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Abstract

The ARCH and GARCH models of Engle (1982) and Bollerslev (1986) respectively
have had great success in the modelling of financial time series. Discrete-time stochastic
volatility models have also been found to be very useful in representing the time-variation
of volatility observed in such data. In this review we discuss Lévy-driven continuous-time
versions of these processes and some related inference questions.
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1 Introduction

The study of time series with continuous time parameter received great impetus from the
very successful application of such processes in theoretical finance, particularly with the
work of Black, Scholes and Merton on the pricing of options and the subsequent explosive
growth of financial mathematics. An excellent recent overview of financial time series
can be found in the book edited by Andersen et al. [2]. For further applications of Lévy
processes in finance we recommend also the books of Cont and Tankov [20] and Schoutens
[37].

In this article we focus attention on some financial time series driven by Lévy processes,
the essential properties of which are introduced in Section 2. Lévy processes play a central
role for several reasons, one being that their sample-paths are not restricted to be contin-
uous and another that the distributions of their increments can be any of the very large
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class of infinitely divisible distributions. In Section 3 we discuss Lévy-driven continuous-
time autoregressive moving average (CARMA) processes which play a role in continuous
time analogous to their discrete-time counterparts, and introduce the stationary Lévy-
driven Ornstein-Uhlenbeck process as a special case. Section 4 deals with the celebrated
continuous-time stochastic volatility model of Barndorff-Nielsen and Shephard [5] in which
the volatility is a stationary Ornstein-Uhlenbeck process driven by a subordinator (a Lévy
process with non-decreasing sample-paths). In Section 5 we consider an extended ver-
sion of the Barndorff-Nielsen-Shephard model in which the volatility is a non-negative
CARMA process and discuss parameter estimation for the volatility based on realized in-
tegrated volatility. In Section 6 we introduce the generalized Ornstein-Uhlenbeck (GOU)
process, which generalizes the Ornstein-Uhlenbeck process in a direction different from
that of the CARMA process. Finally in Section 7 we discuss the COGARCH(1,1) process
of Klüppelberg et al. [29], in which the volatility is a GOU process, and the higher-order
COGARCH(p, q) process of Brockwell et al. [14].

2 Lévy Processes

A Lévy process with values in Rd (d ∈ N) defined on a probability space (Ω,F , P ) is
a stochastic process M = (Mt)t≥0, Mt : Ω → Rd with independent and stationary
increments such that M0 = 0 almost surely and the sample paths are almost surely
right-continuous with finite left limits. By independent increments, we mean that for
every n ∈ N and 0 ≤ t0 < t1 < . . . < tn, the random variables Mt0 , Mt1 − Mt0 ,
Mt2 − Mt1 , . . . ,Mtn − Mtn−1 are independent, and by stationary increments we mean
that Ms+t −Ms has the same distribution as Mt for every s, t ≥ 0. We refer to the books
by Applebaum [4], Bertoin [6], Kyprianou [30] and Sato [38] for further information about
Lévy processes, in which the proofs for the results stated in this section can also be found.

Elementary examples of Lévy processes M = (Mt)t≥0 with values in Rd include linear
deterministic processes of the form Mt = bt, where b ∈ Rd, d-dimensional Brownian mo-
tion and d-dimensional compound Poisson processes. If M = (Mt)t≥0 is any Lévy process
then for all t the distribution of Mt is characterized by a unique triplet (AM , νM , γM)
consisting of a symmetric non-negative d× d-matrix AM , a measure νM on Rd satisfying
νM({0}) = 0 and

∫
Rd min{|x|2, 1} νM(dx) < ∞ and a constant γM ∈ Rd. This triplet

determines the characteristic function of Mt via the Lévy-Khintchine formula,

Eei〈Mt,z〉 = exp

{
i〈γM , z〉 − 1

2
〈z, AMz〉 +

∫
Rd

(ei〈z,x〉 − 1− i〈z, x〉1{|x|≤1}) νM(dx)

}
(2.1)
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for z ∈ Rd. The measure νM is called the Lévy measure of M and AM the Gaussian
variance. Conversely, if γM ∈ Rd, AM is a symmetric non-negative definite d × d-matrix
and νM is a Lévy measure, then there exists a Lévy process M , unique up to identity in
law, such that (2.1) holds. The triplet (AM , νM , γM) is called the characteristic triplet of
the Lévy process M .

For Brownian motion (Xt)t≥0 with EXt = μt and Var(Xt) = σ2t, the characteristic
triplet is (σ2, 0, μ) and for a compound Poisson process with jump-rate λ and jump-size
distribution function F , the characteristic triplet is (0, λdF (·), ∫

[−1,1]
λxdF (x)).

A Lévy process M with values in R1 is called a subordinator if it has increasing sample
paths. This happens if and only if AM = 0, νM((−∞, 0)) = 0 and

∫ 1

0
x νM (dx) < ∞.

Examples of subordinators include compound Poisson processes with jump distribution
concentrated on (0,∞), the Gamma process and the inverse Gaussian process. The
Gamma process with parameters c, λ > 0 is the Lévy process with characteristic triplet
(0, νM ,

∫ 1

0
ce−λxdx) and Lévy measure νM given by νM(dx) = cx−1e−λx1(0,∞)(x) dx. For

the Gamma process the distribution of Mt has Lebesgue density x 	→ (Γ(ct))−1λctxct−1

e−λx1(0,∞)(x). The inverse Gaussian process with parameters a, b > 0 is defined to have

characteristic triplet AM = 0, Lévy measure νM(dx) = (2πx3)−1/2ae−xb2/21(0,∞)(x) dx and

γM = 2ab−1
∫ b

0
(2π)−1/2e−y2/2 dy. For the inverse Gaussian process the distribution of Mt

has Lebesgue density x 	→ (2πx3)−1/2ate−
1
2
(a2t2x−1−2abt+b2x).

