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Abstract

We characterize Riesz frames and prove that every Riesz frame
is the union of a finite number of Riesz sequences. Furthermore, it
is shown that for piecewise continuous wavelets with compact sup-
port, the associated regular wavelet systems can be decomposed into
a finite number of linearly independent sets. Finally, for finite sets an
equivalent condition for decomposition into a given number of linearly
independent sets is presented.

1 Introduction

This paper is concerned with the decomposition of certain families of func-
tions (more generally, vectors) into a finite number of linearly independent
sets. Let (H,< ·, · >) denote a separable Hilbert space. A frame is a se-
quence {ϕi}i∈I of elements in H for which there exist positive constants A
and B such that

A‖f‖2 ≤
∑
i∈I

| < f, ϕi > |2 ≤ B‖f‖2 ∀ f ∈ H.

The constants A and B are called frame bounds.

Not every frame can be decomposed into a finite union of bases (see
Example 2.1). We prove that every Riesz frame is the union of a finite
∗Mathematics Subject Classification 2000: 42C15, 42C40
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number of Riesz sequences (see below for the exact definitions). Our result
is actually a consequence of a characterization of Riesz frames in terms of
finite linearly independent subfamilies. This result is of independent interest,
because it provides a criterion for {fi}i∈I to be a Riesz frame that is easier to
apply than the definition. Also, we shall give a geometric characteriziation
of Riesz frames in terms of angles between certain Hilbert spaces.

Given a function ψ ∈ L2(R) and parameters a > 1, b > 0, the associated
wavelet system is the family of functions {ψj,k}j,k∈Z defined by

ψj,k(x) = aj/2ψ(ajx− kb), x ∈ R. (1)

Note that we use the word wavelet in a very general sense: we do not assume
that {ψj,k}j,k∈Z is a basis or even a frame.

A family of the type {ψj,k}j,k∈Z can not always be decomposed into a finite
union of Riesz sequences. But we prove that if ψ 6= 0 is piecewise continuous
and has compact support, then {ψj,k}j,k∈Z can be decomposed into a finite
union of linearly independent sets.

Finally we prove that a finite set {ϕi}i∈I of vectors can be decomposed
into at most E ∈ N linearly independent families if and only if any subset
J ⊆ I satisfies

|J |
dim span{ϕi : i ∈ J}

≤ E.

2 Characterization of Riesz frames

A family {ϕi}i∈I of elements in H is by definition a Riesz frame [5] if it is
complete and there are positive constants A and B such that for any subset
J of I, {ϕi}i∈J is a frame for span{ϕi}i∈J with frame bounds A and B.
The common frame bounds A,B will be called Riesz frame bounds; note
that the upper Riesz frame bound corresponds to the upper frame bound
for {ϕi}i∈I , while a lower frame bound for {ϕi}i∈I might not be a lower
Riesz frame bound. For example, if {ei}∞i=1 is an orthonormal basis, then
{e1, e1, e2, e2, . . . } is a frame with bounds A = B = 2; it is also a Riesz
frame, but with bounds A = 1, B = 2. We also note that not every frame is
a Riesz frame:
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Example 2.1 Let again {ei}∞i=1 be an orthonormal basis, and let

{ϕi}i∈I = {e1,
1√
2
e2,

1√
2
e2,

1√
3
e3,

1√
3
e3,

1√
3
e3, · · · }.

Since the element 1√
k
ek, k ∈ N, appear k times in {ϕi}i∈I , we have

∑
i∈I

| < f, ϕi > |2 =
∞∑
k=1

| < f, ek > |2 = ||f ||2, ∀f ∈ H,

i.e., {ϕi}i∈I is a frame for H with bounds A = B = 1. However, the sub-
sequence { 1√

k
ek}∞k=1 is not a frame, as we see by taking f = ek, k ∈ N.

Thus {ϕi}i∈I is not a Riesz frame. It is also clear that {ϕi}i∈I can not be
decomposed into a finite union of bases.

