
On lower bounds of exponential frames∗

Alexander M. Lindner

Abstract

Lower frame bounds for sequences of exponentials are obtained in a spe-
cial version of Avdonin’s theorem on ”1/4 in the mean” (1974) and in a
theorem of Duffin and Schaeffer (1952).
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1. Introduction

The notion of frame has been introduced by Duffin and Schaeffer [3]. A
sequence (ϕn)n∈Z in a Hilbert space (H, (·, ·)H) is a frame for H, if there exist
positive constants A, B such that for all f in H:

A ‖f‖2
H ≤

∑
n∈Z

|(f, ϕn)H |2 ≤ B ‖f‖2
H .

More specifically, (ϕn)n∈Z is called an (A,B)-frame. The constants A and B are
called lower and upper frame bounds, respectively. A frame is exact if it is no
longer a frame after any of its elements is removed.

Duffin and Schaeffer [3] have given a sufficient condition for a sequence of
exponentials (eiλn•)n∈Z to be a frame for L2(−γ, γ), γ > 0. Avdonin [1] has given
a sufficient condition for a sequence of exponentials (eiλn•)n∈Z to be an exact frame
for L2(−π, π). In both papers, only the mere existence of a lower bound is proved.

D. Kölzow [6] asked for explicit lower frame bounds, in terms of the data by
which the sequence (λn)n∈Z is restricted. In this paper we shall obtain a lower
bound in a special version of Avdonin’s theorem on ”1/4 in the mean” (Theorem
1). The result will be used to obtain a lower bound in a theorem of Duffin and
Schaeffer (Theorem 2). Finally, an application to irregular sampling is pointed
out.

∗The results of this paper are part of the author’s forthcoming doctoral thesis and were
presented, in a preliminary form, at the 1997 International Workshop on Sampling Theory and
Applications, June 16 - 19, 1997, Aveiro, Portugal.

1



2. Preliminary remarks and main results

PW 2
σ denotes the Paley-Wiener space of entire functions of exponential type at

most σ, whose restriction to R belongs to L2(R). For a sequence (λn)n∈Z of real
numbers the classical Paley-Wiener theorem yields that (eiλn•)n∈Z is an (A,B)-
frame for L2(−σ, σ) if and only if

A ‖F‖2
PW 2

σ
≤ 2π

∑
n∈Z

|F (λn)|2 ≤ B ‖F‖2
PW 2

σ
∀F ∈ PW 2

σ .

A sequence (λn)n∈Z of complex numbers is called separated by δ > 0, if

|λn − λm| ≥ δ ∀m,n ∈ Z : m 6= n.

The following lemma asserts an upper bound for separated sequences with bounded
imaginary parts. The proof follows the same argument as in the proof of Lemma
2 in Katsnel’son [4], using card{n ∈ Z : |z − λn| ≤ 1} ≤ (1 + 2/δ)2 ∀ z ∈ C.
Lemma 1. Let (λn)n∈Z be a sequence of complex numbers, separated by δ > 0,
with imaginary parts bounded by τ <∞. Then,

∑
n∈Z

|F (λn)|2 ≤ 2

π

(
2

δ
+ 1

)2

· e
2σ(τ+1) − 1

2σ
‖F‖2

PW 2
σ
∀F ∈ PW 2

σ

for any σ > 0.

The main results of this paper are the following:

Theorem 1 (A lower bound in the Theorem of Avdonin). Let (δk)k∈Z be a
sequence of real numbers, bounded by L <∞. Suppose (k + δk)k∈Z is separated by
δ > 0, and there are d ∈ [0, 1/4) and a natural number N , such that∣∣∣∣∣∣

(j+1)N∑
k=jN+1

δk

∣∣∣∣∣∣ ≤ N · d ∀ j ∈ Z.

Then, (ei(k+δk)•)k∈Z is an exact frame for L2(−π, π), and the following constant is
a lower frame bound:

AAv(L, δ, d,N) := e−20π2(2L̃)2Ñ/Ñ2
·

(
δ̃

9L̃

)240(2L̃)Ñ

,

where

Ñ := N · d 1

N
· 2(4L+ 2)2

1/4− d
e, L̃ :=

3

2
+ 2(3L+ 1), δ̃ :=

1

2
(
1

4
− d)δ.