The jump of a Lévy process M at time t is defined as

ΔXt := Xt −Xt−,

where Xt− denotes the left-limit at t > 0 with the convention that X0− := 0. Apart from
Brownian motion with drift, every Lévy process has jumps. The Lévy measure νM(B) of
a Borel set B describes the expected number of jumps of (Mt)t∈[0,1] with size in B, i.e.

νM(B) = E
∑

0<s≤1

1B(ΔMs).

A Lévy process has only finitely many jumps in finite intervals if and only if the Lévy
measure of the Lévy process is finite. Every one-dimensional Lévy process is a semi-
martingale (cf. Applebaum [4] or Protter [36]), and its quadratic variation is given by
[M,M ]t = AM t +

∑
0<s≤tΔM2

s . We refer to Applebaum [4] and Protter [36] for further
information regarding integration with respect to semimartingales or Lévy processes.

Finally, we mention that for κ > 0, a Lévy process M = (Mt)t≥0 satisfies E|M1|κ < ∞
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if and only if E|Mt|κ < ∞ for all t ≥ 0, which is further equivalent to
∫
|x|≥1

|x|κ νM(dx) <

∞. In particular, for κ = 2 and d = 1, it holds Var(Mt) = tAM +
∫
R
x2 νM(dx).

3 Lévy-driven CARMA(p, q) Processes

If (Lt)t≥0 is a Lévy process with values in R, defined as in Section 2, it can be extended
to a process with stationary independent increments, right-continuous sample paths with
finite left limits, L0 = 0 and index set R, by defining Lt = −M−t−, t < 0, where (Mt)t≥0

is an independent version of (Lt)t≥0. Assuming this extension has been made, we define
an L-driven CARMA(p, q) process with real coefficients {a1, . . . , ap; b1, . . . , bq} and p > q
(see Brockwell [13]) as a strictly stationary solution of the suitably interpreted formal
stochastic differential equation

a(D)Vt = b(D)DLt, t ∈ R, (3.1)

where D denotes differentiation with respect to t,

a(z) := zp + a1z
p−1 + · · ·+ ap ,

b(z) := zq + bq−1z
q−1 + · · ·+ b0,

Since DLt does not exist in the usual sense, we interpret the differential equation (3.1) by
means of its state-space representation, consisting of the observation and state equations,

Vt = b′Xt, (3.2)

and
dXt −AXtdt = e dLt, (3.3)

where

A =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−ap −ap−1 −ap−2 · · · −a1

⎤⎥⎥⎥⎥⎥⎦ , e =

⎡⎢⎢⎢⎢⎢⎣
0
0
...
0
1

⎤⎥⎥⎥⎥⎥⎦ , b =

⎡⎢⎢⎢⎢⎢⎣
b0
b1
...

bp−2

bp−1

⎤⎥⎥⎥⎥⎥⎦ , (3.4)

bq := 1 and bj := 0 for j > q. Every solution of (3.3) satisfies the relations

Xt = eA(t−s)X(s) +

∫ t

s

eA(t−u)e dLu, t > s,
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where the integral is a special case of integration with respect to a semimartingale.

Brockwell and Lindner [17], Theorem 4.1, show that there is no loss of generality
in assuming that a(z) and b(z) have no common factors and that, assuming L is non-
deterministic, necessary and sufficient conditions for (3.2) and (3.3) to have a strictly
stationary solution V are that Emax(0, log |L1|) is finite and a(z) is non-zero on the
imaginary axis. In this case the strictly stationary solution is unique and is given by

Vt =

∫ ∞

−∞
g(t− u) dLu, (3.5)

with

g(t) =

⎛⎝ ∑
λ:	λ<0

μ(λ)−1∑
k=0

cλkt
keλt1(0,∞)(t)−

∑
λ:	λ>0

μ(λ)−1∑
k=0

cλkt
keλt1(−∞,0)(t)

⎞⎠ , (3.6)

where the sums are over the distinct zeroes λ of the polynomial a(z) and μ(λ) denotes

the multiplicity of λ. The sum
∑μ(λ)−1

k=0 cλkt
keλt is the residue of z 	→ eztb(z)/a(z) at λ,

i.e.
μ(λ)−1∑
k=0

cλkt
keλt =

1

(μ(λ)− 1)!

[
Dμ(λ)−1

z

(
(z − λ)μ(λ)eztb(z)/a(z)

)]
z=λ

,

and Dz denotes differentiation with respect to z. (For a zero λ with μ(λ) = 1 the last
sum reduces to b(λ)eλt/a′(λ).)

Remark 3.1. (Causality). The unique strictly stationary solution is causal if and only if
a(z) has no zeroes with positive real part, in which case the second sum in (3.6) disappears
and g can be expressed as

g(t) =

{
b′eAt = 1

2πi

∫
ρ

b(z)
a(z)

etzdz, if t > 0,

0, if t ≤ 0.
(3.7)

where the subscript ρ indicates integration anticlockwise around a simple closed contour
encircling the zeroes of a(z) and contained in the open left half of the complex plane. If
the zeroes all have multiplicity 1, we obtain the very simple representation,

Vt =

p∑
j=1

b(λj)

a′(λj)

∫ t

−∞
eλj(t−u)dLu, (3.8)

where a′ denotes the derivative of a. From now on we shall restrict attention to causal
CARMA processes. The term stationary will be used to indicate strict (as opposed to
weak or covariance) stationarity, except when explicitly stated otherwise. �
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Example 3.2. (The stationary Ornstein-Uhlenbeck process). In the case when
p = 1 (so that q is necessarily zero) V is the CARMA(1,0) process, also written as CAR(1)
(continuous-time autoregression of order 1) and widely known as the stationary Ornstein-
Uhlenbeck process. In this case the dimension of the state-vector Xt is 1, b(z) = 1 and
a(z) = z−a1 where, for causality, a1 = λ1 < 0. Provided Emax(0, log |L1|) < ∞, Vt = Xt

is the unique stationary solution of the equation,

dVt − a1Vtdt = dLt. (3.9)