In this section we give characterizations of Riesz frames. Our characteriza-
tions are in terms of certain properties for finite subfamilies of {ϕi}i∈I . Recall
that {ϕi}i∈I is a Riesz sequence if there are positive constants A and B such
that

A
∑
i∈J

|ci|2 ≤

∥∥∥∥∥∑
i∈J

ciϕi

∥∥∥∥∥
2

≤ B
∑
i∈J

|ci|2

for all finite subsets J of I and all scalar sequences (ci)i∈J . The constants
A and B are called bounds of the Riesz sequence. If furthermore {ϕi}i∈I
is complete in H, then {ϕi}i∈I is a Riesz basis. Also, {ϕi}i∈I is called a
Bessel sequence if at least the upper Riesz sequence condition is satisfied (or,
equivalently, the upper frame condition is satisfied with the same constant
B).

For infinite sequences there exist different concepts of ”linear indepen-
dence”. We say that

(i) {ϕi}i∈I is linearly independent if every finite subset of {ϕi}i∈I is linearly
independent

and that

(ii){ϕi}i∈I is ω-independent if∑
i∈I

ciϕi = 0⇒ ci = 0, ∀i.
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Riesz bases can be characterized in terms of those concepts:

Lemma 2.2 Let {ϕi}i∈I be a frame for H. Let {In}n∈N be a family of finite
subsets of I such that

I1 ⊂ I2 ⊂ I3 · · · ↑ I.

Let An denote the optimal (i.e., the largest) lower frame bound for {ϕi}i∈In
(as frame for its span). Then the following are equivalent:

(i) {ϕi}i∈I is a Riesz basis.

(ii) {ϕi}i∈I is ω-independent.

(iii) {ϕi}i∈I is linearly independent, and infnAn > 0.

For the proof we refer to [15] or [9]. A frame which is not a Riesz basis
will be said to be overcomplete.

Lemma 2.2 implies that a linearly independent set is a Riesz frame if and
only if it is a Riesz basis. ω-independence clearly implies linear independence.
Theorem 2.4 will give a characterization of arbitrary Riesz frames in terms
of linearly independent subsets. We begin with

Theorem 2.3 The sequence {ϕi}i∈I is a Riesz frame for its closed linear
span with bounds A and B if and only if (a) and (b) below hold:

(a) {ϕj}j∈J is a Riesz sequence with bounds A and B whenever J ⊂ I is a
finite non-empty set such that {ϕj}j∈J is linearly independent.

(b) {ϕi}i∈I is a Bessel sequence with bound B.

Proof: From the definition of Riesz frames the “only if” implication of
the above characterization is clear. For the converse, suppose that there is
a positive constant A such that for any non-empty finite subset J of I for
which {ϕj}j∈J is linearly independent it is already a Riesz sequence with
lower bound A. Let K ⊂ I be any non-empty set and let f ∈ span {ϕj : j ∈
K}. By the definition of the span, this means that f has a representation
as a linear combination of a finite set of vectors ϕi, i ∈ K. By deleting
linearly dependent vectors if necessary, we find a finite subset J of K such
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that f ∈ span {ϕj : j ∈ J} and {ϕj}j∈J is linearly independent. From the
assumption it follows

A · ‖f‖2 ≤
∑
j∈J

| < f, ϕj > |2 ≤
∑
j∈K

| < f, ϕj > |2 ≤ B · ||f ||2. (2)

It is well known that if the frame condition holds on a subspace, then it also
holds on the closure of the subspace. Thus (2) holds for all f ∈ span{ϕj :
j ∈ K} and the conclusion follows. 2

Below we give another characterization of Riesz frames, substituting the
condition of {ϕi}i∈I being a Bessel sequence by the condition that {ϕi}i∈I
can be decomposed into a finite number of linearly independent sets:

Theorem 2.4 The sequence {ϕi}i∈I is a Riesz frame for span{ϕi}i∈I if and
only if the following two conditions hold:

(a) There are positive constants A′, B′ such that {ϕj}j∈J is an (A′, B′)-
Riesz sequence whenever J ⊂ I is a finite set such that {ϕj}j∈J is
linearly independent.

(b) There is a finite partition of I into disjoint sets D1, . . . , DE such that
each of the {ϕi}i∈Dj is linearly independent (j = 1, . . . , E).