(dxe denotes the smallest integer greater than or equal to x.)

Theorem 2 (A lower bound in the Theorem of Duffin and Schaeffer).
Suppose (λn)n∈Z is a sequence of real numbers, separated by δ > 0. Let σ > 0, L ≥
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0, 0 < γ < πσ and suppose (λn − n/σ)n∈Z is bounded by L. Then, (eiλn•)n∈Z is a
frame for L2(−γ, γ), and the following constant is a lower frame bound:

ADS(L, δ, σ, γ) :=
γ

π
· e
−5π2 (12M + 1)4M(M+1)

M2(M + 1)2 ·
(
δγ/π

308M

)240(12M + 1)2M(M+1)

,

where

M := max

{
13, d 3 + 2σL

πσ/γ − 1
e
}
.

While the proofs of Avdonin [1, Theorem 2] and of Duffin and Schaeffer

[3, Theorem I] only assured the existence of lower bounds, Theorems 1 and 2
give explicit lower bounds. The proof of Theorem 1 follows by explicating and
supplementing that of Avdonin. Theorem 2 will follow from Proposition 1, by
explicating a construction of Seip [9, Theorem 2.3]. We remark that Avdonin’s
theorem was proved for more general sets of zeros of sine-type-functions, more
general partitions and complex sequences (δk)k∈Z. The proof of Theorem 1 works
for this general situation as well, if suitable conditions on the sine-type-function
and partition are posed.

3. Proof of the theorems

For the proof of Theorem 1, we will need the notion of sine-type-function.

Definition. An entire function f of exponential type is called σ-sine-type-function
(σ > 0), if the zeros of f are simple and separated and there are C1, C2, τ > 0
such that

C1 · eσ|y| ≤ |f(x+ iy)| ≤ C2 · eσ|y| ∀x, y ∈ R : |y| ≥ τ. (1)

Remark. The Theorem of Avdonin rests on the following result of Levin, proved
indirectly: For any sine-type-function f with zeros (λn)n∈Z, there are constants C3,
C4 > 0 such that

C3 ≤ |f ′(λn)| ≤ C4 ∀n ∈ Z

(cf. Levin [7], [8, p. 164], Young [10, p. 173]). The proof does not yield any
estimates for C3.

The following lemma plays the central role in the proof of Theorem 1; it sup-
plements Lemmas 1, 2 in Avdonin [1]: the growth of the constructed sine-type-
function is determined and estimates for the derivatives at the zeros are found.
(Let 1/2 Z := {n/2 : n ∈ Z}.)
Lemma 2. Let the assumptions of Theorem 1 be satisfied. Suppose furthermore
that (k + δk)k∈Z is increasing and that

N > 2L · 3/4 + d

1/4− d
.
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Define
L′ := 3/2 + 2L, δ′ := (1/4− d)δ,

Dε :=

((
1 +

L′

ε

)(
1 +

8L′

δ′

))4
√

4L′N2+2(2L′)2N+6N

· e(2L′+(2L′)2N/N2)π2 ∀ ε > 0,

C1 :=

(
1− e−2π

2

)2

D−1
1 , C2 := D1,

C3 :=
π2δ′e−π

2/4

32
D−1
δ′/8 , C4 :=

2π2eπ
2/4

δ′
Dδ′/8.

Then, there is a sequence (δk+1/2)k∈Z of real numbers and a 2π-sine-type-function
Ψ, real on the real axis, with zeros (k + δk)k∈1/2 Z, such that (δk)k∈1/2 Z is bounded
by L′, (k + δk)k∈1/2 Z is strictly increasing and separated by δ′, and

C1e
2π|y| ≤ |Ψ(x+ iy)| ≤ C2e

2π|y| ∀x, y ∈ R : |y| ≥ 1, (2)

C3 ≤ |Ψ′(k + δk)| ≤ C4 ∀ k ∈ 1/2 Z. (3)

Proof. i) For j ∈ Z define

αj :=
N/2− 2

∑(j+1)N
k=jN+1 δk

N + δ(j+1)N+1 − δjN+1

.

This is well defined since N > 2L. Moreover

αj ≥ 1/4− d, 1− αj ≥ 1/4− d.

ii) For any k ∈ Z there are unique numbers l ∈ {1, . . . , N} and j ∈ Z such that
k = jN + l. For such k define

δk+1/2 := −1/2 + (1− αj)δk + αjδk+1 + αj.

