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Abstract

The conditional expectations, E(Y (h)|Y (u),−∞ < u ≤ 0) and E(Y (h)|Y (u),−M ≤
u ≤ 0) with h > 0 and 0 < M < ∞ are determined for a continuous-time ARMA

(CARMA) process (Y (t))t∈R driven by a Lévy process L with E|L(1)| < ∞. If

E(L(1)2) <∞ these are the minimum mean-squared error predictors of Y (h) given

(Y (t))t≤0 and (Y (t))−M≤t≤0 respectively. Conditions are also established under

which the sample-path of L can be recovered from that of Y , both when Y is

causal and strictly stationary and (without these assumptions) when L is a pure-

jump Lévy process. When E(L(1)2) <∞ and Y is causal and strictly stationary the

best linear predictors P (Y (h)|Y (u), u ≤ 0) and P (Y (h)|Y (−n∆), n ∈ N) are also

determined, the latter yielding a simple algorithm for determining the parameters of

the ARMA process obtained by sampling the CARMA process at regular intervals.
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1 Introduction

Let L = (L(t))t∈R be a Lévy process, i.e. a process with homogeneous independent incre-

ments, continuous in probability, with càdlàg sample paths and L(0) = 0. For integers p

and q such that p > q , we define a (complex valued) CARMA(p, q) process Y = (Y (t))t∈R,

driven by L, by the equation

Y (t) = b′X(t), t ∈ R, (1)
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where X = (X(t))t∈R is a Cp-valued process satisfying the stochastic differential equation,

dX(t) = AX(t) dt+ ep dL(t), (2)

or equivalently

X(t) = eA(t−s)X(s) +

∫
(s,t]

eA(t−u)ep dL(u), ∀s ≤ t ∈ R, (3)

with

A =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−ap −ap−1 −ap−2 · · · −a1

 , ep =


0

0
...

0

1

 ∈ Cp, and b =


b0

b1

...

bp−2

bp−1

 ,

where a1, . . . , ap, b0, . . . , bp−1 are complex-valued coefficients such that bq = 1 and bj = 0

for j > q. For p = 1 the matrix A is to be understood as A = (−a1).

Integration by parts allows us to rewrite (3) in the form,

X(t) = eA(t−s)X(s) +

[
L(t)Ip − L(s)eA(t−s) +

∫ t

s

L(u)AeA(t−u)du

]
ep, (4)

where Ip denotes the p× p identity matrix. Thus we can interpret the integral in (3) as a

pathwise integral and in fact all the integrals appearing in this paper can be interpreted

pathwise. Under conditions specified in Sections 2 and 3 we shall show how to recover the

sample-path of L from either X or Y . In the Gaussian case, Pham (1977) used spectral

analysis to express L in terms of X and mean-square derivatives of Y , but his argument

is restricted to square integrable CARMA processes and their second-order properties.

The equations (1) and (2) constitute the state-space representation of the formal pth-

order stochastic differential equation,

a(D)Y (t) = b(D)DL(t), (5)

where D denotes differentiation with respect to t and a(·) and b(·) are the polynomials,

a(z) = zp + a1z
p−1 + · · ·+ ap, (6)

and

b(z) = b0 + b1z + · · ·+ bp−1z
p−1.

Equation (5) is the natural continuous-time analogue of the pth-order linear difference

equations used to define a discrete-time ARMA process (see e.g. Brockwell and Davis
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(1991)). However, since the derivatives on the right-hand side of (5) do not exist as

random functions, we base the definition on the state-space formulation (1) and (2).

Brockwell and Lindner (2009), generalizing results of Wolfe (1982) and Sato and Ya-

mazato (1984) for the Lévy-driven Ornstein-Uhlenbeck equation, established necessary

and sufficient conditions for the equations (1) and (2) to have a strictly stationary, not

necessarily causal, solution Y = (Y (t))t∈R and gave an explicit representation of the so-

lution as an integral with respect to L. In Theorem 4.1 of that paper they also showed

that there is no loss of generality in assuming that the polynomials a(z) and b(z) have no

common zeroes. We shall therefore make this assumption whenever convenient.

The aim of this paper is to consider the prediction of Y (h), h ≥ 0, based on past obser-

vations. In Section 2, under causality, invertibility and stationarity conditions, we deter-

mine E(Y (h)|Y (u),−∞ < u ≤ 0) and the best linear predictor P (Y (h)|Y (u),−∞ < u ≤
0) when E(L(1))2 <∞. In Section 3, under less restrictive conditions on a(z) and b(z) and

without the stationarity assumption, but assuming that L has no Gaussian component,

we determine E(Y (h)|Y (u),−M ≤ u ≤ 0). Finally in Section 4 we use the steady-state

Kalman filter to determine the best linear predictor of Y (h) based on the infinite discrete

past Y (−∆), Y (−2∆), Y (−3∆), . . ., for ∆ > 0, assuming that E(L(1)2) < ∞ and that

Y is strictly stationary and causal. With the aid of this predictor we establish a simple

algorithm for calculating the parameters of the sampled ARMA process (Y (n∆))n∈Z.

2 Determination of E(Y (h)|Y (u),−∞ < u ≤ 0) and

P (Y (h)|Y (u),−∞ < u ≤ 0)

2.1 Preliminaries

For X(t) satisfying (3) we shall also use the more explicit notation,

X(t) = [X0(t) X1(t) · · · Xp−1(t)]′ and X(t) = X0(t).

By (2), Xj(t) − Xj(s) =
∫ t
s
Xj+1(u) du for s ≤ t and j = 0, . . . , p − 2, and, since X and

hence Xp−1 are càdlàg, it follows that X is (p− 2)-times differentiable with jth derivative

at time t, X(j)(t) = Xj(t), j = 0, . . . , p − 2, while X(p−2) = Xp−2 has right and left

derivatives Xp−1(t) and Xp−1(t−), respectively. With the understanding that Xp−1 will in

general have jump discontinuities, we shall simply say that X is (p−1)-times differentiable

with jth derivative

X(j)(t) = Xj(t), t ∈ R, j = 0, . . . , p− 1. (7)
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To see the connection between the jumps of L and of Y we observe that by (4), ∆X(t) :=

X(t)−X(t−) = L(t)ep, so that

∆X(p−1)(t) = ∆Xp−1(t) = ∆L(t).

On the other hand, since

Y (t) = b0X(t) + b1X
(1)(t) + . . .+ bq−1X

(q−1)(t) +X(q)(t)

we see that Y is (p−q−1)-times differentiable (again with the understanding that Y (p−q−1)

will in general have jump discontinuities) and that

Y (p−q−1)(t) = b0X
(p−q−1)(t) + b1X

(p−q)(t) + . . .+ bq−1X
(p−2)(t) +X(p−1)(t).

Consequently,

∆Y (p−q−1)(t) = ∆X(p−1)(t) = ∆Xp−1(t) = ∆L(t), (8)

so that the jumps of L can be recovered from Y .