Proof: Suppose first that {ϕi}i∈I is a Riesz frame for H1 := span{ϕi}i∈I
Then (a) is clear. To prove (b), we use that there is a subset D1 of I such that
{ϕi}i∈D1 is a Riesz basis for H1 (cf. [5]). Now consider the set I \D1. Then
{ϕi}i∈I\D1 is a Riesz frame for its closed linear span H2. Thus it contains a
Riesz basis {ϕi}i∈D2 for H2. Continuing in this way we obtain a sequence of
Hilbert spaces H1 ⊃ H2 ⊃ H3 ⊃ . . . and a sequence of Riesz bases {ϕi}i∈Dj
for Hj. By construction, the sets Dj are disjoint. We want to prove that this
process stops after a finite number of steps, i.e., that for a certain positive
integer E, HE+1 = {0}. Suppose there is some non-zero f ∈ HE for some
E ∈ N. We then have

f ∈ HE ⊂ HE−1 ⊂ . . . ⊂ H1.

Denoting the Riesz frame bounds for {ϕi}i∈I by A,B, we have

A · ‖f‖2 ≤
∑
i∈Dj

| < f, ϕi > |2 ∀ j = 1, . . . , E.
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Thus we obtain

A · E · ‖f‖2 ≤
E∑
j=1

∑
i∈Dj

| < f, ϕi > |2 ≤
∑
i∈I

| < f, ϕi > |2 ≤ B · ‖f‖2.

Since f 6= 0, we have E ≤ B/A. So {ϕi}i∈I can be partitioned into a finite
number of linearly independent sets. This proves (b).

For the converse, suppose that conditions (a) and (b) are valid. Let J be any
finite non-empty subset of I. Choose a partition of J into E disjoint subsets
J1, . . . , JE such that {ϕi}i∈Dj is linearly independent for j = 1, . . . , E. Then
by (a), {ϕi}i∈Dj is a Bessel sequence with bound B′. Let {ci}i∈I ∈ `2(I).
Then we have ∥∥∥∥∥∥

∑
i∈Jj

ciϕi

∥∥∥∥∥∥
2

≤ B′
∑
i∈Jj

|ci|2

for j = 1, . . . , E, and hence∥∥∥∥∥∑
i∈J

ciϕi

∥∥∥∥∥ ≤
E∑
j=1

∥∥∥∥∥∥
∑
i∈Jj

ciϕi

∥∥∥∥∥∥ ≤
√
B′

E∑
j=1

√∑
i∈Jj

|ci|2 ≤
√
EB′

∑
i∈J

|ci|2.

By continuity, it thus follows that {ϕi}i∈I is a Bessel sequence with bound
EB′. That it is a Riesz frame for its closed linear span now follows from
Theorem 2.3. 2

The proof of Theorem 2.4 has additionally shown:

Corollary 2.5 Any Riesz frame {ϕi}i∈I can be partitioned into a finite num-
ber E of Riesz sequences {ϕi}i∈Dj , j = 1, . . . , E; if {ϕi}i∈I has the Riesz
frame bounds A,B, we can choose E ≤ B

A
.

Remark 2.6 The proof of Theorem 2.4 shows that condition (b) can be
replaced by the following condition:
(b’) There is an integer E such that any finite subset J of I can be partitioned
into E disjoint sets Jj such that each of the {ϕi}i∈Jj is linearly independent.
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Condition (a) in Theorems 2.3 and 2.4 is not a very geometric one. We can
replace it by another condition, involving angles between closed subspaces;
recall that the angle α(H1, H2) between two closed subspaces H1 and H2 of
H is the unique number in the interval [0, π/2] such that

cos α(H1, H2) = sup{| < f, g > | : f ∈ H1, g ∈ H2, ‖f‖ = ‖g‖ = 1}.

A straightforward application of the results of [4], characterizing Riesz
sequences in terms of angles, now gives:

Theorem 2.7 For a sequence {ϕi}i∈I ⊂ H the following are equivalent:

(a) There are positive constants A,B such that {ϕi}i∈J is an (A,B)-Riesz
sequence whenever J ⊂ I is a finite set such that {ϕi}i∈J is linearly
independent.

(b) {‖ϕi‖}i∈I is bounded from above and from below by positive constants
and there is some positive constant a such that for any two finite non-
empty subsets M and N of I with

span {ϕi : i ∈M} ∩ span {ϕi : i ∈ N} = {0},

the angle between span{ϕi : i ∈ M} and span{ϕi : i ∈ N} is greater
than or equal to a.

