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1 Introduction

Quadratic forms X "QX of Gaussian vectors X ~ N(u,3) play an important role in prob-
ability theory and statistics. These forms appear in (central and non-central) x2-statistics,
likelihood ratios, and power spectra, which are used in many different applications and

models throughout statistics.

Traditional applications include “ballistic analysis of multiple weapon systems”, the
“detection of signals from noise in multichannel receivers”, “the study of bone lengths
determined in vivo using X-ray stereography” (Jensen and Solomon, 1994) as well as
numerous applications in communication theory cited by Raphaeli (1996) and Gao and

Smith (1998).

This paper was motivated by a problem from financial mathematics. The so-called
delta-gamma method approximates the Value-at-Risk, which is nothing else but a small
quantile, e.g. the 1%-quantile. The approximation is based on a second order Taylor
expansion of the price of a financial derivative, for instance, a European option. The
expansion is for the price of the derivative at a particular time and at a certain price level
of the underlying security, which may be an index or an asset price. See Duffie and Pan

(1997) for details.

In a Gaussian framework the second order approximation leads to
1
V(X)=0+ATX + 5XTFX, (1.1)

where X is an m-dimensional Gaussian vector with mean 0 and covariance matrix X, A
is a vector in R™, and I' is some symmetric m X m-matrix. The Gaussian model is usually
based on the central limit theorem. Such quadratic approximations are extremely popular

in risk management for financial institutions (Mina and Ulmer, 1999).

Equation (1.1) can be brought into the diagonal form

1 “ 1
V=0+0TY + YTAY =0+ > Y+ Y7, (1.2)

=1

where Y = (V1,...,Y,,)" is a standard normal vector, § = (d1,...,8,,)" € R™, and
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A = diag(Aq, ..., A\p) is a diagonal matrix. This can be done by solving the generalized

ergenvalue problem

cct =3,
C'TC = A,

and putting X = CY, § = CTA.

Approximations to the probability distribution of V' include series expansions (Mathai
and Provost, 1992, section 4.2), numerical Fourier inversion (Imhof, 1961; Rice, 1980),
Monte-Carlo simulation (Glassermann et al., 2001), and numerous approximations with
limited accuracy based on moment matching (see (Jaschke, 2002b) for references). The
two approaches used in practice, which in principle can achieve any desired accuracy
are numerical Fourier inversion and Monte-Carlo simulation. For small quantiles, special
Monte Carlo simulation methods, such as importance sampling (see e.g. (Glassermann

et al., 2001)), have been developed to reduce the required amount of simulations.

The Fourier inversion method starts with the characteristic function ¢(t) = Ee®V,
t € R, which is known analytically in the case (1.1). Then the inversion formula

fla) = / et (t)dt (1.3)

:% .

holds for the probability density f. The key to an error analysis of trapezoidal, equidistant

approximations to the integral (1.3)

flz,Ay) == QA—; Z H(EA,)e kA (1.4)

k=—00

is the Poisson summation formula

o0

flAnt)y= D> fla+i). (1.5)

j=—o0
The infinite sum (1.4) has to be truncated, so the resulting errors consist in a discretization
error and a truncation error. The discretization error is described by all terms in the
infinite sum in (1.5) except that for j = 0. Thus, the question how the discretization

error decreases asymptotically with A; tending to 0 is identical to the question of the
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tail behavior of f. On the other hand, the truncation error can be read off (1.4) and is
obviously related to the tail behavior of ¢. The influence of these errors on accuracy is
investigated theoretically as well as numerically in (Abate and Whitt, 1992, p.22). For a

modified approach using Fourier inversion, see Jaschke (2002a).

This paper proposes a different approach to the problem in providing an asymptotic
approximation to the density f, to the tails of the distribution function F' and to the a—
quantile z,, for a close to 0 or 1. This approach is in the spirit of Beran (1975), who derives
the asymptotic right tail behavior of the distribution of V' and its density function in the
positive definite case, i.e. when Aq,..., A\, appearing in (1.2) are all strictly positive. The
contribution of this paper is to develop the asymptotic tail behavior for the general case
(1.2), without any restrictions on the A.s. The extension of Beran’s result was motivated

by a real life example in risk management as mentioned before.

Our paper is organized as follows. In Section 2 we present V' as being essentially a sum
of independent non-central y-distributed random variables with different degrees of free-
dom and non-centrality parameters. In Section 3 the main asymptotic results are derived.
The behavior of the lower and upper tails of V' are obtained for the relevant regimes,
which are determined by the lowest/highest eigenvalue being negative, zero or positive.
Section 4 is devoted to quantile approximation based on the results in Section 3. Exam-
ples and some discussion on our results included in Section 5 conclude the paper. These
examples show that our proposed approximations work well for extremely small/large
quantiles, but even for quantiles such as 1 % they may still not be precise enough. On the
other hand, in contrast to numerical Fourier inversion, which in principle can achive any

desired accuracy, our approach yields explicit expressions for the extreme quantiles.