2.2 Recovery of the state vector

For the determination of the conditional expectation, the first step is the recovery of

the realization of the state-vector process (X(t))t≤0 from that of (Y (t))t≤0. As has been

pointed out in Remark 4.3 in Brockwell and Lindner (2009), if a(z) and b(z) have common

zeroes, then it may happen that a stationary CARMA process Y exists without a corre-

sponding stationary state vector X. Also, one can see from Theorem 4.2 in Brockwell and

Lindner (2009) that in the case of common zeroes, there can be more than one state vector

process leading to the same CARMA process Y . If a(z) and b(z) have no common zeroes,

however this cannot happen as shown in the next proposition, which uses the concept of

observability from linear systems theory (see e.g. Bernstein (2009), Section 12.3).

Proposition 2.1. Let Y be a CARMA(p, q) process, driven by the Lévy process L, such

that a(z) and b(z) have no common zeroes.

(i) Then the pair (A,b′) is observable, i.e. [b A′b · · · (A′)p−1b] ∈ Cp×p has rank p.

(ii) Let I = [α, β) be a non-empty real interval. Let (X(t))t∈I and (X̃(t))t∈I be two Cp-

valued state vector processes leading both to the same (Yt)t∈I , i.e. both (X(t))t∈I and

(X̃(t))t∈I satisfy (3) for s, t ∈ I, s ≤ t, and Y (t) = b′X(t) = b′X̃(t) for t ∈ I. Then

(X(t))t∈I = (X̃(t))t∈I .

(iii) If Y is strictly stationary, then so is X.

Proof. (i) By Corollary 12.3.3 in Bernstein (2009), the given definition of observability

is equivalent to the one used there. Further, by the PBH-test (see Bernstein (2009),
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Corollary 12.3.19), (A,b′) is observable if and only if

[
λIp − A

b′

]
∈ C(p+1)×p has rank p

for all λ ∈ C. Hence, if (A,b′) is not observable, there must be λ ∈ C and v ∈ Cp \ {0}
such that (λIp − A)v = 0 and b′v = 0. The first equation means that λ is an eigenvalue

of A, hence a zero of a(z), and that v is a right eigenvector of A. Hence v must be of the

form v = γ[1 λ λ2 · · · λp−1]′ for some γ ∈ C \ {0}. This and the second equation imply

that γb(λ) = b′v = 0, contradicting the assumption that a(z) and b(z) have no common

zeroes.

(ii) Suppose that X and X̃ are two state vectors in Cp with the same corresponding

CARMA process driven by the same Lévy process, i.e. that b′X(t) = b′X̃(t) = Y (t) for

all t ∈ I. Since both X and X̃ satisfy (2), their difference satisfies d
dt

(X(t) − X̃(t)) =

A(X(t)− X̃(t)) and b′(X(t)− X̃(t)) = 0 for t ∈ I. Since (A,b′) is observable, this implies

that X(t)− X̃(t) = 0 for all t ∈ I (see Bernstein (2009), Corollary 12.3.3).

(iii) If Y is strictly stationary, it follows from Theorem 3.3 in Brockwell and Lindner

(2009) that there is a strictly stationary X such that (1) holds, since a(z) and b(z) have

no common zeroes. Since the state vector is unique by (ii), the result follows.

In general we would like to determine the state vector in an explicit form using only

Y .This can be done when L is a pure jump Lévy process by using (8) to recover the jumps

(and hence the increments of L on finite intervals) from Y . This will be demonstrated in

Section 3. It can also be done if Y is stationary and the zeroes of b(z) all have strictly

negative real parts, as we shall now show.

If q = 0 then b′ = [1 0 · · · 0] so, from (1), the first component of X(t) is X(t) = Y (t)

and the remaining p − 1 components are obtained by successive differentiation of Y (t)

with respect to t. It therefore suffices, for the remainder of this section, to deal with the

case q ≥ 1.

Before stating the result (Theorem 2.2 below), we need the preliminary definitions,

B :=


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−b0 −b1 −b2 · · · −bq−1

 , Xq(t) :=


X(t)

X1(t)
...

Xq−2(t)

Xq−1(t)

 , and eq :=


0

0
...

0

1

 ∈ Cq.

If q = 1, then B := −b0 = −1. Observe that from (2) we have

dXj(t) = Xj+1(t) dt, j = 0, . . . , q − 1.

Using (1) we further see that

dXq−1(t) = Xq(t) dt = (Y (t)− b0X0(t)− . . .− bq−1Xq−1(t)) dt.
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Hence Xq satisfies the differential equation

dXq(t) = BXq(t) dt+ eqY (t) dt.

The solution satisfies (cf. (3))

Xq(t) = eB(t−s)Xq(s) +

∫ t

s

eB(t−u)eqY (u)du, −∞ < s ≤ t <∞.

Multiplying this equation by eB(s−t), and using the convention
∫ t
s

= −
∫ s
t

for s > t, we

see that this equation also holds for s > t, i.e.

Xq(t) = eB(t−s)Xq(s) +

∫ t

s

eB(t−u)eqY (u)du, ∀ s, t ∈ R. (9)

Suppose now that the distinct eigenvalues of B (or equivalently the zeroes of the poly-

nomial b(z)) are ρ1, ρ2, . . . , ρm, with multiplicities µ1, . . . , µm, respectively. Then clearly∑m
i=1 µi = q. Define T (j) to be the q × µj matrix of right eigenvectors and generalized

eigenvectors associated with the eigenvalue ρj, specifically,

T (j) = [v1(ρj) v2(ρj) · · · vµj(ρj)],

where v1(ρj) is the right eigenvector,

v1(ρj) = [1 ρj ρ
2
j · · · ρ

q−1
j ]′,

and vi(ρj), 1 < i ≤ µj, are generalized eigenvectors satisfying

(ρjIq −B)vi(ρj) = −vi−1(ρj), 1 < i ≤ µj,

where Iq denotes the q × q identity matrix.

Now define T to be the q × q matrix,

T := [T (1) T (2) · · · T (m)]. (10)

Then T−1BT = Λ, where Λ has the Jordan canonical form,

Λ = diag{Λ1, . . . ,Λm}, (11)

in which Λj is the µj × µj matrix, ρj if µj = 1, and

Λj =


ρj 1 0 · · · 0

0 ρj 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

0 0 0 · · · ρj

 if µj > 1.
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Furthermore

eBt = TeΛtT−1 = Tdiag{eΛ1t, . . . , eΛmt}T−1, (12)

where eΛjt = eρjt if µj = 1 and

eΛjt = eρjt


1 t · · · tµj−1/(µj − 1)!

0 1 t · · · tµj−2/(µj − 2)!
...

...
...

. . .
...

0 0 0 · · · t

0 0 0 · · · 1

 if µj > 1.