Thus we have a geometric interpretation of condition (a) in Theorems 2.3
and 2.4. In the last section, we shall also obtain an equivalent condition to
(b’) of Remark 2.6, which is geometrically more appealing.

Let us end this section with the observation that the conclusion in Corol-
lary 2.5 holds under weaker assumptions for exponential systems {eiλk(·)}k∈Z,
where {λk}k∈Z ⊂ R. In fact, assuming only that {eiλk(·)}k∈Z is a Bessel
sequence in L2(−π, π), the family {λk}k∈Z is relatively separated (see e.g
Theorem 3.1 in [7]). Thus {λk}k∈Z can be split into a finite union of sep-
arated sets with arbitrary large separation constants. For sufficiently large
separation constants, the subsequences will be Riesz sequences by Theorem
2.2 in [16]. Thus {eiλk(·)}k∈Z is a finite union of Riesz sequences.
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3 Decomposition of wavelets

In this section we prove results concerning decomposition of a wavelet system

{ψj,k}j,k∈Z = {aj/2ψ(ajx− kb)}j,k∈Z, a > 1, b > 0

into linearly independent sets. In general, we will not assume that {ψj,k}j,k∈Z
is a frame. But as starting point we prove that Corollary 2.5 can be strength-
ened for a wavelet frame arising from a frame multiresolution analysis:

Example 3.1 A frame multiresolution analysis {Vj, φ} is defined exactly
like a MRA, except that {φ(· − k)}k∈Z is assumed to be a frame for V0 ; see
[2], [3]. Assume the nested sequence {Vj}j∈Z is ordered such that V−1 ⊂ V0 ⊂
V1 ⊂ · · · and let Wj be the orthogonal complement of Vj in Vj+1. In contrast
to the MRA-case, the definition of a frame multiresolution analysis does not
imply the existence of a function ψ ∈ W0 for which {Tkψ}k∈Z is a frame
for W0 and {ψj,k}j,k∈Z is a frame for L2(R) (equivalent conditions for this to
happen can be found in [2]). Now we assume that the frame multiresolution
analysis {Vj, φ} generates a frame {ψj,k}j,k∈Z for L2(R). We want to prove
that then {ψj,k}j,k∈Z is actually a Riesz basis for L2(R): By the construction
in [3], for each j ∈ Z, {ψj,k}k∈Z is a frame for Wj and L2(R) = ⊕Wj. If
{ψj,k}j,k∈Z is a Riesz frame, then for each j ∈ Z, {ψj,k}k∈Z is a Riesz frame
for Wj. A frame of translates is automatically linearly independent when
no translate is repeated [13], so by Lemma 2.2 it follows that {ψj,k}k∈Z is a
Riesz sequence; using the orthogonal decomposition again, we conclude that
{ψj,k}j,k∈Z is a Riesz basis for L2(R).

Note that the above argument only excludes the existence of an overcom-
plete Riesz frame: there actually exist frames of the type {f(·−k)}k∈Z which
are not Riesz bases, cf. [1]. However, by Lemma 2.2 such a frame can not be
a Riesz frame. It is also known that {f(· − k)}k∈Z can only be a frame for a
pure subspace of L2(R), cf. [7]. For more information about Riesz bases and
linear independence we refer to [14].

Proposition 8.2 in [12] implies that if ψ ∈ L2(R) satisfies certain admissi-
bility conditions, then {ψj,k}j,k∈Z is a frame which can be decomposed into a
finite union of Riesz sequences. It is an interesting open problem whether it
is possible at all to find a wavelet frame, which does not have this property.
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We can prove that at least not every wavelet system can be decomposed into
a finite union of Riesz sequences. Consider for example the scaling function
φ associated with a multiresolution analysis {Vj}j∈Z. Suppose that {Vj}j∈Z
is ordered increasingly. For each j ∈ Z the family {2j/2φ(2jx− k)}k∈Z is an
orthonormal basis for Vj, so from V−1 ⊂ V0 ⊂ V1 ⊂ · · · it clearly follows that
the wavelet system {2j/2φ(2jx− k)}j,k∈Z cannot be decomposed into a finite
union of Riesz sequences. Another argument is that {2j/2φ(2jx− k)}j,k∈Z is
not a Bessel sequence, which clearly excludes the “decomposition property”.