From (3.8) we immediately find that

Vt =

∫ t

−∞
eλ1(t−u)dLu (3.10)

If L is a subordinator, i.e. a Lévy process with non-decreasing sample-paths, then inspec-
tion of (3.10) shows that the process V is non-negative. The subordinator-driven CAR(1)
process is thus a potential model for any non-negative process such as the stochastic
volatility considered later in Section 4. �

Example 3.3. (The CARMA(2,1) process). The CARMA(2,1) process with a(z) =
(z − λ1)(z − λ2), and λ1 
= λ2, has the particularly simple structure,

Vt = α1

∫ t

−∞
eλ1(t−u)dLu + α2

∫ t

−∞
eλ2(t−u)dLu,

where

αi =
b(λi)

a′(λi)
=

λi + b0
2λi + a1

, i = 1, 2.

The process is thus a sum of two dependent and possibly complex-valued CAR(1) pro-
cesses. (Such a decomposition clearly extends to any CARMA(p, q) process for which a(z)
has distinct zeroes.) If L is a subordinator then, as in Example 3.2, Vt is non-negative
provided the kernel g(t) = α1e

λ1t + α2e
λ2t, t ≥ 0, is non-negative. This is the case if

and only if λ1 and λ2 are both real and b0 ≥ max(|λi|) (See Brockwell and Davis [15].
More general conditions for non-negativity of a CARMA(p, q) kernel are given by Tsai
and Chan [42].) �
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3.1 Second-order properties when EL2
1 < ∞

If EL2
1 < ∞, we define μ := EL1 and σ2 := Var(L1).

The causal CARMA process defined by (3.5) and (3.7) is then covariance stationary
with mean μb0/ap and autocovariance function which can be calculated as follows. From
(3.7), noting that g(t) = 0 for t < 0, we see that the Fourier transform of g is

g̃(ω) :=

∫
R

g(t)eiωtdt = − 1

2πi

∫
ρ

b(z)

a(z)

1

z + iω
dz =

b(−iω)

a(−iω)
, ω ∈ R.

Since the autocovariance function γV (·) is the convolution of σg(·) and σg(−·), its Fourier
transform is given by

γ̃V (ω) = σ2g̃(ω)g̃(−ω) = σ2

∣∣∣∣ b(iω)a(iω)

∣∣∣∣2 , ω ∈ R.

The spectral density of V is the inverse Fourier transform of γV . Thus

fV (ω) =
1

2π

∫
R

e−iωhγV (h)dh =
1

2π
γ̃V (−ω) =

σ2

2π

∣∣∣∣ b(iω)a(iω)

∣∣∣∣2 , ω ∈ R.

Substituting this expression into the relation

γV (h) =

∫
R

eiωhfV (ω)dω, h ∈ R,

and changing the variable of integration from ω to z = iω gives,

γV (h) =
σ2

2πi

∫
ρ

b(z)b(−z)

a(z)a(−z)
e|h|zdz = σ2

∑
λ

Resz=λ

(
ez|h|b(z)b(−z)/(a(z)a(−z))

)
,

where the sum is again over the distinct zeroes, λ of a(z). This gives the general expression,

γV (h) = σ2
∑
λ

1

(μ(λ)− 1)!

[
Dμ(λ)−1

z

(z − λ)mez|h|b(z)b(−z)

a(z)a(−z)

]
z=λ

, (3.11)

where μ(λ) is the multiplicity of λ. In the case when the roots are distinct, equation
(3.11) simplifies to

γV (h) = σ2
∑

λ:a(λ)=0

eλ|h|b(λ)b(−λ)

a′(λ)a(−λ)
. (3.12)
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Example 3.4. (The second-order CAR(1) process). If EL2
1 < ∞ then, by (3.12),

the CAR(1) process defined in Example 3.2 has the autocovariance function

γV (h) =
σ2

2|λ1|e
λ1|h| (3.13)

and autocorrelation function ρV (h) = eλ1|h|. �

Example 3.5. (The second-order CARMA(2,1) process). If EL2
1 < ∞ then, by

(3.12), the CARMA(2,1) process defined in Example 3.3 with λ1 
= λ2 has the autoco-
variance function,

γV (h) =
σ2

2λ1λ2(λ2
1 − λ2

2)

[
λ2(b

2
0 − λ2

1)e
λ1|h| − λ1(b

2
0 − λ2

2)e
λ2|h|] .

This is a much broader class of functions than those in Example 3.4, allowing the ap-
proximation of a wider class of sample autocovariances than is possible when attention is
restricted to CAR(1) models. �

4 A continuous-time stochastic volatility model

Let λ be strictly negative and let L be a subordinator. Then the spot volatility process V
in the stochastic volatility model of Barndorff-Nielsen and Shephard [5] is defined, apart
from a change of time scale, as the strictly stationary solution of the equation

dVt = λVt dt+ dLt, (4.1)

i.e. as a subordinator-driven CAR(1) process with driving Lévy process L and coefficient
λ. Then, by (3.10), Vt is positive for all t ∈ R. If Gt denotes the logarithm of the asset
price at time t, then the process (Gt)t≥0 is assumed to satisfy the stochastic differential
equation,

dGt = (m+ bVt) dt+
√
Vt dWt, (4.2)

where m and b are constants, and (Wt)t≥0 is a standard Brownian motion, independent
of L.

Notation. The term volatility is sometimes used to refer to Vt and sometimes to
√
Vt.