Theorem 2.2. Let q ≥ 1. Suppose that the polynomials a(z) and b(z) have no zeroes

on the imaginary axis and no common zeroes, that E(log+ |L(1)|) < ∞, and that Y is

the unique strictly stationary solution of (3) (it exists and is unique by Theorem 3.3 of

Brockwell and Lindner (2009)). Let ρj denote the distinct zeroes of the polynomial b(z)

and let µ(ρj) be the multiplicity of ρj (so that
∑m

j=1 µ(ρj) = q). Define the matrices T

and Λ as in (10) and (11) and define

Cj := diag{Mj1 Mj2 · · · Mjm}, j = 1, . . . ,m,

where Mji = Iµj , the µj × µjidentity matrix, if i = j, and Mji = 0 otherwise. Then Xq

has the representation

Xq(t) =
∑

j:<(ρj)<0

∫ t

−∞
TCje

Λ(t−u)T−1eqY (u)du

−
∑

j:<(ρj)>0

∫ ∞
t

TCje
Λ(t−u)T−1eqY (u)du, t ∈ R, (13)

where the improper integrals over (−∞, t] and [t,∞) defining Xq(t) exist as almost sure

limits limT→∞
∫ t
−T and limT→∞

∫ T
t

, respectively. In particular, Xq(t) is uniquely deter-

mined by (Y (u))u∈R, and uniquely determined by (Y (u))u≤t if the eigenvalues of b(z) all

have strictly negative real parts.

Proof. Multiplying both sides of (9) on the left by CjT
−1 and using (12), we obtain the

relations,

CjT
−1Xq(t) = Cje

Λ(t−s)T−1Xq(s) +

∫ t

s

Cje
Λ(t−u)T−1eqY (u)du. (14)

Since Y is stationary, so is the state vector X by Proposition 2.1 (iii), so that in particular

Xq(s) and Xq(0) have the same distribution for all s ∈ R. Hence, by Slutsky’s lemma,
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if <(ρj) < 0, then Cje
Λ(t−s)T−1Xq(s) → 0 in probability as s → −∞. In particular,∫ t

−∞Cje
Λ(t−u)T−1eqY (u)du exists as a limit in probability and we have

CjT
−1Xq(t) =

∫ t

−∞
Cje

Λ(t−u)T−1eqY (u)du. (15)

If <(ρj) > 0, we let s→∞ and obtain by the same argument

CjT
−1Xq(t) = −

∫ ∞
t

Cje
Λ(t−u)T−1eqY (u)du, (16)

where the limit again exists as a limit in probability. That the limits in (15) and (16) are

actually almost sure follows from Proposition 2.6 below and the dominated convergence

theorem. Using equations (15) and (16) and observing that Xq(t) =
∑m

j=1 TCjT
−1Xq(t),

we get (13).

An alternative expression for the first component of the state-vector can be obtained by

an argument analogous to that which was used by Brockwell and Lindner (2009), Propo-

sition 3.2, to express the strictly stationary solution Y (t) in terms of the Lévy process

L. Thus, the unique solution for Xq(t) in terms of Y is given by the following Corollary.

This in turn determines the complete p-dimensional state-vector, X(t), by differentiation

via (7).

Corollary 2.3. Under the conditions of Theorem 2.2, let lb(t) and rb(t) be the sums of

the residues of the column vector eztb−1(z)[1 z · · · zq−1]′ at the zeroes of b(·) with strictly

negative and strictly positive real parts respectively. Then

lb(t) + rb(t) = eBteq, t ∈ R, (17)

and

Xq(t) =

∫ t

−∞
lb(t− u)Y (u)du−

∫ ∞
t

rb(t− u)Y (u)du, t ∈ R, (18)

where the improper integrals over (−∞, t] and [t,∞) are the almost sure limits limT→∞
∫ t
−T

and limT→∞
∫ T
t

respectively. In particular the first component, X(t) = [1 0 · · · 0]Xq(t),

t ∈ R, can be written as

X(t) =

∫ ∞
−∞

κ(t− u)Y (u)du, t ∈ R, (19)

where

κ(t) =

 ∑
ρ:<ρ<0

µ(ρ)−1∑
k=0

dρkt
keρt1(0,∞)(t)−

∑
ρ:<ρ>0

µ(ρ)−1∑
k=0

dρkt
keρt1(−∞,0)(t)

 , t ∈ R, (20)
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and
∑µ(ρ)−1

k=0 dρkt
keρt is the residue of z 7→ ezt/b(z) at the zero ρ of b(·), i.e.

µ(ρ)−1∑
k=0

dρkt
keρt =

1

(µ(ρ)− 1)!

[
Dµ(ρ)−1
z

(
(z − ρ)µ(ρ)ezt/b(z)

)]
z=ρ

,

where Dz denotes differentiation with respect to z. (For a zero ρ with µ(ρ) = 1 the last sum

reduces to eρt/b′(ρ).) The (j+1)st component X(j)(t), j = 1, . . . , p−1, of the complete p-

component state-vector X(t) is obtained from the first component X(t) by differentiation.

Proof. Define X̃q(t) to be the right-hand side of (18). Again, the integral converges almost

surely by Proposition 2.6 below. It is easy to see from the definition that X̃q is strictly

stationary. The proofs of (17) and the fact that X̃q(t) satisfies (9) are the same as the

corresponding proofs in Proposition 3.2 of Brockwell and Lindner (2009). Since it follows

from the proof of Theorem 2.2 that (9) can have at most one strictly stationary solution,

namely Xq, we obtain Xq = X̃q and hence the desired representation of Xq.

Remark 2.4. By determining the state-vector X(t) explicitly in terms of the process

Y , Theorem 2.2 also explicitly specifies the increments of the background driving Lévy

process L. Thus, multiplying each side of (2) on the left by e′p, we obtain

L(t)− L(s) = e′p

(
X(t)−X(s)−

∫ t

s

AX(u)du

)
, t ≥ s. (21)

With L(0) = 0, this gives the complete Lévy process.

Remark 2.5. If all the eigenvalues of B have strictly negative real parts, then the second

term in (18) is zero, and the state vector is X(t) = [X(t) X(1)(t) · · · X(p−1)(t)]′, where

X(j)(t) =

j−q∑
k=0

κ(j−1−k)(0+)Y (k)(t) +

∫
(−∞,t)

κ(j)(t− u)Y (u)du, 0 ≤ j ≤ p− 1. (22)

(Here we have used the identities κ(j)(0+) = 0 for 0 ≤ j < q − 1 which follow from (17)

since κ(t) = [1 0 · · · 0]eBteq for t > 0.) Similarly,

X(j)(t−) =

j−q∑
k=0

κ(j−1−k)(0+)Y (k)(t−) +

∫
(−∞,t)

κ(j)(t− u)Y (u)du, 0 ≤ j ≤ p− 1.

At any specified time t, L (and hence X) almost surely has no jump and hence X(p−1)(t) =

X(p−1)(t−) and Y (p−q−1)(t) = Y (p−q−1)(t−) almost surely. Identifying random variables

which are almost surely equal, we see that X(t) can be represented as a function of

{Y (u),−∞ < u ≤ t}, without the need for direct evaluation of Y (p−q−1)(t) which, as

a right-derivative, is defined in terms of {Y (s), s > t}. Moreover, from (19) – (21), if

EL(1)2 <∞ the process Y is invertible in the sense that L(t)−L(s) is in the closed linear

span of {Y (u),−∞ < u ≤ t} with respect to L2-convergence. (A detailed proof of this

fact is completely analogous to the proof of Theorem 2.8 below.)
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We conclude this subsection by showing that strictly stationary CARMA processes

grow more slowly than any exponentially increasing function, a fact which was used in

the proofs of Theorem 2.2 and Corollary 2.3.