The next-best will be to ask for linear independence. One can prove that
for functions ψ ∈ L2(R) with continuous and compactly supported Fourier
transform, the wavelet system {ψj,k}j,k∈Z is linearly independent, cf. [8]. But
in general {ψj,k}j,k∈Z might be linearly dependent; with ψ := 1[0,1] and a =
2, b = 1 it is well known that ψ1,0 = 1√

2
(ψ2,0 +ψ2,1). Below we give conditions

implying that {ψj,k}j,k∈Z can be decomposed into a finite union of linearly
independent sets:

Theorem 3.2 Let a > 1, b > 0 and assume that ψ ∈ L2(R) has compact
support. Define

c := sup supp ψ − inf supp ψ,

and suppose there is an interval of positive length d on which ψ 6= 0 a.e. Let
m and n be integers such that

m ≥ 2c

b
and n ≥ loga

4c

d
. (3)

Then the wavelet system {ψj,k}j,k∈Z with parameters a and b can be de-
composed into mn linearly independent sets. More precisely, for any r ∈
{1, . . . ,m} and s ∈ {1, . . . , n}, the set {ψnj+s,mk+r : j, k ∈ Z} is linearly
independent.

Proof: For j, k ∈ Z set

pj,k := inf supp ψj,k, qj,k := sup supp ψj,k.

Since supp ψj,k is the image of supp ψ under the map

Fj,k : R→ R, x 7→ x+ bk

aj
, (4)
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we have
qj,k − pj,k =

c

aj
.

Furthermore, with m chosen as in (3),

pj,k+m − qj,k =
p0,0 − q0,0 +mb

aj
≥ c

aj
.

Thus, supp ψj,k is contained in an interval of length at most c
aj

and there is
a gap of at least c

aj
between supp ψj,k and supp ψj,k+m.

Now fix r ∈ {1, . . . ,m} and s ∈ {1, . . . , n}. To show that {ψnj+s,mk+r :
j, k ∈ Z} is linearly independent it suffices to show that for any j0, k0 ∈ Z
there is no finite subset S of ({j0, j0 + 1, . . .}×Z) \ {(j0, k0)} and coefficients
{αj,k}(j,k)∈S such that

ψnj0+s,mk0+r =
∑

(j,k)∈S

αj,k ψnj+s,mk+r. (5)

But this follows if we show that for any j0, j1, k0 ∈ Z with j1 ≥ j0 there is a
subinterval Lj1 = Lj1(j0, k0) of supp ψnj0+s,mk0+r of positive length on which
ψnj0+s,mk0+r 6= 0 and such that

Lj1 ∩ supp ψnj+s,mk+r = ∅ ∀ (j, k) ∈ ({j0, . . . , j1} × Z) \ {(j0, k0)}.

In this case, (5) is clearly impossible.

For fixed j0, k0 ∈ Z, we will do the construction of Lj1 by induction on
j1 ≥ j0 by showing that Lj1 can be chosen to have length at least 4c

an(j1+1)+s . For
j0 define Lj0 := Fnj0+s,mk0+r(L), where Fj,k is defined in (4). Then it is clear
that Lj0 has the desired property and by (3) has length d

anj0+s ≥ 4c
an(j0+1)+s .

Now suppose that Lj1−1 has already been constructed for j1 ≥ j0 + 1. If
supp ψnj1+s,mk+r ∩ Lj1−1 = ∅ ∀ k ∈ Z, then we can choose Lj1 = Lj1−1. If
this is not the case, there is k1 ∈ Z such that supp ψnj1+s,mk1+r ∩ Lj1−1 6= ∅.
But as we have seen, supp ψnj1+s,mk1+r has length c

anj1+s , which is at most
one quarter of the length of Lj1−1. Also, the gap between supp ψnj1+s,mk1+r

and supp ψnj1+s,mk+r is at least c
anj1+s for k 6= k1. Thus there is a subinterval