We shall refer to Vt as the (spot) volatility at time t and to integrals of Vt over time
intervals as integrated volatility. �
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If EL2
1 < ∞ and Var(L1)= σ2, the autocovariance function of V is, by (3.13), the

exponentially decaying function,

Cov(Vt+h, Vt) = σ2eλ|h|/(2|λ|).

If additionally m = b = 0, then (see Barndorff-Nielsen and Shephard [5], Section 4)
non-overlapping increments of G of length r > 0 are uncorrelated, i.e.

Cov(Gt −Gt−r, Gt+h −Gt+h−r) = 0, t, h ≥ r,

while, if EL4
1 < ∞, the squared increments are correlated with the autocovariance func-

tion,
Cov((Gt −Gt−r)

2, (Gt+h −Gt+h+r)
2) = Cre

−λh

for strictly positive integer multiples h of r > 0, where Cr > 0 is some constant. The
process ((Grh − Gr(h−1))

2)h∈N thus has the autocovariance structure of an ARMA(1,1)
process. The fact that the increments of the log-price process are uncorrelated while its
squares are not is one of the important stylized features of financial time series. The tail
behaviour of the squared volatility process depends on the tail behaviour of the driving
Lévy process. In particular, it can be seen that Vt has Pareto tails, i.e. that P (Vt > x)
behaves asymptotically as a constant times x−α for some α > 0 as x → ∞, if and only if
L1 has Pareto tails with the same index α (see Fasen et al. [24]; the converse follows from
the monotone density theorem for regularly varying functions, see e.g. Theorem 1.7.2 in
Bingham et al. [11]).

5 Integrated CARMA processes and spot volatility

modelling

In the stochastic volatility model (4.1) and (4.2), the spot volatility Vt is represented by
a stationary Lévy-driven Ornstein-Uhlenbeck process. This has the shortcoming that its
autocorrelation function is necessarily a decreasing exponential function. Spot volatility
is not an observable quantity, however the integrated volatility sequence

IΔn =

∫ nΔ

(n−1)Δ

Vt dt, n = 1, 2, . . . , (5.1)
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over successive periods of length Δ can be well estimated in the context of the model
(4.1) and (4.2) by the so-called realized volatility sequence,

Rn =

k∑
j=1

d 2
n,j, (5.2)

where
dn,j = (G(n−1+j/k)Δ −G(n−1+(j−1)/k)Δ)

2,

and k is large. Typically Δ denotes a single trading day and k is such that Δ/k is a five-
minute interval. An excellent discussion of realized volatility can be found in the article of
Andersen and Benzoni [3]. Figure 1 shows the realized daily volatility (kindly supplied by
Viktor Todorov) of the Deutsche Mark/US dollar exchange rate from December 1, 1986,
through June 30, 1999. (See Andersen et al. [1] for a discussion of the series on which
this realized volatility was based.)

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

Figure 1: The realized daily volatility of the DM/US$ exchange rate, December 1, 1986,
through June 30, 1999 .

The sample autocorrelation function of the series is shown in Figure 2. Under the
CAR(1) model (4.1) for the spot volatility Vt, it has been shown by Barndorff-Nielsen
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and Shephard [5] that the daily integrated volatility is an ARMA(1,1) process so that its
autocorrelation function at lags greater than zero is a decreasing exponential function. It
is clear from Figure 2 that a better fit should be achievable by modelling V as a higher-
order CARMA process. Todorov and Tauchen [40]), Todorov [41] and Brockwell, Davis
and Yang [16] fitted CARMA(2,1) models to the daily realized volatility. In this section
we take a different point of view, the goal being to replace (4.1) by a CARMA model for
the spot volatility V in such a way that the corresponding integrated volatility sequence
(5.1) adequately reflects the properties of the observed realized volatility sequence (5.2).

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: The vertical bars represent the sample autocorrelation function of the daily
realized volatility of the DM/US$ exchange rate shown in Figure 1. The line graph is
the autocorrelation function of the integrated volatility corresponding to a CARMA(2,1)
model for spot volatility, estimated as described in Example 5.1.

If EL2
1 < ∞ and V is the L-driven CARMA(p, q) process with autoregressive and

moving average polynomials a(z) and b(z) respectively, Brockwell and Lindner [18] show
that the integrated volatility sequence IΔ is a weakly stationary solution of the difference
equations,

φ(B)IΔn = θ(B)εn,

where (εn)n∈Z is an uncorrelated constant variance sequence, B is the backward shift
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operator (i.e. BjYn := Yn−j, for all j and n ∈ Z) and φ(z) is the polynomial,

φ(z) :=
∏
λ

(1− eλΔz)μ(λ),

where the product is over the distinct zeroes λ of a(z) and μ(λ) denotes the multiplicity
of λ. The polynomial θ(z) has the form,

θ(z) = 1 + θ1z + · · ·+ θpz
p,

with coefficients θ1, . . . , θp which can be determined from a(z) and b(z) and chosen to
have no zeroes in the interior of the unit circle. For any a(z) and b(z), the corresponding
ARMA polynomials φ(z) and θ(z) for the ARMA process IΔ can therefore be determined
and hence the minimum mean-squared-error one-step linear predictors of the sequence
IΔ. Numerical minimization of the sum of squares of these one-step errors with respect
to the coefficients of the polynomials a(z) and b(z) gives least squares estimates of the
CARMA coefficients for the spot volatility process V .

Example 5.1. To illustrate the procedure we consider the daily realized volatility in
Figure 1. It is clear that a good match between the sample autocorrelation function in
Figure 2 for lags greater than zero and a single exponential function (as would be derived
from an Ornstein-Uhlenbeck model for spot volatility) is not possible. We therefore try
a CARMA(2,1) model for the spot volatility. Measuring the spot volatility in units of
volatility per day, the realized volatility series corresponds to volatility integrated over
time intervals of length 1, i.e IΔ with Δ = 1.

