must be

zero regardless of the value of λ1.

This completes the proof of (2.2) and hence (3.1). The converse, that strictly stationary

solutions of (3.1) are strictly stationary solutions of (1.1), is clear.

Theorem 2 shows that for the determination of stationary solutions of (1.1), common

zeroes λ of Φ and Θ can be factored out without restrictions if |λ| 6= 1, and if mΘ(λ) ≥
mΦ(λ) ≥ 2 and |λ| = 1, then (1−λ−1z)mΦ(λ)−1 can be factored out from Φ and Θ. That in

general one cannot factor out (1−λ−1z)mΦ(λ1), i.e. all common zeroes with multiplicity on

the unit circle, is a consequence of the non-uniqueness associated with an autoregressive

root on the unit circle. For example, if Θ(z) = Φ(z) = (1 + z)2 and (Zt)t∈Z is non-

deterministic and i.i.d., then Theorem 2 shows that every strictly stationary solution Y

of Φ(B)Yt = Θ(B)Zt is also a strictly stationary solution of Yt + Yt−1 = Zt + Zt−1 and

vice versa, but is not necessarily a solution of Yt = Zt, as shown in Lemma 2.

If (Zt)t∈Z is deterministic the conditions for existence of a strictly stationary solu-

tion of (1.1) are a little different from those which apply when (Zt)t∈Z is i.i.d. and non-

deterministic as has been assumed until now. The deterministic case is covered by the

following theorem.
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Theorem 3. Suppose that (Zt)t∈Z is deterministic, i.e. there is a constant c ∈ C such

that Zt = c with probability 1 for every t. Then if (Yt)t∈Z is a strictly stationary solution

of (1.1) it must be expressible as

Yt = K +
∑

λ:|λ|=1

Aλ,0λ
−t, (3.2)

where the sum is over the distinct zeroes of Φ(z) on the unit circle, the coefficients Aλ,0

are complex-valued random variables and

K =





Θ(1)c/Φ(1) if mΦ(1) = 0,

0 if mΦ(1) > 0,
(3.3)

where mΦ(1) denotes the multiplicity of 1 as a zero of Φ(z). A strictly stationary solution

of (1.1) exists in this case if and only if

mΦ(1)Θ(1)c = 0. (3.4)

Proof. If Zt = c with probability 1 for every t, the defining equation (1.1) becomes

Φ(B)Yt = Θ(1)c, (3.5)

and every random sequence satisfying (3.5) can be written as

Yt = f0(t) +
∑

λ




mΦ(λ)−1∑
i=0

Aλ,it
i


 λ−t, (3.6)

where
∑

λ denotes the sum over distinct zeroes of Φ(z), mΦ(λ) denotes the multiplicity of

the zero λ, the coefficients Aλ,i are random variables and the deterministic complex-valued

function f0 is the particular solution of (3.5) defined by

f0(t) =
Θ(1)c

Φ̃(1)mΦ(1)!
tmΦ(1), (3.7)

where

Φ̃(z) =
Φ(z)

(1− z)mΦ(1)
.

(The validity of (3.6) for each fixed ω in the underlying probability space (Ω,F , P ) is

a standard result from the theory of linear difference equations (see, e.g., Brockwell and

Davis [1], pp. 105–110). The required measurability of the functions Aλ,i follows from that

of the random variables Yt.)

In order for the sequence (Yt)t∈Z specified by (3.6) to be strictly stationary, it is clear

(on considering the behaviour of the solution as t → −∞) that the terms corresponding
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to the zero or zeroes with largest absolute value greater than 1 must have zero coefficients.

Having set these coefficients to zero, it is then clear that coefficients of terms corresponding

to the zero or zeroes with next largest absolute value greater than 1 must also be zero.

Continuing with this argument we find that all terms in the sum (3.5) corresponding to

zeroes with absolute values greater than 1 must vanish. In the same way, by letting t →∞
we conclude that all the terms corresponding to zeroes with absolute values less than 1

must vanish. The same argument can also be applied to eliminate all terms of the form

Aλ,it
iλ−t with |λ| = 1 and i > 0, and to see that Θ(1)c = 0 is necessary for a strictly

stationary solution to exist if mΦ(1) > 0. Thus f0(t) reduces to K as defined in (3.3), Y

has representation (3.2), and it is apparent that the condition (3.4) is necessary for the

existence of a strictly stationary solution. On the other hand if this condition is satisfied

then Yt = K is in fact a strictly stationary solution.

As in the non-deterministic case, the strictly stationary solution is unique if Φ(z) has

no zeroes on the unit circle, while the argument of Lemma 2 shows that in general Yt = K

is not the only strictly stationary solution if Φ(z) has zeroes on the unit circle.
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