Lj1 of Lj1−1 of length c
anj1+s ≥ 4c

an(j1+1)+s such that Lj1 ∩ supp ψnj1+s,mk+r =
∅ ∀ k ∈ Z. Clearly, Lj1 has the desired properties, concluding the induction
step. 2
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Theorem 3.2 proves the possibility of decomposing {ψj,k}j,k∈Z into a fi-
nite union of linearly independent sets without assuming that {ψj,k}j,k∈Z is a
frame; in this sense, it is more general than frame theory. However, to con-
nect with Section 2 we note that there actually exist (overcomplete) wavelet
frames {ψj,k}j,k∈Z satisfying the conditions in Theorem 3.2. For example,
take any piecewise continuous function ψ with compact support, for which
{2j/2ψ(2jx− k)}j,k∈Z is an orthonormal basis for L2(R); ψ could for example
be any of the Daubechies wavelets with compact support (cf. Section 6.4 in
[11]), or simply the function 1[0, 1

2
[ − 1[ 1

2
,1[. Then the Oversampling Theorem

by Chui and Shi [10] shows that for all odd n, {2j/2ψ(2jx − k/n)}j,k∈Z is a
tight wavelet frame for L2(R); it is clearly overcomplete because it contains
the orthonormal basis {2j/2ψ(2jx− k)}j,k∈Z as a proper subset.

Note that if {ψj,k}j,k∈Z is a Riesz frame, then we do not need Theorem
3.2, because an even stronger result (namely Corollary 2.5) holds in this case.
However, we believe that {ψj,k}j,k∈Z is only a Riesz frame if it is already a
Riesz basis:

Conjecture: If {ψj,k}j,k∈Z is a Riesz frame, then {ψj,k}j,k∈Z is a Riesz basis.

The conjecture is supported by the special case discussed in Example 3.1
and by the fact that if {ψj,k}j,k∈Z is a Riesz frame, then {aj/2ψ(ajx−kb)}k∈Z
is a Riesz frame for its closed span for all j ∈ Z, and therefore a Riesz
sequence by Lemma 2.2.

We note that for a Gabor frame, i.e., a frame for L2(R) of the form

{e2πimbxg(x− na)}m,n∈Z, where g ∈ L2(R), a, b > 0,

the analogue of the conjecture is true. This follows from the Proposition
below (we state it in detail because of a print mistake in [6]) combined with
the observation that if {e2πimbxg(x− na)}m,n∈Z is a frame, then ab ≤ 1, with
equality if and only if {e2πimbxg(x− na)}m,n∈Z is a Riesz basis.

Proposition 3.3 Suppose that ab < 1 and that {e2πimbxg(x−na)}m,n∈Z is a
frame for L2(R). For N ∈ N, let AN denote the optimal lower bound for
{e2πimbxg(x− na)}|m|,|n|≤N . Then

AN → 0 as N →∞.
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4 A criterion for decomposition

In this section we prove the following criterion giving the number of linearly
independent subsets into which a given finite set can be decomposed. We
make the convention that also the empty set {ϕj : j ∈ ∅} will be regarded as
a linearly independent set.

Theorem 4.1 Let E ∈ N, I be a finite set and {ϕi}i∈I be a sequence of non-
zero elements in a vector space. Then I can be partitioned into E disjoint
sets D1, . . . , DE for which each of the {ϕi}i∈Dj (j = 1, . . . , E) is linearly
independent if and only if for any nonempty subset J of I we have

|J |
dim span {ϕj : j ∈ J}

≤ E. (6)

Proof: For the ”only if”-part, suppose there is a partition I =
⋃E
j=1 Dj

into disjoint sets such that each {ϕi}i∈Dj is linearly independent. Let J be
any nonempty subset of I and put Jj := J ∩ Dj for j = 1, . . . , E. Since
{ϕi : i ∈ Jj} is linearly independent for any j, we have

dim span {ϕi : i ∈ Jj} = |Jj|.

Thus we obtain

|J |
dim span{ϕi : i ∈ J}

≤ |J |
max1≤j≤E dim span {ϕi : i ∈ Jj}

=

|J |
max1≤j≤E{|Jj|}

=
|J1|+ . . .+ |JE|
max1≤j≤E{|Jj|}

≤ E ·max1≤j≤E{|Jj|}
max1≤j≤E{|Jj|}

= E.