A simple initial guess at appropriate values of the coefficients can be obtained by
attempting to match the autocorrelation function of IΔ with the sample autocorrelation
of the realized volatility V Δ at selected lags. If, for example, we minimize the sum of
squared differences at lags 1, 2, 10, 20 and 40, we obtain the preliminary spot-volatility
model,

(D2 + 3.09054D + .10983)Vt = (.23302 +D)DLt,

with corresponding λ1 = −.035956 and λ2 = −3.05458.

Using these coefficients as initial values, the numerical minimization of the prediction
sum of squares leads to the least-squares model,

(D2 + 3.07141D + .11793)Vt = (.23938 +D)DLt, (5.3)

with corresponding λ1 = −.038890 and λ2 = −3.02152. The autocorrelation function of
the daily integrated volatility corresponding to this model is plotted as the line graph in
Figure 2.
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It remains to identify a subordinator L which yields daily integrated volatilities com-
patible with the realized daily volatility series shown in Figure 1. This was done by
trying several subordinators, each with EL1 = .3291 and VarL1 = .3954 to match the
mean and variance of the realized volatility series, simulating sample paths of the cor-
responding CARMA(2,1) processes defined by (5.3), integrating the sample-paths over
successive days and comparing the empirical cumulative distribution functions and kernel
density estimates of the realized volatility series with those of the integrated volatilities
calculated from the models. The results are shown in Figure 3.

The top graphs were generated by simulating the CARMA(2,1) process (5.3) driven
by a compound Poisson subordinator with exponentially distributed jumps. The mean
jump rate of the process was .5478 and the mean jump size was .6008. The simulation
of the CARMA process is greatly simplified by the decomposition in Example 3 which
reduces the simulation to that of two Ornstein-Uhlenbeck processes with the same driving
subordinator. In fact from the simulated jump-times and jump-sizes the complete sample-
path can be constructed and the daily integrals easily computed. The same is true for
compound-Poisson-driven CARMA processes of any order as long as the zeroes of a(z)
are distinct.

The middle graphs are derived from the spot volatility process (5.3) with inverse
Gaussian subordinator having EL(1) = .3291 and VarL(1) = .3954. Simulation in this
case was carried out by using an Euler approximation to generate values of the spot
volatility at intervals of .01 days and integrating numerically to get 40,000 daily integrated
volatility values.

The bottom graphs were derived in the same way, using a gamma subordinator with
EL(1) = .3291 and VarL(1) = .3954. The empirical cdf and kernel density estimates were
again based on 40,000 daily integrated volatility values.

The reasonable fits by all three subordinators suggest that the distribution of daily
integrated volatilities is rather insensitive to the distribution of L1, however in the case
of the gamma subordinator the empirical and simulated distributions are virtually indis-
tinguishable. �
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Figure 3: The empirical cdf (left) and kernel density estimate (right) of the daily real-
ized volatility of the DM/US$ exchange rate are shown as dotted lines. The solid lines
are the corresponding graphs for daily integrated volatility of three subordinator-driven
CARMA(2,1) spot volatility processes. For details see Example 5.1.

6 Generalized Ornstein-Uhlenbeck processes

The Lévy-driven CARMA processes can be regarded as a higher-order generalization of
the Ornstein-Uhlenbeck process. From (3.9) the Lévy-driven Ornstein-Uhlenbeck process
satisfies the equation,

dVt = λ1Vt−dt+ dLt, t ≥ 0.

Another way in which to extend the class of Ornstein–Uhlenbeck processes is to replace
the deterministic function t 	→ λ1t in this equation by a second Lévy process (Ut)t≥0. This
leads to the stochastic differential equation

dVt = Vt− dUt + dLt, t ≥ 0, (6.1)

or equivalently,

Vt = V0 +

∫ t

0

Vs− dUs + Lt, t ≥ 0,
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where V0 is a starting random variable and (U, L) is a bivariate Lévy process. We shall
always assume that neither U nor L is the zero process. This stochastic differential
equation was considered and solved by Yoeurp and Yor [43] (cf. Protter [36], Exercise
V.27), see also Behme et al. [10]. In particular, it is shown that if U has no jumps of size
−1, i.e. if νU({−1}) = 0, then the unique solution to (6.1) is given by

Vt = E(U)t

(
V0 +

∫ t

0

[E(U)s−]−1 dηs

)
, t ≥ 0. (6.2)

Here, E(U) denotes the stochastic exponential of U , given by

E(U)t = eUt−tσ2
U/2

∏
0<s≤t

(1 + ΔUs)e
−ΔUs, t ≥ 0,

and η is given by

ηt = Lt −
∑

0<s≤≤t

ΔUsΔLs

1 + ΔUs

− tσU,L, t ≥ 0,

where σ2
U and (σU,L) denote the (1, 1) and (1, 2)-elements of the Gaussian variance A(U,L)

of (U, L), respectively.

When U has no jumps of size less than or equal to −1, i.e. when νU((−∞,−1]) = 0,
then E(U)t is strictly positive and we can define

ξt := − log E(U)t = −Ut + σ2
U t/2 +

∑
0<s≤t

(ΔUs − log(1 + ΔUs)), t ≥ 0.

Then (ξ, η) = (ξt, ηt)t≥0 is again a bivariate Lévy process and the process in (6.2) can be
written as

Vt = e−ξt

(
V0 +

∫ t

0

eξs− dηs

)
, t ≥ 0. (6.3)

If V0 is additionally independent of (ξ, η) (equivalently, of (U, L)), then the process given by
(6.3) is called a generalized Ornstein–Uhlenbeck process, driven by (ξ, η). This terminology
is due to de Haan and Karandikar [26] and Carmona et al. [19], who studied various
properties of these processes. The process (U, L) can be recovered from (ξ, η) by(

Ut

Lt

)
=

( −ξt +
∑

0<s≤t

(
e−Δξs − 1 + Δξs

)
+ t σ2

ξ/2

ηt +
∑

0<s≤t(e
−Δξs − 1)Δηs − t σξ,η

)
, t ≥ 0.