2 An alternative representation

Suppose that the (generalized) eigenvalues \; of V' appearing in (1.2) are sorted in increas-
ing order. Suppose there are n < m distinct eigenvalues, and denote by 7; the highest index

of the j-th distinct eigenvalue, and by p; its multiplicity (u; = i; — ij_1, % = 0,4, = m);



thus \;; <... < \;,. For j =1,...,n, define

DY 1+1( +Y), if A, #0,

V= (2.1)
Zl zj 1+1 (5[ 1y lf )‘ij = O,

and Sj = ;iij_lﬂ 6%. Then the V; are independent and
n 52 n

— J ,

V=02 o TV
=1 M D

)\,L'j#o

If \;; = 0, then Vj is Gaussian. If \;; # 0, then Vj is a scaled version of a (non-central) x°-
variable with 11; degrees of freedom and non-centrality parameter a3 = 3; /A7,- Specifically,
if g(+; a2, ;) denotes the XZ], (a%)-density, then

2
|)‘Z]|

2
o(5a; ), 22)

%

fi(z) =

where f; denotes the density of V.

3 Approximation of the tails

In this section we shall determine the tail behavior of the density f(x) of V' as x approaches
the left and right endpoints of its support. It will turn out that the left, resp. right, tail

behavior of f differs according whether \;,, resp. ); , is negative, zero, or positive. For

in )

Ai; <0, f(x) behaves like a constant times fi(x) as £ — —oo, and for A;; > 0 it behaves

like a constant times a power of z times fi(z), as x approaches the left endpoint.

3.1 Case 1: The lowest eigenvalue is negative

For our results we shall need the tail behavior of (non-)central x?-distributions, whose
density is known analytically, see for example (Johnson et al., 1994, p.416) and (Johnson
et al., 1995, p.436):

S (VT [a)H P s (ay/2)e @2 (a # 0)

9(z; 0%, 1) = 1(g,00) () (3.1)

2#/21‘1(N/2) gt ~leme/2 (a=0),



where a := va? and

o0

L(z) = Z n!I'(n —|1- v+1) (g)%w (3:2)

n=0

is the modified Bessel function of the first kind.

The tail behavior of I,(z) for x — oo is independent of v, see e.g. (Abramowitz and

Stegun, 1965, (9.7.1)):
I(z) = ®(2rz) Y2 (1 + 0(1/z)), z — oo, (3.3)
which leads to
g(z;a?, p) = (2V2m) " Lall=W/2 ¢~ /2 u=3)/4 g=o/2+avE(1 L O(1/4/7)), z— oo, (3.4)
in the case a # 0. Together with (2.2) this leads to the tail behavior of f; (if A;; # 0):
fiz) = fi(@) 1+ 0(1/V]z]), = — (sgn\i;)oo, (3-5)
where f} is defined by

|x|(uj—3)/4e—m/>\ij+aj\/|2/>\¢jI\/m (aj £ 0)

£i(@) = ¢;10,00)(Ai; ) (3.6)
i /2L eI (a; = 0),
with
—1 _—a2 1—p;)/2 (uj+1)/4
- (2v/2m) e /20l ) ()™ (a; # 0)
j =

[ Xi;[74572 /T (1/2) (a; = 0)

and a; = /a2 = [5;/X;;]. Note also that the support of f; is [0, 00) if A;; > 0, and (—o0, 0]
if A;; <0.If \j; =0, then f; is Gaussian. The following theorem shows that the left tail

behavior of f is determined by the tail behavior of f;.

Theorem 3.1 For \y = A\, <0, the density f of V has the asymptotic left tail behavior
flz) =bifi(z) (1 +0(1/V/]z])) = bifi(z) 1+ O(1/V]z])), z— —o0, (3.7)
and for Ay, = N, > 0, it has the asymptotic right tail behavior

f@) =bufa(z) (1 +O(1/Vr)) = bafr(2) (1 +O(1/V7)), z— o0, (3-8)
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where the constant by, k € {1,n}, is given by

2 A —Hi /2 52 -1
jE{L,m\{k} g
Proof. Let \; < 0. Our proof is inspired by an Example given in (Balkema et al., 1993,
p. 573). We claim that, whenever a probability density h has asymptotic behavior h(z) =
enfi(z) (1 4+ O(1/4/|z])) (for some constant ¢, # 0 and £ — —o0), then, for j > 1, the
convolution h * f; has asymptotic behavior
(h* fj)(x) = (/ e f(y) dy) h(z) (1+O0@1/]z])), = — —oo. (3.10)