The ”if”-part will follow if we show the following stronger result:

Claim: If {ϕi}i∈I is a finite sequence of non-zero vectors for which (6)
holds, and if C1, . . . , CE is a partition of I into disjoint sets, then there is a
partition D1, . . . , DE of I into disjoint sets such that each of the sets {ϕi}i∈Dj
is linearly independent (j = 1, . . . , E), and such that

Gj := span {ϕi : i ∈ Cj} ⊂ span {ϕi : i ∈ Dj} =: Fj ∀ j = 1, . . . , E.
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Put G := span {ϕi : i ∈ I}. The proof of the claim above will be done
by induction on dimG, the dimension of G. The claim is trivially true for
dimG = 0 or dimG = 1. So suppose we have dimG ≥ 2 and that the claim
is true for all finite sequences of vectors fulfilling (6) whose linear span has
dimension less than dimG.

We split the proof into two cases. First, if none of the Gj’s is a proper
subset of G, we must have |Cj| ≥ dimG for j = 1, . . . , E, hence |I| =∑E

j=1 |Cj| ≥ E · dimG. But from (6) we conclude |I| ≤ E · dimG. Thus
we have |Cj| = dimG = dimGj for all j, meaning that {ϕi}i∈Cj is already
linearly independent for all j, and we can choose Dj = Cj in this case.

The second case is that there is some p ∈ {1, . . . , E} such that Gp ( G. If
all {ϕi}i∈Cj are linearly independent, there is nothing to prove. So suppose
there is q ∈ {1, . . . , E} such that {ϕi}i∈Cq is linearly dependent. If it is
possible to choose q and p to be equal, do so. If not, we have Gq = G. Then
take some iq ∈ Cq such that we still have span{ϕi : i ∈ Cq \ {iq}} = Gq = G,
and define

C ′j :=


Cq \ {iq} for j = q

Cp ∪ {iq} for j = p

Cj for j 6= p, q.

Then
span{ϕi : i ∈ Cj} ⊂ span{ϕi : i ∈ C ′j}

for all j. Now we can rename Gj to be span {ϕi : i ∈ C ′j} and C ′j to be Cj.
Repeating this proceedure as long as necessary, after a finite number of itera-
tions we arrive at some situation where all {ϕi}i∈Cj are linearly independent
(in which case we are done), or where there is some k ∈ {1, . . . , E} such that
{ϕi}i∈Ck is linearly dependent and Gk ( G. In the latter case define

Sj := {i ∈ Cj : ϕi ∈ Gk}

for j = 1, . . . , E. Then S1, . . . , SE is a partition of
⋃E
j=1 Sj = {i ∈ I : ϕi ∈

Gk}. Since

dim span {ϕi : i ∈
E⋃
j=1

Sj} = dimGk < dimG,

the induction hypothesis gives a partition S ′1, . . . , S
′
E of

⋃E
j=1 Sj into disjoint

subsets, such that {ϕi}i∈S′j is linearly independent for all j ∈ {1, . . . , E} and
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such that

span {ϕi : i ∈ Sj} ⊂ span {ϕi : i ∈ S ′j} ⊂ Gk ∀ j ∈ {1, . . . , E}.

Define for j ∈ {1, . . . , E},

C ′j := (Cj \ Sj) ∪ S ′j,
G′j := span{ϕi : i ∈ C ′j}.

Then Gj ⊂ G′j for all j = 1, . . . , E. Furthermore, Gk = G′k and C ′k = S ′k.
Now, if all {ϕi}i∈C′j are linearly independent, we are done. If not, there must

be some m ∈ {1, . . . , E}\{k} such that {ϕi}i∈C′m is linearly dependent. Since
{ϕi}i∈S′m is linearly independent, there must be im ∈ C ′m \ S ′m such that

span {ϕi : i ∈ C ′m \ {im}} = span {ϕi : i ∈ C ′m}.

But ϕim /∈ Gk, so {ϕi}i∈C′k∪{im} is linearly independent and its span is strictly
greater than Gk. Defining

Dj :=


C ′k ∪ {im} for j = k

C ′m \ {im} for j = m

C ′m for j 6= k,m,

and Fj := span {ϕi : i ∈ Dj}, we see that Gj ⊂ Fj for all j and that
for at least one j the inclusion is strict. Repeating the proceedure as long
as necessary (with Cj := Dj and Gj := Fj) we finally arrive, after a finite
number of steps, at the situation where all {ϕi}i∈Dj are linearly independent.
This shows the claim. 2

Acknowledgments: The authors would like to thank A. Brieden for a
fruitful discussion on the topics of the last section, and the referees for critical
comments leading to a more detailed discussion of wavelet frames.
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