Obviously, if U and L are independent, then so are ξ and η (and conversely), in which
case ηt = Lt.
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It is clear that if ξt = −Ut = −λ1t, t ≥ 0, then a generalized Ornstein–Uhlenbeck
process reduces to the Lévy driven Ornstein–Uhlenbeck process defined by (3.9).

We have already seen that generalized Ornstein–Uhlenbeck processes arise as Lévy-
driven Ornstein–Uhlenbeck processes in the stochastic volatility model of Barndorff–
Nielsen and Shephard [5]. In Section 7 we shall see that generalized Ornstein–Uhlenbeck
processes also arise as volatility processes of continuous-time GARCH(1,1) processes,
when ξ is deterministic and η random in contrast to the situation of the Lévy-driven
Ornstein–Uhlenbeck process. In general, since generalized Ornstein–Uhlenbeck processes
are the natural continuous time analogues of AR(1) processes with random i.i.d. coeffi-
cients (cf. de Haan and Karandikar [26]), a non-negative generalized Ornstein–Uhlenbeck
process may serve as a stochastic volatility model and hence has potential applications
in finance, even when not restricted to the continuous time GARCH situations. The
generalized Ornstein–Uhlenbeck process is non-negative if V0 ≥ 0 and η is a subordinator.

Another branch of finance in which generalized Ornstein–Uhlenbeck processes make
an appearance is insurance mathematics, specifically in the risk model of Paulsen [35].
Here, Vt denotes the capital of an insurance company, Lt describes the premium minus
the claim process, and U describes the behavior of a financial market in which the capital
of the insurance company is invested. See Paulsen [35] for details.

For using a generalized Ornstein–Uhlenbeck process as a volatility model, it is inter-
esting to know for which bivariate Lévy processes (ξ, η) there exists a starting random
variable V0, independent of (ξ, η), such that the corresponding generalized Ornstein–
Uhlenbeck process becomes strictly stationary. A complete characterization of this was
obtained by Lindner and Maller [31]. Accordingly, a strictly stationary solution exists
if and only if there is k ∈ R \ {0} such that eξ = E(η/k), in which case Vt = k for all
t ≥ 0, or if the integral

∫ t

0
e−ξs− dLs converges almost surely as t → ∞, in which case the

marginal stationary distribution is given by the distribution of∫ ∞

0

e−ξs− dLs. (6.4)

A necessary and sufficient condition for the integral in (6.4) to converge almost surely
absolutely has been given by Erickson and Maller [23]. A sufficient condition for the
convergence of the integral is that E log+ |L1| < ∞ and that ξt converges almost surely
to +∞, the latter being implied by Eξ1 > 0 (cf. de Haan and Karandikar [26] and
Lindner and Maller [31]). An extension of the characterization of stationary solutions of
generalized Ornstein–Uhlenbeck processes to solutions of (6.1), when U is allowed to have
jumps of size less than or equal to −1 and V0 is allowed also to be dependent of (U, L),
hence allowing also non-causal solutions, has been given by Behme et al. [10].
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The autocorrelation structure of a generalized Ornstein–Uhlenbeck is always of expo-
nential form. More precisely, if U and L are such that νU((−∞,−1]) = 0, EU2

1 , EL2
1 < ∞

and EE(U)21 = Ee−2ξ1 < 1, then EU1 < 0 and a stationary version with finite second
moment of the generalized Ornstein-Uhlenbeck process exists, the mean of which is given
by EV0 = −(EU1)

−1EL1 and the autocovariance function by

Cov(Vt, Vt+h) =
E(U1EL1 − L1EU1)

2

(EU1)2|2EU1 +VarU1| e
hEU1, t, h ≥ 0,

see Behme [7, 8].

Another important feature of generalized Ornstein–Uhlenbeck processes is that they
allow the stationary solution to have Pareto tails for a wide variety of situations, even if
η does not have heavy tails. This follows from the results of Kesten [28] and Goldie [25]
on the tail behavior of solutions of random recurrence equations; see Behme [7, 8] and
Lindner and Maller [31] for details. Finally, we remark that multivariate extensions of
generalized Ornstein–Uhlenbeck processes have been recently obtained by Behme [8]; see
also Behme and Lindner [9].

7 Continuous-time GARCH processes

Among the most prominent discrete time models for financial time series are the ARCH
and GARCH processes of Engle [22] and Bollerslev [12]. Given an i.i.d. sequence (εn)n∈N0

and constants β > 0, λ1, . . . , λq ≥ 0 and δ1, . . . , δp ≥ 0 with q ∈ N and p ∈ N0 and λq > 0,
a GARCH(q, p) process (Yn)n∈N0 with volatility process (Vn)n∈N0 is given by

Yn =
√

Vn εn, n ∈ N0, (7.1)

Vn = β +

q∑
i=1

λiY
2
n−i +

p∑
j=1

δjVn−j , n ≥ max{p, q}, (7.2)

with Vn independent of (εn+h)h∈N0 and non-negative for every n ∈ N0. For p = 0 the
process is called ARCH(q) process.