In other words, we show that
o h(x —
/ V| (% - ey/’\1> [ily)dy =0(1), x— —oo. (3.11)

To show (3.11), split the integral into the two integrals ranging over (—oo, x + ¢) and
[z+ ¢, 00), for some sufficiently large positive constant c. The first integral can be bounded
as

fily)dy <

J

\/m( sup fj(y))/z+ch(x —y)dy + \/m/_m e fi(y) dy.

h('r) —oo<y<z+e )

h(LE B y) . ey/)\l
h(z)

The first term in this sum converges to 0 for z — —o0, since ff:oc h(z —y)dy < 1, and
since h(z)/y/|z| decreases slower than f;, see (3.5), (3.6). If we choose \; € (A1, \;),
\; <0, then (3.5) and (3.6) show that e¥/* f;(y) = O(e*™ A7),y — —o0, and thus
ff;c eV fi(y) dy = O(e(”c)()‘l_l*:\i_l)), x — —oo, showing that the second term above

converges to 0 for z — —o0, too.

Now (3.11) will follow if we show that there is an integrable function bounding

Wz —
Gy~ fi(y)e! sup 3 /lz] e =9) o Liote,00) (%) (3.12)
z<xo h(x) 7
for some suitably chosen zq < 0. We will choose o = —2¢. Thus we can assume z < —2¢

and z — y < —c in the following calculations. Write h(z) = ¢, f(z) (1 + p(x)), where
WV|z|p(z)| <C Vz<—c (3.13)
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(c sufficiently large, C' some constant). Then we have from (3.6)

h(.T — y) efy/)q _
h(z) !

o — |9/

:{QE

+

v/l /lay LT P =)
1+ p(z)
(11 -3)/4

eV (Vo—a—/la) _ ¢

r—y
T

(n1-3)/4

e VMW =/lal) o )

r—y
T

1
)}

1
1+ p(z)’
where H;(z,y) is defined to be the summand appearing in the ith row of the preceding

=: {Hl(x, y) + Ho(z,y) + Hg(:r;,y)} (3.14)

sum. We claim that for any A’ > 0, there is a constant Cy > 0 such that
Vi | Hi(z,y)| < Cv eV Ve < —2¢, s —y < —¢, i=1,2,3. (3.15)

For Hj this is clear, since /|z||Hs(z,y)| < C by (3.13). To show this for H,, note that

|~T|P(~T—y)=%\/|x—y|p(x—y)SC

z—y —-1/2

X

by (3.13), and hence

T — " —z—A/|x
VIl [Haa,y)| < \—y\ PN

x
for some r € R and p := a14/2/|A\;|. Now if y > 0, then 1 < |(z —y)/z| < 1+ y/(2¢). If
y <0, and z < 2y, then 1/2 < |(z —y)/z| < 2. If y < 0 and x > 2y, then ¢/(2|y| +¢) <
|(x —y)/z| < 2. Thus, for all z < —2¢ and z — y < —e¢, the following inequalities hold:

c T—y vl
< <2+ = 3.16
2y[+2c ~| =z ‘ ST (3.16)

Together with

sup e?VI e Viz) < gup PVl < gr/lyl

z<—2c z<—2c
this implies that (3.15) holds for H,. Next we shall show that it also holds for H;: An

application of the mean value theorem to the function y +— (1 — y/x)#1~3/% shows that

(11—-3)/4 _3 (u1-3)/4-1
(1 B y) =1-5 (1 - é) Y =14 ¢u(a,y), (3.17)
x 4 T T
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where &; is some number between 0 and y. Since 1 — & /x lies between 1 and 1 — y/z, it

follows from (3.16) and = < —2¢, that

2
Vel lh(z,y)| < Ch (2+ |y|) (3.18)
for some constants C1, C]. Applying the mean value theorem to the function y +— ePWVy=2—v=3)

where p = a;4/2/|A1], shows that

PVITEV=2) — 1 4 p(WEs—v=a) _ PY oy (3.19)
2\/52 — X

where &, is some number between 0 and y. Now since

PVETV2) < oo/ Hle Ve < /Iy,

and since \/|z|/(& — ) = (1 — &/2)7Y/?, where 1 — &,/ lies between 1 and 1 — y/z, it
follows as for v; that

V]zl[¢a(z,y)| < Cy (2"' 2|y|) eV, (3.20)

for some constants Cy and C. Now (3.14), (3.17) and (3.19) show that

\/mﬂl(xa y) = \/W(d]l(l" y) + ’(/)2(‘7‘" y) + ¢1(~’U, y)%(fﬂa y)),
and (3.18), (3.20) then immediately imply (3.15) for H;.

