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Abstract

Lower frame bounds for sequences of exponentials are obtained in a spe-
cial version of Avdonin’s theorem on ”1/4 in the mean” (1974) and in a
theorem of Duffin and Schaeffer (1952).
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1. Introduction

The notion of frame has been introduced by DUFFIN AND SCHAEFFER [3]. A
sequence (¢n)nez in a Hilbert space (H, (-, -)g) is a frame for H, if there exist
positive constants A, B such that for all f in H:

Al < DI en)ul® < BIFIG-

ne’l

More specifically, (¢, )nez is called an (A, B)-frame. The constants A and B are
called lower and upper frame bounds, respectively. A frame is exact if it is no
longer a frame after any of its elements is removed.

DUFFIN AND SCHAEFFER [3] have given a sufficient condition for a sequence of
exponentials (¢7*),,cz to be a frame for L*(—v,7), v > 0. AVDONIN [1] has given
a sufficient condition for a sequence of exponentials (e**"*),cz to be an exact frame
for L*(—m, 7). In both papers, only the mere existence of a lower bound is proved.

D. Korzow [6] asked for explicit lower frame bounds, in terms of the data by
which the sequence (\,)nez is restricted. In this paper we shall obtain a lower
bound in a special version of Avdonin’s theorem on ”1/4 in the mean” (Theorem
1). The result will be used to obtain a lower bound in a theorem of Duffin and
Schaeffer (Theorem 2). Finally, an application to irregular sampling is pointed
out.

*The results of this paper are part of the author’s forthcoming doctoral thesis and were
presented, in a preliminary form, at the 1997 International Workshop on Sampling Theory and
Applications, June 16 - 19, 1997, Aveiro, Portugal.



2. Preliminary remarks and main results

PW? denotes the Paley-Wiener space of entire functions of exponential type at
most o, whose restriction to R belongs to L?(R). For a sequence (\,)nez of real
numbers the classical Paley-Wiener theorem yields that (e*®),cz is an (A, B)-
frame for L?*(—o,0) if and only if

AlFIpwz <20Y [P\ < B|Flpy: VF e PWZ

neL

A sequence (\,,)nez of complex numbers is called separated by 6 > 0, if
A=A >0 VYm,ne€Z:m#n.

The following lemma asserts an upper bound for separated sequences with bounded
imaginary parts. The proof follows the same argument as in the proof of Lemma
2 in KATSNEL’SON [4], using card{n € Z: [z — \,| <1} < (1 +2/§)* Vz € C.

Lemma 1. Let (\,)nez be a sequence of complex numbers, separated by 6 > 0,
with imaginary parts bounded by T < oo. Then,

2 2 2 620’(‘1'Jr1)_1 ) )
> IF( |<_<5+1) e Fllpw VF € PW;

nez
for any o > 0.
The main results of this paper are the following:

Theorem 1 (A lower bound in the Theorem of Avdonin). Let (6;)kez be a
sequence of real numbers, bounded by L < oo. Suppose (k + Ox)rez is separated by
d > 0, and there are d € [0,1/4) and a natural number N, such that

(+1)N
Z Sk < N-d VjezZ.
k=jN+1

Then, (e'F+%)), ;. is an evact frame for L*>(—m, m), and the following constant is
a lower frame bound:

g 240(20)N
Apo(L,6.d, N = ¢~ 20m*(2L)*Y /N? | <i>
9L

where

2(4L 4+ 2)? ~ -
g}, L::§+2(3L+1), § =

~ 1 1
N:=N-|—- =
[N 1/4—d 2 2

([#] denotes the smallest integer greater than or equal to z.)