Continuous time diffusion limits have been obtained by Nelson [34] for the GARCH
(1,1) process and by Duan [21] for the GARCH(q, p) process. By considering GARCH
processes on fine grids hN0 and rescaling the parameters appropriately as h ↓ 0, Nelson
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obtained the following diffusion limit (Gt, Vt)t≥0 given by

dGt =
√

Vt dB
(1)
t , t ≥ 0, (7.3)

dVt = (ω − θVt) dt+ αVt dB
(2)
t , t ≥ 0, (7.4)

where B(1) and B(2) are two independent Brownian motions and θ ∈ R, ω ≥ 0 and
α > 0 are parameters. In particular, the volatility process determined by (7.4) is a

generalized Ornstein–Uhlenbeck process driven by (ξt, ηt) = (−αB
(2)
t + (θ + α2/2)t, ωt).

It should be observed that the diffusion limit of Nelsen has two independent sources of
randomness, namely B(1) and B(2), while the GARCH(1,1) process defined by (7.1) and
(7.2) is driven by a single noise process (εn)n∈N0 . This motivated Klüppelberg et al. [29] to
construct a continuous-time GARCH(1,1) process driven by a single Lévy process, called
COGARCH(1,1). Given a driving Lévy process M = (Mt)t≥0 with nonzero Lévy measure,
independent of a starting random variable V0 ≥ 0, and constants β, δ > 0 and λ ≥ 0, they
define the COGARCH(1,1) process (Gt)t≥0 with volatility process (Vt)t≥0 by

G0 = 0, dGt =
√
Vt− dMt, t ≥ 0,

where

Vt =

(
β

∫ t

0

eξs− ds+ V0

)
e−ξt , t ≥ 0,

and ξ = (ξt)t≥0 is defined by

ξt := −t log δ −
∑
0<s≤t

log(1 + λδ−1(ΔMs)
2), t ≥ 0.

Then ξ is again a Lévy process and V is a generalized Ornstein–Uhlenbeck process, driven
by the bivariate Lévy process (ξt, βt)t≥0. The corresponding processes (U, L) in the dif-
ferential equation (6.1) are given by Ut = t log δ + λδ−1

∑
0<s≤t(ΔMs)

2 and Lt = βt,
i.e.

dVt = Vt−d(t log δ + λδ−1[M,M ]
(d)
t ) + βdt, t ≥ 0,

where [M,M ]
(d)
t =

∑
0<s≤t(ΔMs)

2 denotes the discrete part of the quadratic variation of
M . A multivariate extension of the COGARCH(1,1) process has been obtained by Stelzer
[39].

It has been shown in Klüppelberg et al. [29] that a stationary volatility process of the
COGARCH(1,1) equations exists if and only if∫

R

log(1 + λδ−1x2) νM(dx) < − log δ, (7.5)
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which in particular requires M to have finite log-moment and δ < 1. The second moment
structure of Vt can be obtained from those of generalized Ornstein-Uhlenbeck processes.
More precisely, under the condition (7.5) and defining

Ψξ(κ) := logEe−κξ1 = κ log δ +

∫
R

(
(1 + λδ−1y2)κ − 1

)
νM (dy) ∈ (−∞,∞]

for κ > 0, the stationary version satisfies for k ∈ N that EV k
0 < ∞ if and only if

EM2k
1 < ∞ and Ψξ(k) < 0, in which case Ψξ(l) < 0 for all l ∈ {1, . . . , k} and

EV k
0 = k!βk

k∏
l=1

(−Ψξ(l))
−1.

Further, if EM4
1 < ∞ and Ψξ(2) < 0, then

Cov(Vt, Vt+h) = β2
(
2Ψ−1

ξ (1)Ψ−1
ξ (2)−Ψ−2

ξ (1)
)
e−h|Ψξ(1)|, t, h ≥ 0.

A detailed proof is given in Klüppelberg et al. [29].

As is the case for the volatility model of Barndorff-Nielsen and Shephard considered
in Section 4, under certain assumptions, non-overlapping increments of the stationary
COGARCH(1,1) process G are uncorrelated, while the autocovariance function of ((Grh−
Gr(h−1))

2)h∈N is that of an ARMA(1,1) process for any r > 0. More precisely, restricting
to r = 1 for simplicity, if the driving Lévy process M = (Mt)t≥0 satisfies

EM1 = 0, Var(M1) = 1, EM4
1 < ∞,

∫
R

x3 νM(dx) = 0,

and if

Ψξ(2) = 2 log δ +

∫
R

(
λ2δ−2y4 + 2λδ−1y2

)
νξ(dy) < 0,

then the increments process (Yn)n∈N with Yn = Gn −Gn−1 satisfies EY 4
1 < ∞ and

EY1 = 0, μ := E(Y 2
1 ) =

β

|Ψξ(1)| and Cov(Yt, Yt+h) = 0, t, h ∈ N.

Denoting
ϕ := λδ−1 and τ := − log δ,

the autocorrelation function ρ of Y satisfies

ρ(h) = ke−hp, t, h ∈ N, (7.6)
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where
p := |Ψξ(1)|

and

k :=
β2

p3γ(0)
(2τϕ−1 + 2AM − 1)

(
2|Ψ−1

ξ (2)| − p−1
) (

1− e−p
)
(ep − 1).

An explicit expression for Var(Y0) can also be obtained. Based on these expressions, Haug
et al. [27] consider a generalized method of moment estimator for the parameters of the
COGARCH(1,1) process, by replacing E(Y 2

1 ), Var(Y0) and log ρ(h) by their empirical
counterparts and doing a regression for p and k in (7.6). Assuming that the Gaussian
variance AM is known (e.g. AM = 0), solving the equations obtained for μ,Var(Y0), p, k

in β, ϕ, τ and plugging the obtained estimators μ̂, V̂ar(Y0), p̂ and k̂ into these equations

gives generalized method of moment estimators (β̂, ϕ̂, τ̂ ) for the parameters (β, ϕ, τ) and
hence for (β, δ, λ) based on observations G0, G1, G2, . . . , Gn. Details can be found in
Haug et al. [27].There it is also shown that the estimator is strongly consistent and under
further moment assumptions, which require in particular a finite 8th moment of Y , that
the estimator is asymptotically normal.