Proposition 2.6. Let Y be a stationary CARMA process such that a(z) has no zeroes

on the imaginary axis. Then lim|t|→∞ e
−ε|t|Y (t) = 0 almost surely for every ε > 0.

Proof. Since Y is stationary it follows from Theorem 4.2 in Brockwell and Lindner

(2009) that E log+ |L(1)| < ∞. By the Lévy-Itô-decomposition, we may write L(t) =

L1(t) − L2(t) + L3(t), where L1 and L2 are subordinators, (L3(t))t≥0 is a square inte-

grable martingale with expectation zero (see Sato (1999), Theorem 19.2), and L1, L2 and

L3 are independent. Then limt→∞ t
−1L3(t) = 0 a.s. by the strong law of large numbers.

Furthermore E log+ |Lj(1)| < ∞, j = 1, 2. Then for every ε > 0,
∫ t

0
e−εs dL1(s) and∫ 0

−t e
−ε|s| dL1(s) converge almost surely as t→∞ (see Jurek and Mason (1993), Theorem

3.6.6). Lemma 17.6. in Sato (1999) then shows that lim|t|→∞ e
−ε|t|L1(t) = 0 almost surely.

The same reasoning applies to L2 and consequently

lim
|t|→∞

e−ε|t|L(t) = 0 a.s., ε > 0. (23)

By Theorem 4.2 in Brockwell and Lindner (2009), Y (t) can be written as a (finite) linear

combination of terms of the form
∫ t
−∞(t − u)keλ(t−u) dL(u), with k ∈ N0 and <(λ) < 0,

and
∫∞
t

(t − u)keλ(t−u) dL(u), with k ∈ N0 and <(λ) > 0, and these integrals converge

almost surely. Using partial integration, we may write for s ≤ t and <(λ) < 0∫
(s,t]

(t− u)keλ(t−u) dL(u) = 1{k=0}L(t)− (t− s)keλ(t−s)L(s)

+

∫ t

s

L(u)eλ(t−u)
(
k(t− u)k−11{k 6=0} + λ(t− u)k

)
du.

Letting s→ −∞, we conclude from (23) and the dominated convergence theorem that

lim
t→−∞

e−ε|t|
∫ t

−∞
(t− u)keλ(t−u) dL(u) = lim

t→∞
e−ε|t|

∫ t

−∞
(t− u)keλ(t−u) dL(u) = 0.

The analogous result for the integrals
∫∞
t

with <(λ) > 0, completes the proof.

2.3 Prediction of Y

We return now to the problem of determining E(Y (h)|Y (u),−∞ < u ≤ 0). Assuming

that the zeroes of the polynomial a(z) have strictly negative real parts, we can express

the strictly stationary X(t) (see Brockwell and Lindner (2009), equation (3.5)) as

X(t) =

∫ t

−∞
la(t− u)dL(u) =

∫ t

−∞
eA(t−u)epdL(u), t ∈ R, (24)
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where la(t) is the sum of the residues of the column vector ezta−1(z)[1 z · · · zp−1] at

the zeroes of the polynomial a(z) (cf. (18)). From (24) and (3) we see at once that X

is a Markov process and that (X(t))t≤0 is independent of (L(t))t≥0. These facts plays a

crucial role in the proof of the following theorem. From (24) it also follows that the strictly

stationary state vector X and the strictly stationary process Y satisfy E|X(t)| <∞ and

E|Y (t)| < ∞ for all t ∈ R if E|L(1)| < ∞, and E|X(t)|2 < ∞ and E|Y (t)|2 < ∞ for all

t ∈ R if E|L(1)|2 <∞.

Theorem 2.7. Suppose that the zeroes of the polynomials a(z) and b(z) all have strictly

negative real parts, that a(z) and b(z) have no common zeroes, that E|L(1)| <∞ and that

Y is the strictly stationary solution of (1) and (3). Then, for h ≥ 0,

E(Y (h)|Y (s), s ≤ 0) = b′eAhX(0) + EL(1)

∫ h

0

b′eAuep du

= b′eAhX(0) + EL(1)
∑
λ

ν(λ)−1∑
k=0

αλkh
keλk, (25)

where the components of X(0) (= X(0−) a.s.) are given by (22) with t = 0 if q 6= 0

and by Xj(0) = Y (j)(0) (= Y (j)(0−) a.s.) if q = 0. The sum
∑

λ is over the distinct

zeroes λ of a(·) and ν(λ) denotes the multiplicity of λ.
∑ν(λ)−1

k=0 αλkh
keλh is the residue of

z 7→ (ezh − 1)b(z)/[a(z)z] at λ, i.e.

ν(λ)−1∑
k=0

αλkh
keλh =

1

(ν(λ)− 1)!

[
Dν(λ)−1
z

(
(z − λ)ν(λ)(ezh − 1)b(z)/[a(z)z]

)]
z=λ

,

where Dz denotes differentiation with respect to z. (If ν(λ) = 1 the last sum reduces to

b(λ)(eλh − 1)/[λa′(λ)].)

If in addition EL(1)2 <∞ then (25) is the minimum mean-squared error predictor of

Y (h) based on {Y (s), s ≤ 0} and its mean-squared error is

Var

(
b′
∫ h

0

eA(h−u)epdL(u)

)
= Var(L(1))

∫ h

0

|b′eAuep|2 du

= Var(L(1))

∫ h

0

∣∣∣∣∣∣
∑
λ

µ(λ)−1∑
k=0

cλku
keλu

∣∣∣∣∣∣
2

du, (26)

where
∑ν(λ)−1

k=0 cλku
keλu is the residue of z 7→ ezub(z)/a(z) at λ.

Proof. From (1), (3) and the independence of (X(t))t≤0 and (Lt)t≥0 we see at once that

E(Y (h)|Y (s), s ≤ 0) = b′eAhE(X(0)|Y (s), s ≤ 0) + EL(1)

∫ h

0

b′eAuep du, h ≥ 0.

11



Since, by Remark 2.5 (identifying almost surely equal random variables), X(0) is measur-

able with respect to the σ-algebra F0 generated by {Y (s), s ≤ 0},

E(Y (h)|Y (s), s ≤ 0) = b′eAhX(0) + EL(1)

∫ h

0

b′eAuep du, h ≥ 0,

where the components of the vector X(0) are found from (22) if q 6= 0 and from Xj(0) =

Y (j)(0) if q = 0. The last term can be rewritten as in (25) by applying equation (2.10) of

Brockwell and Lindner (2009) and Fubini’s theorem, as in the proof of Proposition 5.1(b)

of Brockwell and Lindner (2009).

The prediction error of the conditional expectation (25) is

Y (h)− E(Y (h)|Y (s), s ≤ 0) =

∫ h

0

b′eA(h−u)ep d(L(u)− uEL(1)). (27)

If EL(1)2 < ∞ the conditional expectation minimizes the expected squared prediction

error over all measurable functions of {Y (u), u ≤ 0}. This minimum value of the expected

squared error is therefore

Var

(
b′
∫ h

0

eA(h−u)epdL(u)

)
= Var(L(1))

∫ h

0

b′eAuepe
′
pe
A
′
ub du

(here A and b denote the complex conjugates of A and b, respectively). Using the ex-

pression for b′eAhep in equation (2.10) of Brockwell and Lindner (2009), we obtain (26)

as required.