It follows that |δk+1/2| ≤ 3/2 + 2L = L′, and that (k + δk)k∈1/2Z is a strictly
increasing sequence, separated by δ′.

iii) For j ∈ Z define

Kj := 1/2 Z ∩ [jN + 1, (j + 1)N + 1).

An easy calculation shows ∑
k∈Kj

δk = 0 ∀ j ∈ Z. (4)

iv) Since (δk)k∈Z is bounded, we have δ ≤ 1, hence δ′ ≤ 1/4. Choose β ∈ [δ′/4, δ′/2]
such that

|k + δk + β| ≥ δ′/8 ∀ k ∈ 1/2 Z.

Define λk := k + β for k ∈ 1/2 Z. Then,

|λk + δk| ≥ δ′/8, |λk| ≥ δ′/4 ∀ k ∈ 1/2 Z.
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Define

Ψ1(z) := P.V.
∏

k∈1/2 Z

(
1− z

λk + δk

) := lim
R→∞

∏
k∈1/2 Z,|k|≤R

(
1− z

λk + δk

) ,

Φ1(z) := P.V.
∏

k∈1/2 Z

(
1− z

λk

)
.

It follows from general theorems on entire functions that both products converge
uniformly on compact subsets of C and that Ψ1, Φ1 are entire. Moreover, Ψ1

is of exponential type (cf. Levin [8, pp. 30, 33]). The zeros of Ψ1 are given by
(λk+δk)k∈1/2 Z, the zeros of Φ1 are given by (λk)k∈1/2 Z. For z ∈ C\{λk : k ∈ 1/2 Z}
we have∣∣∣∣Ψ1(z)

Φ1(z)

∣∣∣∣ = P.V.
∏
j∈Z

∏
k∈Kj

∣∣∣∣1 +
δk

λk − z

∣∣∣∣︸ ︷︷ ︸
(I)

·

(
P.V.

∏
j∈Z

∏
k∈Kj

∣∣∣∣1 +
δk
λk

∣∣∣∣
)−1

︸ ︷︷ ︸
(II)

.

v) Let ε > 0, z = x+ iy, x, y ∈ R, dist (z, {λk, λk + δk : k ∈ 1/2Z}) ≥ ε. Let λj,z

be an element of {λk : k ∈ Kj}, satisfying

|λj,z − x| = min
k∈Kj
|λk − x|.

Denote by Kj
p an arbitrary subset of Kj with p elements (p ∈ {2, 3, . . . , 2N}).

Then,

∏
k∈Kj

(
1 +

δk
λk − z

)
= 1 +

∑
k∈Kj

δk
λk − z

+
2N∑
p=2

∑
Kj
p⊆Kj

∏
k∈Kj

p

δk
λk − z

=: 1 + aj.

¿From (4) we have
∑

k∈Kj δk/(λ
j,z − z) = 0, hence

aj =
∑
k∈Kj

δk(λ
j,z − λk)

(λk − z)(λj,z − z)
+

2N∑
p=2

∑
Kj
p⊆Kj

∏
k∈Kj

p

δk
λk − z

.

This can be estimated by

|aj| ≤
2N · L′ ·N
|λj,z − z|2

+
22N · (L′)2N

|λj,z − z|2
. (5)

Let j0 be an integer such that |λj0,z − x| = min{|λj,z − x| : j ∈ Z}. Then,

|λj0+j,z − z| ≥ ε+ (|j| − 1)N ∀ j ∈ Z. (6)

Defining
j1 :=

√
4L′ + 2(2L′)2N/N2 + 1,
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(5) and (6) give
∑
|j|≥j1 |aj0+j| ≤ (4L′ + 2(2L′)2N/N2)π2/6

and |aj0+j| ≤ 1/2 ∀ |j| ≥ j1, hence

e−(L′ + (2L′)2N/(2N2))π2
≤
∏
|j|≥j1

|1 + aj0+j| ≤ e(L
′ + (2L′)2N/(2N2))π2

.