Other estimation methods for the COGARCH(1,1) include the pseudo-maximum like-
lihood estimator of Maller et al. [32] and the Markov Chain Monte Carlo estimator of
Müller [33]. Maller et al. [32] also fit the COGARCH(1,1) model to the ASX200 index of
the Australian Stock exchange.

Finally, let us introduce the COGARCH(q, p) processes of Brockwell et al. [14]. From
(7.1) and (7.2) we see that the volatility (Vn) of a GARCH(q, p) process can be seen as
a “self-exciting” ARMA(p, q − 1) process driven by (Vn−1ε

2
n−1) together with the “mean

correction” β. This motivates to define the volatility process (Vt)t≥0 of a continuous-time
GARCH(q, p) process as a “self-exciting mean corrected” CARMA(p, q−1) process driven
by an appropriate noise term. Since in discrete time, the driving noise is defined through
the increments of the process (

∑n−1
i=0 Viε

2
i )n∈N, in continuous time this suggests the use of

Rt =
∑
0<s≤t

Vs−(ΔMs)
2 =

∫ t

0

Vs−d[M,M ](d)s , t ≥ 0,

as driving noise for the CARMA equations. More pecisely, let M = (Mt)t≥0 be a Lévy pro-
cess with nonzero Lévy measure. With p, q ∈ N such that q ≤ p, a1, . . . , ap, b0, . . . , bp−1 ∈
R, β > 0, ap 
= 0, bq−1 
= 0 and bq = . . . = bp−1 = 0, define the p × p-matrix A and the
vectors b, e ∈ Cp as in (3.4). Define the volatility process (Vt)t≥0 with parameters A, b,
β and driving Lévy process M by

Vt = β + b′Xt, t ≥ 0,
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where the state process X = (Xt)t≥0 is the unique solution of the stochastic differential
equation

dXt = AXt− dt+ eVt− d[M,M ]
(d)
t = AXt− dt+ e(β + b′Xt−) d[M,M ]

(d)
t ,

with initial value X0, independent of (Mt)t≥0. If the process (Vt)t≥0 is non-negative almost
surely, then G = (Gt)t≥0, defined by

G0 = 0, dGt =
√

Vt− dMt,

is a COGARCH(q, p) process with parameters A, b, β and driving Lévy process M .

It can be shown that for p = q = 1 this definition is equivalent to the definition of
the COGARCH(1,1) process given before. Brockwell et al. [14] give sufficient conditions
for the existence of a strictly stationary solution (Vt)t≥0 and its positivity, and show that
(Vt)t≥0 has the same autocorrelation structure as a CARMA(p, q − 1) process. Hence
the COGARCH(q, p) process allows a more flexible autocorrelation structure than the
COGARCH(1,1) process. Under suitable conditions, which among others require M1

to have expectation zero, it is further shown that non-overlapping increments of G are
uncorrelated, while their squares are not. More precisely,

Cov((Gt −Gt−r)
2, (Gt+h −Gt+h−r)

2) = b′e(A+EM2
1eb

′)hHr, h ≥ r > 0,

where Hr ∈ Cp is independent of h. In particular, the squared increments have a covari-
ance structure similar to that of a CARMA process.
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with Lévy noise. Submitted.

[8] A.D. Behme (2011) Generalized Ornstein–Uhlenbeck Processes and Extensions. Doc-
toral Thesis, TU Braunschweig.

[9] A. Behme and A. Lindner (2011) Multivariate generalized Ornstein–Uhlenbeck pro-
cesses. In preparation.

[10] A. Behme, A. Lindner and R. Maller (2011) Stationary solutions of the stochastic
differential equation dVt = Vt−dUt + dLt with Lévy noise. Stoch. Proc. Appl. 121,
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[13] P.J. Brockwell (2001) Lévy-driven CARMA processes. Ann. Inst. Stat. Math. 53,
113–124.

[14] P.J. Brockwell, E. Chadraa and A. Lindner (2006) Continuous-time GARCH pro-
cesses. Ann. Appl. Probab. 16, 790–826.

[15] P.J. Brockwell and R.A. Davis (2001) Discussion of “Non-Gaussian Ornstein–
Uhlenbeck based models and some of their uses in financial economics,” by O.E.
Barndorff-Nielsen and N. Shephard, J. Royal Statist. Soc., Ser. B 63, 218–219.

22



[16] P.J. Brockwell, R.A. Davis and Y. Yang (2011) Estimation for non-negative Lévy-
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driven CARMA processes. Stoch. Proc. Appl. 119, 2660–2681.

[18] P.J. Brockwell and A. Lindner (2011) Integration of CARMA processes and spot
volatility modelling. Submitted.

[19] P. Carmona, F. Petit and M. Yor (1997) On the distribution and asymptotic results
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[24] V. Fasen, C. Klüppelberg and A. Lindner (2006) Extremal behavior of stochastic
volatility models. In: A. Shiryaev, M.D.R. Grossinho, P. Oliviera, M. Esquivel (eds.):
Stochastic Finance, pp. 107–155. Springer, New York.

[25] C. Goldie (1991) Implicit renewal theory and tails of solutions of random equations.
Ann. Appl. Probab. 1, 126–166.

[26] L. de Haan and R.L. Karandikar (1989) Embedding a stochastic difference equation
in a continuous-time process. Stoch. Proc. Appl. 32, 225–235.

[27] S. Haug, C. Klüppelberg, A. Lindner and M. Zapp (2007) Method of moment esti-
mation in the COGARCH(1,1) model. The Econometrics Journal 10, 320–341.

23



[28] H. Kesten (1973) Random difference equations and renewal theory for products of
random matrices. Acta Math. 131, 207–228.
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