The importance of the expression (26) for the mean-squared error when EL(1)2 <∞
is that it provides a benchmark against which less efficient predictors can be measured. If,

for example, prediction is based on {Y (n∆), n = −1,−2, . . .} or on some bounded subset

of {Y (u), u ≤ 0} then the corresponding mean-squared errors can be compared with (26)

to check on their performance relative to the best predictor (25) based on {Y (u), u ≤ 0}.
We conclude this section by showing that the best linear predictor, P (Y (h)|Y (s), s ≤ 0),

of Y (h) based on {Y (u), u ≤ 0}, i.e. the orthogonal projection of Y (h) onto the closed

linear span, sp {Y (s), s ≤ 0}, and the orthogonal projection P (Y (h)|1, Y (s), s ≤ 0) are

both equal to the best predictor (25).

Theorem 2.8. If the assumptions of Theorem 2.7 are satisfied and EL(1)2 <∞ then, for

h ≥ 0, the best linear predictor P (Y (h)|Y (s), s ≤ 0) and the predictor P (Y (h)|1, Y (s), s ≤
0) are both equal to the minimum mean-squared error predictor E(Y (h)|Y (s), s ≤ 0) given

by (25), with mean squared error (26).

Proof. Since

sp {Y (s), s ≤ 0} ⊂ sp {1, Y (s), s ≤ 0} ⊂ L2(Ω, σ{Y (s) : s ≤ 0},P) ⊂ L2(Ω,F ,P),
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where (Ω,F ,P) is the underlying probability space, it will be sufficient to show that

E(Y (h)|Y (s), s ≤ 0) as given by (25) is in M := sp {Y (s), s ≤ 0}. To see this, observe

first that E|X(t)|2 <∞ for all t ∈ R by (24), since la decreases exponentially (and hence

is in L1(R) ∩ L2(R)). Let T > 0. By (4), there is a constant CT such that

sup
t∈[0,T ]

|X(t)| ≤ CT

(
|X(0)|+ sup

t∈[0,T ]

|L(t)|

)
,

from which we conclude that

E sup
t∈[−T,0]

|X(t)|2 <∞ (28)

by stationarity and Theorem 25.18 of Sato (1999). Hence also E supt∈[−T,0] |Y (t)|2 < ∞
for all T . Let κ be given by (20). Since N−1

∑N
i=1 κ(iT/N)Y (−iT/N) ∈M for all N ∈ N

and since it converges almost surely to
∫ 0

−T κ(−u)Y (u) du as N →∞, it converges also in

L2 by Lebesgue’s dominated convergence theorem. Hence
∫ 0

−T κ(−u)Y (u) du ∈M. Next,

observe that∣∣∣∣∫ 0

−T
κ(−u)Y (u) du

∣∣∣∣ ≤ ∫ 0

−∞
|κ(−u)Y (u)| du ≤

∞∑
n=0

sup
u∈[n,n+1]

|κ(u)| sup
u∈[−n−1,−n]

|Y (u)|,

and since E supu∈[−n−1,−n] |Y (u)|2 = E supu∈[−1,0] |Y (u)|2 < ∞ by stationarity, the expo-

nential decrease of κ and Minkowski’s inequality show that E
(∫ 0

−∞ |κ(−u)Y (u)| du
)2

<

∞. Hence, by (19) and Lebesgue’s dominated convergence theorem,
∫ 0

−T κ(−u)Y (u) du

converges in L2 to X(0) as T → ∞, from which we conclude that X(0) ∈ M. The same

reasoning can be applied to show that X(t) ∈M for all t < 0. Since∣∣∣∣X1(0)− X(0)−X(−δ)
δ

∣∣∣∣ =

∣∣∣∣1δ
∫ 0

−δ
(X1(0)−X1(u)) du

∣∣∣∣ ≤ 2 sup
u∈[−δ,0]

|X(u)|,

letting δ ↓ 0 we conclude from Lebesgue’s dominated convergence theorem, using (28)

and (7), that δ−1(X(0)−X(−δ)) converges in L2 to X1(0−) = X1(0) a.s., and hence that

X1(0) ∈ M. The same reasoning can be applied to show that X1(t) ∈ M for all t ≤ 0.

Iterating this argument, we see that X(t), X1(t), . . . , Xp−1(t) ∈M for all t ≤ 0 and hence

b′eAhX(0) ∈ M. Further, since L(0) = 0, from (21) we conclude that L(s) ∈ M for all

s ≤ 0. Since

E
∣∣t−1L(t)− EL(1)

∣∣2 = t−2Var(L(t)) = |t|−1Var(L(1))→ 0, t→ −∞,

we conclude that t−1L(t) converges in L2 to EL(1) as t → −∞. Hence EL(1) ∈ M and

from (25) we conclude that E(Y (h)|Y (s), s ≤ 0) ∈M, finishing the proof.
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3 Determination of E(Y (h)|Y (u),−M ≤ u ≤ 0)

In this section we shall determine E(Y (h)|Y (u),−M ≤ u ≤ 0) for h ≥ 0 when L is a

pure jump Lévy process. We do not need to assume that Y is strictly stationary, but

require it to be causal or, more precisely, non-anticipative in the sense that (L(t))t≥0 and

(Y (t))t∈[−M,0] are independent. The first step is the recovery of (L(t))t∈[−M,0] from the

realisation of Y on [−M, 0]. This is achieved using (8) and the Lévy-Itô decomposition as

shown below in Proposition 3.1.

Throughout the section we shall suppose that L = (L(t))t∈R is a two-sided Lévy process

on the probability space (Ω,F ,P), with characteristic triplet (0,Π, γ), i.e. that L is a pure

jump Lévy process with Lévy measure Π and that L(1) has characteristic function,

EeiL(1)z = exp

{
iγz +

∫
R

(
eixz − 1− ixz1|x|≤1

)
Π(dx)

}
, z ∈ R.

By the Lévy-Itô-decomposition (see e.g. Sato (1999), Theorem 19.2) there is a set Ω0 ∈ F
with P(Ω0) = 1 such that, for each ω ∈ Ω0, the path L(·, ω) is càdlàg on R and

lim
ε↓0

γt− ∑
t<s≤0,|∆L(s,ω)|>ε

∆L(s, ω)− t
∫
ε<|x|≤1

xΠ(dx)

 = L(t, ω) ∀ t ∈ [−M, 0], (29)

the limit being uniform in t on [−M, 0]. Then, for each ω ∈ Ω0, Zt(ω) := Y (p−q−1)(t, ω)

exists in the sense that Y (p−q−2) is differentiable from the left and from the right on R
with càdlàg derivative Z = Y (p−q−1).