Using
(1 + L′/ε)−2N ≤ |1 + aj| ≤ (1 + L′/ε)2N ∀ j ∈ Z

gives

(1 +
L′

ε
)−2N(2j1+1)e−(L′+(2L′)2N/(2N2))π2 ≤ (I) ≤ (1 +

L′

ε
)2N(2j1+1)e(L′+(2L′)2N/(2N2))π2

.

(7)
For z := 0, ε := δ′/8, this yields an estimate for (II), which together with
(7) results in

D−1
ε ≤

∣∣∣∣Ψ1(z)

Φ1(z)

∣∣∣∣ ≤ Dε ∀z ∈ C : dist (z, {λk, λk + δk : k ∈ 1/2Z}) ≥ ε. (8)

vi) Define

Ψ(z) := sin πβ · cos πβ ·Ψ1(z + β), Φ(z) := sin πβ · cos πβ · Φ1(z + β).

Then, Ψ is an entire function of exponential type, real on the real axis, with zeros
(k + δk)k∈1/2 Z. Standard complex analysis shows Φ(z) = sin πz · sin π(z − 1/2).
Since (

1− e−2π

2

)2

· e2π|y| ≤ |Φ(x+ iy)| ≤ e2π|y| ∀x, y ∈ R : |y| ≥ 1,

(2) follows from (8) for ε = 1.

Fix k0 ∈ 1/2Z. It is possible to choose a circle γ with center k0+δk0 and radius r ∈
{δ′/4, δ′/2}, such that dist (γ, 1/2 Z) ≥ δ′/8. Then, (8) combined with estimates
for Φ(z) (which follow from the canonical factorization of sin πz) gives

π2(δ′/8)2e−π
2/4D−1

δ′/8 ≤ |Ψ(z)| ≤ π2/2 · eπ2/4Dδ′/8 ∀ z ∈ γ. (9)

If Ψk0 is defined by

Ψk0(z) :=

{
Ψ(z)

z−k0−δk0
, z 6= k0 + δk0

Ψ′(k0 + δk0), z = k0 + δk0 ,

then Ψk0 is an entire function without zeros in {z ∈ C : |z − (k0 + δk0)| ≤ r}.
Applying the maximum/minimum principle to Ψk0 and using (9) gives (3). 2

The following result represents a special case of Theorem 1.

Proposition 1. Under the assumptions of Lemma 2, (ei(k+δk)•)k∈Z is an exact
frame for L2(−π, π) with lower frame bound

A := e−20π2(2L′)2N/N2
· (δ′/(9L′))240(2L′)N ,
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where
L′ := 3/2 + 2L, δ′ := (1/4− d)δ.

Proof: The proofs of Lemmas 7 and 9 in Katsnel’son [4] show that

A1 :=
C2

1C
2
3

C4
2

(
1 +

C4

C3

)−1

· π · e−8π

e8π+4π − 1

(
1 +

2

δ′

)−2

is a lower bound for (ei(k+δk)•)k∈Z, where C1, C2, C3 and C4 are as in Lemma 2.
Inserting the values for C1 - C4 and using some suitable estimates one can show
that A1 ≥ A. The existence of an upper bound follows from Lemma 1. For the
proof of the exactness of the frame, we refer to Avdonin [1]. 2

Proof of Theorem 1: For j ∈ Z define

Sj := {jÑ + Ñ − d2Le+ 1, . . . , jÑ + Ñ + d2Le}.

We have Sj ∩ Sj′ = ∅ for j 6= j′. Define sequences (ϑk)k∈Z and (δ̃k)k∈Z such that

ϑk := δk if k ∈ Z\
⋃
j∈Z Sj,

{ϑk + k : k ∈ Sj} = {δk + k : k ∈ Sj} ∀ j ∈ Z and ϑk + k < ϑk′ + k′ for
k, k′ ∈ Sj, k < k′,

{δ̃k + k : k ∈ {jÑ + 1, . . . , (j + 1)Ñ}} = {ϑk + k : k ∈ {jÑ + 1, . . . , (j +
1)Ñ}} ∀ j ∈ Z and

δ̃k + k < δ̃k+1 + k + 1 ∀ k ∈ Z.

We obtain |δ̃k| ≤ 3L+ 1 ∀ k ∈ Z and∣∣∣∣∣∣
(j+1)Ñ∑
k=jÑ+1

δ̃k

∣∣∣∣∣∣ ≤ d+ 1/4

2
· Ñ ∀ j ∈ Z.