Since lim,_, o p(z) = 0 it follows from (3.12), (3.14) and (3.15), that for any ' > 0
there exists a constant Cj, > 0 such that G(y) < C4 f;(y)e?/*1eX¥. But it is clear that
this is an integrable majorant for sufficiently small \'. Hence we obtain (3.11) and (3.10).
It then follows by induction and from (3.5) that the density of 377, V; has asymptotic

behavior

(H/ eV £ (y dy) fHz) 1+ 01/ ]z)), (3.21)

j=27 "

as © — —oo. There remains to calculate [ ¥/ f;(y) dy: For Ai; # 0, (2.2) gives

/ e f(y) dy

= / ex’\ij/(”‘l)g(x;a?,uj)da:

)

_9 A’L 7N]'/2 )
— etsj/(Q/\ij)q) (1 _ _J) etsj/(Q()\l—)\ij))\l) (322)




where we used the fact that the moment generating function of X7, (aj) at ¢ < 1/2 is given
by

Blexp{tx2, (2)}) = (1 —20) %/ exp(adt(1 - 21) ),

see e.g. (Johnson et al., 1995, p. 437). Similar calculations, using the moment generating

function of the normal distribution, show that

/ T () dy = /R

o

for \j; =0 # Sj. Then it follows with b; as defined in (3;29), that the density of 3 7 | V;
has the asymptotic behavior exp{—0/\; +a?/2+ > J—"h}blff(x) (1+0(1/+/]z))), as
j=2 i

)\i],#o
x — —oc. Thus, since V. =0— 3> -+3>7" Vj,
j=1 *j
)\ij?éo

=2 =2

F@) = exp{-6/0+ 30 S hla =0+ Y 52 (1400 /el

Ai . #0 Aj . 70
i 7 i 7

as £ — —oo. Then it follows immediately that lim,_, o f(2)(b1 f{(z)) ' = 1. More precise
arguments, similar to the ones we used to show (3.15) for H;, together with (3.5) then

imply (3.7). The proof of (3.8) is similar. O

Remark 3.2 (a) By (3.22) and (3.9), for k£ € {1,n},

1
A

i

b, = E(exp{—(V — Vi)});

thus by is nothing else than the moment generating function of V' — V), evaluated at the
point 1/X;,.

(b) Equation (3.7) is trivially true if A\; > 0, since then the support of f as well as that
of f; are both bounded from the left.

(c) Equation (3.7) shows that there is a function p and constants ¢,C > 0 such that
f(x) = bifi(z)(1 + o(x)) and [1/|z|o(z)| < C for all z < —c. The constant C gives

error bounds for the approximation. The proof presented here is actually constructive,
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i.e. explicit values for ¢ and C' could be derived by exact book keeping in the proof. Bounds
for the starting constants needed in (3.3) can be found in Olver (1964), for example.
(d) Similar results have been derived in the context of tail distributions; see Goldie and

Kliippelberg (1998) and references therein.

3.2 Case 2: The lowest eigenvalue is positive

Suppose that A; > 0. In this subsection we shall derive the tail behavior of f(z) as x
approaches the left endpoint of its support: It follows from (3.2) that the modified Bessel
function of the first kind I,(x) behaves like 277 (I'(v + 1)) '2”(1 + O(2?)) as z \, 0. Then
(3.1) shows that

2 2 #? —a%/2,.u/2—-1
g9(x;a”, p) = MO (1+0(z), z\0,
and with (2.2) we obtain for j =1,...,n,
)\jﬂj/z )
f](.T) = F([]I,/2) eiaj/Q‘Tuj/Q_l(l + 1/11(-75));
j

where 1); is a function for which there exist constants d;, D; > 0 such that |¢,(z)| < D;|z]|

for all z € [0, d;]. Then we obtain for j,k € {1,...,n},

)\fﬂj/Q)\'—Nk/Qef(a?—l-a%)/Q
ij ik

D3 /2T (1 /2)

fi* ful(z) = /Oz 27 (@ — )P (L4 1 (y)) (1 + i(z — y)) dy.

Now one has

/z Yl @ — )P dy
0

1
= x(ﬂj+ﬂk)/2_1/ Zuj/2—1(1_z)uk/2—1 dz
0

= Gl B, /2, )

(i) /21 L (15/2)T (e / 2)
I(Lithe)

= T

where B(-,-) denotes the Beta-function. For the remaining terms, similar calculations

show that e.g.

S . L(p/2 + DD (/)
/0 yHil? Yz — y)uk/z le(y) dy| < D, {‘*(Nj‘;lik ) (B Tre)/2
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for z € [0, d;], implying that

fi* () = =

F(Nj'glik)

Now we immediately obtain the tail behavior of f:

.*/-Lj/2)\,_uk/2
i o~(a+ed)/25 (i tm) 271 (1 £ O(z)), @\, 0.