Proposition 3.1. Let Y = (Y (t))t∈R be a CARMA(p, q)-process with characteristic poly-

nomials a(z) and b(z), driven by L as defined in the preceding paragraph, and with initial

state vector X(0). (We do not require Y to be either strictly stationary or causal, nor do

we exclude the possibility that a(z) and b(z) have common zeroes.) For any M > 0 we

define GM := σ{Y (u) : u ∈ [−M, 0]}. Then

(i) L(t) is almost surely equal to a GM -measurable random variable for each t ∈ [−M, 0],

more precisely

(ii) if (xm)m∈N is a strictly decreasing sequence of real numbers such that limm→∞ xm = 0

and Π({−xm, xm}) = 0 for all m ∈ N, and if

Rn,m(t, ω)

:=
n−1∑
i=0

(Z−iM/n − Z−(i+1)M/n)1{|Z−iM/n−Z−(i+1)M/n|≥xm}1[t,0](−(i+ 1)M/n),

for n,m ∈ N, t ∈ [−M, 0] and ω ∈ Ω0, then there is a set Ω1 ∈ F such that Ω1 ⊂ Ω0,

P(Ω1) = 1, limn→∞Rn,m(t, ω) exists for all ω ∈ Ω1, m ∈ N and t ∈ [−M, 0], and such
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that

L(t, ω) = γt− lim
m→∞

(
t

∫
|x|∈(xm,1]

xΠ(dx) + lim
n→∞

Rn,m(t, ω)
)
, t ∈ [−M, 0], ω ∈ Ω1, (30)

where the limit in m is uniform in t on [−M, 0].

Proof. (i) is an immediate consequence of (ii), since the right-hand-side of (30) is GM -

measurable.

We shall now prove (ii). That Z exists on Ω0 and is càdlàg and the fact that ∆L(s, ω) =

∆Zs(ω) for each ω ∈ Ω0 has already been observed. Since Π({−xm, xm}) = 0, there is

some set Ω1 ∈ F , Ω1 ⊂ Ω0 with P(Ω1) = 1 and ∆Zs(ω) 6= |xm| for all m ∈ N, ω ∈ Ω1 and

s ∈ R, and with ∆Z−M(ω) = 0 for all ω ∈ Ω1. Define

Wt := Zt +
∑

t<u≤0,|∆Zu|≥xm

∆Zu, t ∈ [−M, 0],

for fixed ω ∈ Ω1 and m ∈ N. Then W is càdlàg on [−M, 0] and satisfies |∆Ws| < ε for

each s ∈ [−M, 0] for some ε = ε(ω) < xm. Hence, for each s ∈ [−M, 0] there exists an

open neighborhood Us,m in [−M, 0] of s such that |Wu −Wv| < ε for all u, v ∈ Us,m. The

compactness of [−M, 0] implies that there exists δ(m,ω) > 0 such that |Wu −Wv| < xm

whenever u, v ∈ [−M, 0] with |u− v| ≤ δ. In particular,

n−1∑
i=0

1{|W−iM/n−W−(i+1)M/n|≥xm}1[t,0](−(i+ 1)M/n) = 0

for large enough n, uniformly in t on [−M, 0]. If Z (equivalently L) has no jump of absolute

size greater than or equal to xm in (−(i+1)M/n,−iM/n], then Z−iM/n−Z−(i+1)M/n is equal

to W−iM/n −W−(i+1)M/n. For ω ∈ Ω1 denote by S(m,ω) the finite set of all s ∈ (−M, 0]

with |∆Zs(ω)| = |∆L(s, ω)| ≥ xm. For s ∈ S(m,ω), define i(s) ∈ {0, . . . , n − 1} through

the property that s ∈ (−(i(s) + 1)M/n,−i(s)M/n]. Then for sufficiently large n, the

indices i(s) are distinct for different s ∈ S(m,ω), and

Rn,m(t, ω) =
∑

s∈S(m,ω)

(Z−i(s)M/n − Z−(i(s)+1)M/n)1{|Z−i(s)M/n−Z−(i(s)+1)M/n|≥xm}

1[t,0](−(i(s) + 1)M/n).

Since Z has no jumps of absolute size xm on Ω1, we obtain for ω ∈ Ω1 and s ∈ S(m,ω)

lim
n→∞

(Z−i(s)M/n − Z−(i(s)+1)M/n) = ∆Zs and

lim
n→∞

1{|Z−i(s)M/n−Z−(i(s)+1)M/n|≥xm} = 1{|∆Zs|>xm}.

Hence limn→∞Rn,m(t, ω) exists for each ω ∈ Ω1 and is equal to
∑

t<s≤0,|∆Zs|>xm ∆Zs.

Equation (30) then follows immediately from (29).
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Remark 3.2. If the exceptional set Ω \ Ω1 appearing in the statement of Proposition

3.1 is the empty set, which can without loss of generality be assumed by redefining L

on Ω \ Ω1 as L(t, ω) = 0, then L(t) is not only almost surely equal to a GM -measurable

random variable, but is GM -measurable. A similar remark is true for the random variables

fM(t) and X(0) appearing in Theorem 3.3 below.

Theorem 3.3. Let L = (L(t))t∈R be a pure jump Lévy process, and let Y = (Y (t))t∈R be

a CARMA(p, q) process driven by L, with characteristic polynomials a(z) and b(z), such

that (Y (s))s∈[−M,0] is independent of (L(s))s≥0 (as is the case if Y is strictly stationary

and causal). Suppose that a(z) and b(z) have no common zeroes, and let M > 0. Define

fM(t) :=

[
L(t)Ip − L(−M)eA(t+M) +

∫ t

−M
L(u)AeA(t−u) du

]
ep , t ∈ [−M, 0].

Then fM(t) is almost surely equal to a GM -measurable random variable for each t ∈ [−M, 0]

and can be calculated from (30). Further, the matrix
∫M

0
eA
′tbb′eAt dt is invertible and

X(0) is given by

X(0) = eAM
(∫ M

0

eA
′tbb′eAt dt

)−1 ∫ M

0

eA
′tb(Y (t−M)−b′fM(t−M)) dt+ fM(0). (31)

In particular, X(0) is almost surely equal to a GM -measurable random variable. Further,

if E|L(1)| <∞ and sups∈[−M,0] E|Y (s)| <∞ (the latter will hold if E|L(1)| <∞ and Y is

strictly stationary and causal), then E|X(0)| < ∞, and for h ≥ 0 we have E|Y (h)| < ∞
and

E(Y (h)|Y (s), s ∈ [−M, 0]) = b′eAhX(0) + EL(1)

∫ h

0

b′eAuep du, (32)

which can be simplified as in (25). If in addition E|Y (h)|2 <∞ (as is the case if EL(1)2 <

∞ and Y is strictly stationary and causal), then (32) is the minimum mean-squared error

predictor of Y (h) based on {Y (s), s ≤ 0}. The corresponding prediction error and mean-

squared error are given by (27)and (26) respectively.

Proof. By (4) we have

X(t) = eA(t+M)X(−M) + fM(t), t ∈ [−M, 0].

Define

Z(t) := X(t)− fM(t).

Then, since fM(−M) = 0,

Z(t) = eA(t+M)Z(−M), t ∈ [−M, 0].
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Define

w(t) := b′Z(t) = (Y (t)− b′fM(t)), t ∈ [−M, 0].