An application of Proposition 1 to (δ̃k)k∈Z completes the proof of Theorem 1. 2

Remark. The second part of Lemma VI in Duffin and Schaeffer [3] was
proved indirectly. Since their proof rests on this lemma, they did not obtain an
explicit lower bound. We will prove Theorem 2, following a construction by Seip

[9].

Proof of Theorem 2: Suppose first σ > 1 and γ = π. Define

LA := 3M − 1/2, N := 2M(M + 1), d := 1/(M + 1).

Then

N > 2LA ·
3/4 + d

1/4− d
,

and the number of points of the sequence (λn)n∈Z in each interval of length M is
at least M + 1.
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Following the proof of Theorem 2.3 in Seip [9], we conclude that there is a sequence
(δk)k∈Z of real numbers, bounded by LA, such that (k+δk)k∈Z is strictly increasing,
{k + δk : k ∈ Z} is a subset of {λk : k ∈ Z}, and∣∣∣∣∣∣

(j+1)N∑
k=jN+1

δk

∣∣∣∣∣∣ ≤ N · d ∀ j ∈ Z.

Applying Proposition 1 shows that (ei(k+δk)•)k∈Z is an exact frame for L2(−π, π)
with lower bound A ≥ ADS(L, δ, σ, π). Then, ADS(L, δ, σ, π) is a lower bound for
(eiλn•)n∈Z as well. The existence of an upper bound follows from Lemma 1. This
proves Theorem 2 for σ > 1, γ = π. The general case follows by a dilation. 2

Remark. Seip [9, Theorem 2.3] proved that, under the conditions of the theorem
of Duffin and Schaeffer, there is a subsequence (λnk)k∈Z, such that (eiλnk•)k∈Z is an
exact frame for L2(−γ, γ). The proof of Theorem 2 even shows that ADS(L, δ, σ, γ)
is a lower bound for this exact frame.

Open question. Can sharp frame bounds be obtained, for the Theorems of
Avdonin and of Duffin and Schaeffer? (The lower bounds, obtained in Theorems
1 and 2, are not sharp.)

4. An application to irregular sampling

Suppose (λn)n∈Z is a sequence of real numbers such that (eiλn•)n∈Z is an (A,B)-
frame for L2(−σ, σ). Define ϕn by

ϕn(z) :=

{
σ
π
· sinσ(z−λn)

σ(z−λn)
, z 6= λn

σ
π
, z = λn.

Then, ϕn ∈ PW 2
σ and (ϕn)n∈Z is an ( A

2π
, B

2π
)-frame for PW 2

σ .
If S : PW 2

σ → PW 2
σ , f 7→

∑
n∈Z f(λn)ϕn, is the frame operator, corresponding to

this frame, then S is a bijective bounded linear operator satisfying ‖S−1‖ ≤ 2π/A
(cf. Benedetto and Walnut [2, Theorem 3.2], Duffin and Schaeffer [3,
Section 3], Kölzow [5, Section II.1]). Define

sn(f) :=
∑
|k|≤n

f(λk)S
−1ϕk, f ∈ PW 2

σ , n ∈ N.

Then, (sn(f))n∈N converges to f in the PW 2
σ -norm. For every n ∈ N, ‖sn(f) −

f‖PW 2
σ

is called the nth truncation error.

Proposition 2. Suppose (λn)n∈Z is a sequence of real numbers such that (eiλn•)n∈Z
is an (A,B)-frame for L2(−σ, σ). Then, the nth truncation error satisfies

‖sn(f)− f‖PW 2
σ
≤
√

2π

A
·

∑
|k|>n

|f(λk)|2
1/2

∀ f ∈ PW 2
σ .
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The first version of Proposition 2, proposed by Bittner (private communication),
contained the factor

√
2πB/A, instead of

√
2π/A. The latter was suggested by

the referee, refering to the fact that T : PW 2
σ → l2(Z), f 7→ (f(λn))n∈Z is a

bounded injective linear operator with bounded inverse on its range satisfying
‖T−1‖ ≤

√
2π/A.

Acknowledgments. The author would like to thank D. Kölzow for his steady
support, and B. Bittner as well as the referee for their suggestions.
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