Proposition 3.3 For \y = \;, > 0, the density f of V has the asymptotic left tail

behavior
-2

fla+6->)" ’ y=d|z[™?* 1 (1+0(z)), x\0 (3.23)

2,

7j=1
with the constant
H;'zzl |)\ij‘_m./267 n_a2/2
I'(m/2) '
If \jy = \i, <0, then (3.23) holds for the right tail as x 0.

d=

(3.24)

3.3 Case 3: The lowest eigenvalue is 0

Now suppose that A\; = 0 and 33 # 0. Since V; = Z;lzl 0;Y; is normally distributed with
mean zero and variance 3., it follows that f,(z) = (v27|6:]) le "/ (261). We shall see that
the left tail behavior of f(z) is essentially determined by the tail behavior of f;.

Proposition 3.4 Let h be a probability density with support in [0, 00) such that
h(z) = cpz" (1 + O(z)), x 0 (3.25)

for some p > —1 and some constant ¢, # 0. Further, suppose that h is bounded on every

interval [A, 00) for every A > 0. Then

D(p+ 1))

2 —2
Vo x|~ /2001 4 O(1/]z])), = — —o0. (3.26)
1

(fixh)(z) =cn

Proof. For simplicity we assume that 3? = 1. The proof for general Sf is similar or
alternatively can be deduced by a simple dilation argument.

Note that (3.25) is equivalent to
h(z) = epzte” *(14 0(x)), = \,0.
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Write
h(z) = ch:v“eIZ/Q(l + (),
where

W(z)| < Dz Yz € [0,A] (3.27)

and D, A > 0 are suitable constants. Also, let
h(z) <E Vz €A ) (3.28)
for some E > 0. Then we have for negative z,

(hehe) = [ i =) dy
0
I 2 2
_27T/ cpytey 2e=@v) 2 gy
V 0
A
_/ cnyte?" Pap(y)e= 912 gy
Yem @72 g

o . 1o

ch gy ) [
= —e x| 2te *dz
V2T | ‘ A

Alz|
Ch —x2/2, .| —(u+1) / W —z
+——¢ z 2HU(z/|z))e?dz
o | | ; 1/1( /| |)

]_ 2 ° 2
+——e/? h(y)e™e ¥ /2 dy.
VN
Noting that I'(u+ 1) = [, z#e~* dz, we obtain
(f1#h)(@) — el (p+ Ve Pla| 0 /v/2r
cpl(p+ 1)e2*/2|z|~w+1) //27
“ s e ds [P et de [ hly)ee ' dy
T'(p+1) I'(p+1) chP(u + 1)le (ut1)
= Ai(z)+ As(z) + As(z).

There remains to show that |z|(A;(x) + Aa(x) + As(x)) is bounded as z — —oo: Since

[e.e] o0
|| e Fdz < — e dy =0, z— —oo,
All Alz|

we have A;(z) = O(1/z) as x — —oo. jFrom (3.27) we obtain

Alz| Alz|
\:r|/ 2Mp(zf|x))e * dz < D/ e #dy < DT(u + 2),
0 0
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showing that As(z) = O(1/x) as © — —oo. Finally, (3.28) gives
|x|“+2/ h(y)e™e ™/ dy < E|x|“+2/ e dy = E|z|"e?® -0, = — —o0,
A A

showing that Az(z) = O(1/x) as © — —oo. This gives (3.26). O

Combining Propositions 3.3 and 3.4, we obtain the left tail behavior of f:

Theorem 3.5 For \; = \;;, =0, the density f of V' has the asymptotic left tail behavior

=2 %

=2 n 2
R 2/ e ar o
fot0=3 55) = (] [|61/AZ-J-W) a7 Xt CD (11 0(1/2))
j=2 774

vV 27T|51‘

j=2
as x — —o0. For A\, = \;, =0, the density of V' has the asymptotic right tail behavior

B TR (N s,

- 82/, 1972 | & T3z mil2e==* /8 (1 4 O(1 /)
— 2\ V21|, e
J=1 J n

=1

4 Approximation of the quantiles

In this section we give an approximation of the @ and (1 — «)-quantile of V as @ — 0. As
before, denote the density of V' by f and its distribution function by F. The a-quantile
of V will be denoted by z,, thus

To =F (a):=inf{z eR: F(z) >a}, ac(0,1).