Since a(z) and b(z) have no common zeroes, the pair (A,b′) is observable by Proposition

2.1. Hence
∫M

0
eA
′tbb′eAt dt is invertible and

X(−M) = Z(−M) =

(∫ M

0

eA
′tbb′eAt

)−1 ∫ M

0

eA
′tbw(t−M) dt

(cf. Lemma 12.3.2 and Equation (12.3.18) in Bernstein (2009)). This gives (31) since

X(0) = eAMX(−M)+ fM(0). If E|L(1)| <∞ and sups∈[−M,0] E|Y (s)| <∞, then it follows

that sups∈[−M,0] E|L(s)| < ∞ (see Sato (1999), Theorem 25.18). Hence E|X(0)| < ∞ by

(31) and E|Y (h)| < ∞ by (3). The remaining assertions now follow as in the proof of

Theorem 2.7.

Corollary 3.4. Under the assumptions of Theorem 3.3, if E|L(1)| < ∞ and

sups∈[−R,0] E|Y (s)| <∞ for all R > 0, then

E(Y (h)|Y (s), s ∈ [−M1, 0]) = E(Y (h)|Y (s), s ∈ [−M2, 0])

for all h ≥ 0 and 0 < M1,M2 < ∞. Under the additional assumptions that the zeroes of

a(z) and b(z) have strictly negative real parts and Y is strictly stationary and causal,

E(Y (h)|Y (s), s ≤ 0) = E(Y (h)|Y (s), s ∈ [−M, 0]).

Proof. This follows from the fact that the prediction errors are given by (27) and hence

the same in each case.

We have not determined the best linear predictor P (Y (h)|Y (s), s ∈ [−M, 0]) in the

setting of Theorem 3.3. Since the construction of E(Y (h)|Y (s), s ∈ [−M, 0]) is nonlinear,

it may well be that P (Y (h)|Y (s), s ∈ [−M, 0]) and E(Y (h)|Y (s), s ∈ [−M, 0]) differ. We

have not investigated this issue further.

4 The sampled sequence (Y ∆
n )n∈Z and P [Y (t)|Y ∆

n , n < 0]

In this section we are concerned with linear minimum-mean-squared error prediction of the

stationary CARMA(p, q) process Y in (1) at times h ∈ [0,∞), based on observations at the

discrete times {n∆, n = −1,−2, . . .} when it is assumed, as before, that the parameters

of the CARMA process are known. We shall assume in this section that EL(1) = 0 so

that EY (t) = 0 for all t and that EL(1)2 =: σ2 ∈ (0,∞). We shall also assume that the

zeroes, λ1, . . . , λp, of the autoregressive polynomial a(z) in (6) all have strictly negative
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real parts, and that the state vector X is strictly stationary (by Proposition 2.1, this is

necessarily the case if Y is strictly stationary and a(z) and b(z) have no common zeroes).

Finally, we assume that a1, . . . , ap, b0, . . . , bq ∈ R. Prediction of Y (h) when h is an integer

multiple of ∆ can be done using standard discrete-time techniques applied to the sampled

process (Y ∆
n := Y (n∆))n∈Z, which satisfies the ARMA(p, q) equations,

p∏
i=1

(1− eλi∆B)Y ∆
n = θ∆(B)Z∆

n , {Z∆
n } ∼WN(σ2

∆), (33)

where θ∆(z) = 1 + θ∆
1 z + · · · + θ∆

p−1z
p−1 is a polynomial of degree less than or equal to

p − 1, all of whose zeroes lie in the exterior of the closed unit disc. (There can be no

zero on the unit circle by a result of Brockwell and Brockwell (1999).) Its coefficients

and the white-noise variance σ2
∆ are determined by the parameters of the process Y . The

calculation of the moving average coefficients and of σ2
∆ can in principle be carried out

by computing the autocovariance function of {
∏p

i=1(1− eλi∆B)Y ∆
n } and determining the

coefficients and white-noise variance of the corresponding invertible moving average using

Wilson’s algorithm. This however is a complicated and tedious procedure. In this section

we develop a simpler approach using the Kalman recursions which not only determines

all of the parameters appearing in (33) but also provides best linear forecasts of Y (h) for

all non-negative h, not just for values which are integer-multiples of ∆.

From (3) we have

X(t) = eAtX(0) +

∫ t

0

eA(t−u)epdL(u),

whence P [X(t)|Y ∆
n , n < 0] = eAtP [X(0)|Y ∆

n , n < 0] by our assumption that the zeroes of

a(z) all have strictly negative real parts so that {X(t) : t ≤ 0} and {L(t) : t ≥ 0} are

independent. From (1) and (3) we therefore have

P [Y (t)|Y ∆
n , n < 0] = b′eAtP [X(0)|Y ∆

n , n < 0], (34)

where P [X(0)|Y ∆
n , n < 0] can be found by applying the one-step steady-state Kalman

state predictor to the discrete state-space model,

Xn+1 = FXn + Vn, {Vn} ∼ IID(0, Q), (35)

Y ∆
n = b′Xn, (36)

where Xn := X(n∆), F = eA∆, Vn =
∫ (n+1)∆

n∆
eA((n+1)∆−u)epdL(u) and Q = E(VnV

′
n) =

σ2
∫ ∆

0
eAtepe

′
pe
A′tdt. If the eigenvalues λ1, . . . , λp of the matrix A each have multiplicity

one, we can also write

Q = σ2

p∑
r=1

p∑
s=1

e∆(λr+λs) − 1

(λr + λs)
∏

k 6=r(λr − λk)
∏

m 6=s(λs − λm)

[
λi−1
r λj−1

s

]p
i,j=1

.
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Since obviously [λIp−A, ep] has full rank p for any λ ∈ C, the pair (A, ep) is controllable

by the PBH test for controllability (see Bernstein (2009), Corollary 12.6.19), implying

that Q is invertible by Lemma 12.6.2 in Bernstein (2009).

Our goal now is to determine X̂0 := P [X(0)|Y ∆
n , n < 0] from the steady-state Kalman

recursions applied to the discrete-time system (35) and (36). Then (34) gives the required

predictor of Y (t).

Since (Xn)n∈Z is strictly stationary, since all eigenvalues of F have modulus strictly

less than 1 and since Q is (strictly) positive definite, it follows from Proposition 13.2

in Hamilton (1994) that the steady-state mean-square error covariance matrix, Ω :=

E[(X0−X̂0)(X0−X̂0)′] is the unique positive semidefinite solution of the Riccati equation,

Ω = FΩF ′ +Q− FΩb(b′Ωb)−1b′ΩF ′,

and that the sequence {Ωn} defined by the recursions,

Ωn+1 = FΩnF
′ +Q− FΩnb(b′Ωnb)−1b′ΩnF

′, (37)

with Ω0 = Ip, the p× p identity matrix, converges to Ω as n→∞ (here, (b′Ωnb)−1 needs

to be interpreted as a generalized inverse if b′Ωnb = 0, e.g. as being 0, but it is easy to

see that the limit satisfies b′Ωb > 0 and hence b′Ωnb > 0 for large n, since otherwise

Y (0) could be exactly predicted in terms of (Y ∆
n : −n ∈ N), contradicting equation (26)).