Since for A;; < 0 Theorem 3.1 expressed the left tail behavior of f in terms of the tail
behavior of f{, it is natural to approximate z,, using the quantile of some suitable function
F! where £F¥(z) = fi(z)(1 + O(1/+/|z])) as * — —oco. This is done in the following
theorem. Note that the function Ff(x) is given explicitly and that its quantiles can easily

be calculated numerically:
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Theorem 4.1 Suppose Ay = Ay < 0, or A\, = A\, > 0, respectively. Define on the

relevant range (i.e. for large negative x, or for large positive x, respectively)
Fi(x) = [Mfi) = ifea 0/ eV,
L= Fi(a) = D lfh(a) = Ay, coan b/ ton /2

where f} and f! are given by (3.6). Let by and b, be defined as in (3.9), and denote the
a-quantiles of Ft and 1—F! by (F1)* () and (1—E')* (), respectively. Then, as o — 0,
the lower and upper quantiles of V satisfy the following asymptotic equations, respectively:
Ta = Aiylogh + (F))(a) + O(1/4/|(F))< (), (4.1)
T o = N, logh, 4+ (1—FH“(a)+0(1/4/(1 = Et)=(a)). (4.2)
Proof. Define the shifted random variable V() := V — A;; logb;. Denote its density
by fisn), its distribution function by Fi,;,) and its a-quantile by o ;) = F(‘;l) (). Put

To := (F1)<(a). Since

Lo = Ta,(sh) + )\il lOg bla
(4.1) is equivalent to
Tash) — Ta1 = O(1/4/[Tanl),  Taq — —o0. (4.3)

There remains to show (4.3): an application of Theorem 3.1 to V() shows that f(s)(z) =
bl,(sh)ff(ac)(l + 0(1/\/ |.73|)), where bl,(sh) = b1 exp{(—)\il log bl)/)\zl} = 1, i.e.

Jim (@) = fi(2)(1+0(1//]z])). (4.4)

On the other hand, with f(z) := £ F{(z) = |\|-L f!(z) we also obtain

Xz

fi(z) = fil@) 1+ 0/ /]zl).

Thus
fi@) = fum(@) 1+ 01/ ]z]), = — —o0,

holds, that is, there exist positive constants ¢, C' > 0 such that
= C
| fsmy(z) = fi(z)] < ﬁf(sh)(x) Vo< —c
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Choose c such that in addition f(sp)(z) > 0 for all z < —c. Then F{,) is strictly increasing

on (—o0, —c) and hence F\(Fsn)(z)) = « for all z < —c. Defining
(z) = Fln (@) = Fl(2), (45)

it follows that

V@NS/wUmﬂ) <uw_vﬁ1@ ) Vo< (4.6)

Now let 0 < a < 1 such that z,; < —c. Noting that

Tay(sh) — Ta,1 = Fgny (Fisn) (Ta,(sh))) — Fn) (Fish) (Ta,1),

the mean value theorem implies the existence of some constant £ between Fi,p (xa,(sh))

and Fi,p)(q,1) such that by (4.5) and (4.6),

Tash) = Ta| = |[Fisn)(Tay(sn) = Fisny (Ta)| - () (€)]

= |r(@a)|- [(Fn)'(€)]
C F(sh) (-Ta,l)

<
B V |$a,1 f(Sh) (F
C F(sh)(fca,l) F(sh)(F(?h)(f)) f (F(;_h)(f))
Tl € FF©@) FonFon©)
Since |§—F(5h (Tan)| < |r(zan)| < CFny(a,1)/v/|%a,], it follows that & € [Fispy(Ta,1)(1—
C/\/|xanl), Eshy(Za,1)(1 + C/+/|2a;1])], and hence lim,, o Fisp)(Ta,1)/€ = 1. In par-

ticular, £ = 0 as z,,1 — —00, and thus y := F(‘;l)(f) — —00 a8 Za,1 — —00. Since

(4.7)

!

li F(sh) (y)

im =—-M#0
A ) M
by (4.4), 'Hospital’s rule implies that
Fin (F5, F,
lim M B COLC) B
Ta,17+—00 fl(F(sh) ) y>oo  fi(y)
Also, by (4.4),
tFe t
Hm Ji( (sh)(é-)) — lm fily) —1
To,1——00 f(sh ( ( )) y——00 fsh)(y)
Thus (4.7) implies (4.3) and hence (4.1). The proof of (4.2) is similar. O
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Theorem 4.1 gives an approximation of z, in terms of the a-quantile of some function
F(z). There, F!(z) = |\|f!(z) was chosen. However, the proof of Theorem 4.1 showed

that any function Ff could have been chosen, as long as

9 fi(s) = (@)1 + O/VaD)s 7 —oo

For example, one might choose

ﬁm:/fmww

Then (2.2) implies

~ )‘1'1
(F) (@) = 26 (@),

where x}_, ,(a*) denotes the (1 — a)-quantile of the x*-distribution with x degrees of

freedom and non-centrality parameter a?. Thus we obtain:

Corollary 4.2 Suppose \y = X\;; < 0, or Ay, = A, > 0, respectively. Then o — 0 s
equivalent to X%—a,uk (a2) — oo for k € {1,n}, and as o — 0, the lower and upper quantiles

of V satisfy the following asymptotic equations for A\, < 0 and \;, > 0, respectively:

Ai
Ty = Ai1 1Og by + ina,m (a’f) + 0(1/ X%fa,ul (CL%)), (48)
Ai,
Ti—a = )\Zn log bn + TX?*%Nn (ai) + 0(1/ X%fa,un (a%)) (49)

Corollary 4.2 links the quantiles of V with the quantiles of non-central x2-distributions.
The latter can be calculated with many software packages, such as R, Flectronic Tables
or StaTable, the latter two both reviewed in Boomsma and Molenaar (1994). The package
S-Plus has a routine implemented to calculate the distribution function of a non-central x?2-
distribution. However, it does not compute the inverse of this function, i.e. the quantiles.

Nevertheless, using a bisection method, the quantiles can be approximated numerically.

The following theorem gives an approximation of the quantiles of V' for the case that

the lowest (or the largest) eigenvalue is 0:

17



Theorem 4.3 Suppose A\ = Ay = 0, or A\, = X\, = 0, respectively. Define on the

relevant range

- 5 ] )
Fi(z) = (ﬂe— = ]/QHM [ i M /2> (—z)~ 1‘2]':2%/267:62/(26%)’

V2m
R (Jj—;_'e_ == JZ/QH“S /i |“J/2) IR 2 (280),
T

Denote by (F!)< () and (1—E')< () the a-quantiles of F! and 1—F?, respectively. Then,

as o — 0, the lower and upper quantiles of V' satisfy the following asymptotic equations,

respectively:
n 32 ~ ~
Ta = 60—, 2; + (F) () + O(1/(F)) (@)?), (4.10)
Tia = Z (@) +O(1/(1 = Fp)* ()?). (4.11)

Proof. We only treat the case Ay = 0. The treatment of the upper tail for A\,, = 0 is
similar. Since the proof is similar to the proof of Theorem 4.1, using Theorem 3.5 instead
5 g

ijl Vj. Let fsn) and Fis,) be the density and distribution function of Vi), and Ta,(sh)

of Theorem 3.1, we only show how to modify that proof. Put Vis) := V + ZJ 9 2)\

the corresponding a-quantile. Define f!(z) := 4 Fl(z) for z < 0. Then

j=2a3/2 [T B n
~ e =i=29% =2 n 2 2 =2
Fie) = e (T B 7 ) ol Siatstze 04 (143 /2180,

and Theorem 3.5 gives f}(z) = fisn)(¥)(1+O(1/z)). Then with z,,; = (F})* (a) denoting
the a-quantile of ¥ and the same notations as in the proof of Theorem 4.1, (4.6) becomes

Ir(z)] < mF(sh)(x), and (4.7) changes to

o _ C  Fion)(Ta,) Flony (Fy (€)) ff(F(l_h) ) 1
o(sh) < & —JHFG ONFG €)™ Fum(Fn(€)) —F, ()
S )

|xa,1‘ _F(?h) (5)
where I'Hospital’s rule was applied to Fisn) (F(5;,(€))/ (= ~f(F(Sh) () (Fry(€))~)- This im-
plies (4.10). 0
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Finally, for A;; > 0 or A\;, < 0, an approximation can be written down quite explicitly,

which is done in the next Theorem:

Theorem 4.4 Suppose \y = \;; > 0, or A, = N, <0, respectively. Then, as o — 0, the

lower and upper quantiles of V' satisfy the following asymptotic equations, respectively:

To = 0- ZQA g™ +0(™),

Te = 0— 22)\ 2d 2/m+0( 4/m)’

where d is the constant defined in (3.24).

The proof is similar to the proof of Theorem 4.3 and therefore omitted.

5 Examples and discussion

In this section we shall illustrate the results of the last section by means of specific ex-
amples. Our approximations will be compared to standard approximations, like a normal

approximation for \; < 0, and a gamma approximation for \; > 0.

Example 5.1 (Illustration of Case 1)

Suppose that in the model (1.2) we have m = 15, n = 3, \;;, = =2, A, = 1, \;; = 2
pr =5, g =4, uz = 6, a2 = 4, 5; = 4, 5; = 16, and # = 0. In Figure 1 the left part of
the distribution function of V', the normal approximation as well as the approximations
according to Theorem 4.1 and Corollary 4.2 are plotted. The ”true” distribution has
been computed by numerical Fourier inversion with high accuracy. The left graph shows
the probability on a linear scale, while the right graph shows it on a logarithmic scale.
From the left graph it can be seen that the normal distribution approximates the true
distribution well for small |z|, whereas the approximations of Theorem 4.1 and Corollary

4.2 approximate better for large negative x, which is shown by the right graph. The normal
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Figure 1: The left part of the distribution function (CDF) in the Example 5.1 (case 1: A; < 0) as well

as the normal approximation and the approximations of Theorem 4.1 and Corollary 4.2. The right graph

shows probabilities in a log scale, the left in a linear scale.

approximation is computed by moment matching: the cumulants of V' can easily be read

off the power series expansion of the cumulant generating function and are given by

m

m1:0+%z/\j and nr:%Z((r—l)!)\;ﬁ-r!(SJQ)\;?).
j=1

Jj=1

Example 5.2 (Illustration of Case 3)
Suppose that in the model (1.2) we have m = n =2, \; =0,y = 1, 6; = 1, 65 = 0,
and 6 = 0. Again, a normal approximation is quite good at the center of the distribution,

whereas the approximation of Theorem 4.3 works well for large negative x. Table 1 shows
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Figure 2: The left part of the distribution function (CDF) in the Example 5.2 (case 3: A; = 0) as well as

the normal approximation and the approximation of Theorem 4.3. The right graph shows probabilities

on a logarithmic scale, the left one on a linear scale.

that the tail approximation becomes better than the normal approximation for probabil-
ities approximately below 0.025. In Figure 2, the distribution function of V', the normal

approximation as well as the approximation of Theorem 4.3 are plotted on a linear and

logarithmic scale.

Example 5.3 (Illustration of Case 2)
Suppose that in the model (1.2) we have m = 4, n = 2, Ay = A = 1, A3 = My = 2,
01 =02 =1, 03 =9, =0. 0 =1 is chosen such that the left tail of the distribution ends at

0. A straightforward approximation of such a distribution is a gamma distribution (with
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probability | “true” quantile normal approximation tail approximation
0.0500 -1.3602 -1.514526 -1.636064
0.0250 -1.6916 -1.900456 -1.900803
0.0100 -2.0745 -2.349183 -2.228890
0.0050 -2.3339 -2.654734 -2.461087
0.0010 -2.8662 -3.284746 -2.954294
0.0001 -3.5131 -4.054846 -3.572531

Table 1: Quantiles in the example 5.2 (case 3: A\ =0.)

shape parameter p and scale parameter 3) with matching mean (8p) and variance (3?p).
The gamma approximation fits very well at the center of the distribution, as seen from
the left graph of figure 3, while the tail approximation of Theorem 4.4 is superior for

a < 0.05, approximately.

Remark 5.4 Since the tail approximations derived in the previous section are qualita-
tively different for A; < 0, A; = 0, and A; > 0, it is clear that (for fixed a)) the approxi-
mation of Theorem 4.1 must give bad results for A\; < 0, but close to zero. To be able to
give explicit ranges for the quantiles for which our approximations work well, one would
need precise error bounds. As pointed out in Remark 3.2 (c), in principle it is possible to

obtain such bounds, but very elaborate.

Example 5.5 This example shows that it can happen that (4.8) and (4.9) approximate
well only for very small a: Let n =m = 2, 1 = po =1, =1 = Ay = 2, §; = §5 = 2a,
where a > 3 is positive, and § = 0. Then V; = —(—a + Y1)?, Vo = (a + Y3)?, where Y}
and Y; are independent standard normal variables. Then P(Y; € [—3,3]) > 1/0.99 and it
follows that P(V; € [(a — 3)%, (a + 3)%]) = P(V1 € [—(a + 3)%,—(a — 3)?] > +/0.99. Since
Vi and V5 are independent, it follows P(V; + V, € [—12a,12a]) > 0.99, implying that
the true 1%-quantile of V; + V5 lies in [—12a, 12a|. However, if we use the approximation
(4.8), we have b; = 271/2e79"/* hence 219, = a?/2+log2 — x?_,(a?), where ;9 denotes

the approximating quantity. Since the 1%-quantile of x2(a2) lies in [(a — 2.6)?%, (a + 2.6)?],
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Figure 3: The left part of the distribution function (CDF) in the example 5.3 (case 2: A\; > 0), as well
as the gamma approximation and the approximation of Theorem 4.4. The right graph shows z and the

probabilities in a log scale, the left one in a linear scale.

it follows that 21, € [log2 — 6.76 — a?/2 — 5.2a,log2 — 6.76 — a?/2 + 5.2a]. For large a,
this differs clearly from the true quantile, which lies in [—12a, 12a]. So we see that the
approximation (4.8) can lead to large errors in the approximation, if the level 1 % is fixed,
and if the noncentrality-parameters are large, even if the eigenvalues A\; and A\, have the

same modulus.
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