The steady-state Kalman gain is

K = FΩb(b′Ωb)−1

and the eigenvalues of the matrix F −Kb′ are all strictly less than one in absolute value

(cf. Hamilton (1994), Proposition 13.2).

Since we have assumed that the eigenvalues of the matrix A all have negative real

parts, the stationary solution of (35) is

Xn =
∞∑
j=0

F jVn−1−j

and the corresponding best linear predictor X̂n := P [Xn|Y ∆
m ,m ∈ Z,m < n] satisfies

X̂n = F X̂n−1 +Kb′(Xn−1 − X̂n−1)

= (F −Kb′)X̂n−1 +KY ∆
n−1

=
∞∑
j=1

(F −Kb′)j−1KY ∆
n−j
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(cf. equations (13.5.8) and (13.5.12) in Hamilton (1994)). Hence, from (34), we have the

required predictor,

P [Y (h)|Y ∆
n , n < 0] = b′eAh

∞∑
j=1

(F −Kb′)j−1KY ∆
−j, (38)

where F = eA∆ and K = eA∆Ωb(b′Ωb)−1. The prediction error is

Y (h)− P [Y (h)|Y ∆
n , n < 0] = b′eAh(X0 − X̂0) +

∫ h

0

b′eA(h−u)ep dL(u),

with variance,

v(h) = b′eAhΩeA
′hb + σ2

∫ h

0

b′eAuepe
′
pe
A′ub du. (39)

If the eigenvalues of A all have multiplicity one, the second term on the right of (39) can

be expressed as

σ2

p∑
r=1

p∑
s=1

b(λr)b(λs)(e
(λr+λs)h − 1)

a′(λr)a′(λs)(λr + λs)
.

It is the mean squared error of the best predictor E[Y (t)|Y (u), u < 0] = P [Y (t)|Y (u), u <

0] based on continuous observation of Y on (−∞, 0) (see Theorems 2.7 and 2.8). The first

term on the right of (39) thus quantifies the loss of accuracy incurred by using only the

best linear predictor based on the discrete past observations rather than the minimum

mean squared error predictor based on the entire past {Y (t), t < 0}.
To conclude this section we use (38) with t = 0 to determine the parameters of the

moving average parameters and white noise variance in the representation (33) of the

sampled process. From (33) we obtain the representation of the best linear predictor Ŷ ∆
0

of Y ∆
0 in terms of Y ∆

−1, Y
∆
−2, . . .,

Ŷ ∆
0 =

∞∑
j=1

−πjY ∆
−j,

where πj is the coefficient of zj in the power-series expansion of

π(z) =
φ(z)

θ∆(z)
, |z| < 1, (40)

and φ(z) =
∏p

i=1(1− eλi∆z) =
∑p

j=0 φjz
j (see e.g. Brockwell and Davis (1991), Theorem

5.5.1)). But from (38)

πj = −b′(F −Kb′)j−1K, j = 1, 2, . . . .

Since π(z) and φ(z) are both known, it is an elementary matter to compute the

coefficients of θ∆(z) recursively from (40). Thus θ∆
0 = 1, π0 = 1 and

θ∆
k = φk −

k−1∑
j=0

θ∆
j πk−j, k = 1, . . . , p− 1. (41)
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The corresponding white-noise variance in (33) is

σ2
∆ = E(Y ∆

0 − Ŷ ∆
0 )2 = b′Ωb. (42)

Remark 4.1. Having determined the polynomial θ∆(z) as described above, it is a trivial

matter to derive the coefficients ψj in the Wold representation,

Y ∆
n =

∞∑
j=0

ψjZ
∆
n−j, {Zn} ∼WN(0, σ2

∆),

from the power series expansion,

ψ(z) :=
∞∑
j=0

ψjz
j =

θ∆(z)

φ(z)
, |z| ≤ 1.

The white-noise variance σ2
∆ in (42) can also be derived from Kolmogorov’s formula,

σ2
∆ = 2π exp

{
1

2π

∫ π

−π
ln f∆(ω) dω

}
,

where f∆ is the spectral density of the sampled process (Y ∆
n )n∈Z, which can be expressed

as a sum of residues

f∆(ω) =
σ2

2π

∑
λ

Resz=λ

[
b(z)b(−z)

a(z)a(−z)

sinh(∆z)

cos(ω)− cosh(∆z)

]
, −π ≤ ω ≤ π,

and the sum is over the distinct zeroes λ of a(z) (this follows from Brockwell et al. (2012)).

Example 4.2. [CARMA(2,1)]

Consider the CARMA(2,1) process defined by the (formal) stochastic differential equation,

(D2 + 1.5D + .5)Y (t) = (D + 2)DL(t),

with EL(1) = 0 and σ2 = EL(1)2 = 1. In this case we have λ1 = −.5, λ2 = −1,

A =

[
0 1

−.5 −1.5

]
, b =

[
2

1

]
and, taking ∆ = 1, Q =

[
.114506 .113909

.113909 .289797

]
.

Iterating (37) with F = eA, we find that Ωn is constant to six decimal places for n ≥ 4

and so, to this accuracy,

Ω =

[
.114709 .114831

.114831 .293984

]
, K =

[
.446226

−.011950

]
and F −Kb′ =

[
−.047271 .031076

−.214751 .141179

]
.

From these matrices we immediately obtain

X̂1
0 =

∞∑
j=1

(F −Kb′)j−1KY 1
−j
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and the required predictor P [Y (t)|Y 1
n , n < 0], t ∈ [0,∞), is then found at once from (38).

In particular

Ŷ 1
0 = b′X̂1

0 = .880502Y 1
−1 − .140444Y 1

−2 + . . . .

Since φ1 = −e−.5 − e−1 = −.974410 and π1 = −.880502 we also find immediately from

(41) that the moving average coefficient of the sampled process appearing in (33) is

θ1
1 = φ1 − π1 = −.093908.

The white-noise variance σ2
1 is found from (42) to be

σ2
1 = 1.21214.

It is interesting in this example to compare the mean squared errors of the predictors

E[Y (0)|Y (u), u ≤ −1] and P [Y (0)|Y (−1), Y (−2), . . .]. The former, by Theorem 2.7, is

σ2

∫ 1

0

b′eAtepe
′
pe
A′tb dt = b′Qb = 1.20346

and the latter is

E(Y (0)− Ŷ 1
0 )2 = b′Ωb = 1.21214.

This shows that in this case, from the point of view of one-step minimum mean squared

error prediction, there is very little to be gained by attempting to calculate the conditional

expectation, E[Y (0)|Y (−1), Y (−2), . . .] since we know that its mean squared error cannot

be smaller than 1.20346, a value only barely smaller than the mean squared error of the

linear predictor, P [Y (0)|Y (−1), Y (−2), . . .].

The steady-state Kalman recursions thus permit very simple determination of the

best linear predictors of Y at all non-negative times, based on observations at times

{−n∆, n ∈ N}, and provide also a very simple method for computing all the parameters

in the ARMA equations for the process obtained by sampling the CARMA process on

any uniform lattice with spacing ∆.
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