Theorem 2 (A lower bound in the Theorem of Duffin and Schaeffer).
Suppose (Ap)nez 18 a sequence of real numbers, separated by § > 0. Let o > 0, L >
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0, 0 < v < mo and suppose (A, —n/0)nez is bounded by L. Then, (e"*»*)

frame for L*(—v,7), and the following constant is a lower frame bound:

nes is a

o (12M + 1)*M D)

=5 240(12M + 1)2MM+D)
Apslibioy e Do T ARI T (PO
o & 308 M ;
where f ot
M = max{l{-}, (iw}
mo/y—1

While the proofs of AVDONIN [1, Theorem 2] and of DUFFIN AND SCHAEFFER
[3, Theorem I] only assured the existence of lower bounds, Theorems 1 and 2
give explicit lower bounds. The proof of Theorem 1 follows by explicating and
supplementing that of Avdonin. Theorem 2 will follow from Proposition 1, by
explicating a construction of SEIP [9, Theorem 2.3]. We remark that Avdonin’s
theorem was proved for more general sets of zeros of sine-type-functions, more
general partitions and complex sequences (0 )xez. The proof of Theorem 1 works
for this general situation as well, if suitable conditions on the sine-type-function
and partition are posed.

3. Proof of the theorems

For the proof of Theorem 1, we will need the notion of sine-type-function.

Definition. An entire function f of exponential type is called o-sine-type-function
(¢ > 0), if the zeros of f are simple and separated and there are Cy, Cy, 7 > 0
such that

Cr-e’W < |flx+iy) <Cyp-eM VYV yeR:|y > (1)

Remark. The Theorem of Avdonin rests on the following result of Levin, proved
indirectly: For any sine-type-function f with zeros (A,)nez, there are constants Cs,
Cy > 0 such that

C; < |f/()\n)| <(C; VneZ

(cf. LEVIN [7], [8, p. 164], YOUNG [10, p. 173]). The proof does not yield any
estimates for Cs.

The following lemma plays the central role in the proof of Theorem 1; it sup-
plements Lemmas 1, 2 in AVDONIN [1]: the growth of the constructed sine-type-
function is determined and estimates for the derivatives at the zeros are found.
(Let 1/27Z :={n/2:n € Z}.)

Lemma 2. Let the assumptions of Theorem 1 be satisfied. Suppose furthermore
that (k + Ok )rez 18 increasing and that

3/4+d

N>2L. .
A




Define
L':=3/2+2L, § :=(1/4—d)o,

44/AL'N242(2L")2N 46N
D, = ((1 + 5) ( SL')) o LCL+RL)PN [N
g

14+ — ‘v’5>0

5/

1 — 67271' 2 B

oom (Y o e,
128 e~ /4 ~ Ir2em /4

Cg = TDé,}s ; 04 = TD(;//&

Then, there is a sequence (Sgy1/2)kez of real numbers and a 2m-sine-type-function
W, real on the real axis, with zeros (k 4 0p)re1/2 2, such that (8x)re1/27 s bounded
by L', (k + Ok)re1/2z 1s strictly increasing and separated by ¢', and

Cre”™M < |[W(x +iy)| < Coe®™ Va,yeR: |yl > 1, (2)
Cs < |W'(k+6,)| <Cy Vkel/2Z. (3)

Proof. i) For j € Z define

1)
_ N/2 - 221(5—ZN+1
N + 041841 — OjN41

This is well defined since N > 2L. Moreover
o >1/4—d, 1—a >1/4—d.

ii) For any k € Z there are unique numbers [ € {1,..., N} and j € Z such that
k = jN +[. For such k define

Ori12 = —1/24 (1 — o7 + o 61 + 0.

It follows that |0py1/2| < 3/2 4+ 2L = L', and that (k + 0x)re1/22z is a strictly
increasing sequence, separated by ¢'.

iii) For j € Z define
K7 :=1/2ZN[jN +1,(j +1)N +1).

An easy calculation shows

> 6=0 VjeZ (4)

keKJ

iv) Since (0x)rez is bounded, we have 6 < 1, hence ¢’ < 1/4. Choose 3 € [§'/4,4'/2]
such that
|k+d0+ 0] >0/8 Vkel/2Z.

Define A\ :=k + 3 for k € 1/2 Z. Then,
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ya
v = P. = i 1—
() v. T1 ( Ak+5k) im ] ( Akm) ,

kel/2 7 kel/2 Z,k|<R

®i(z) = PV. [] (1——)

kel/2Z

It follows from general theorems on entire functions that both products converge
uniformly on compact subsets of C and that ¥, ®; are entire. Moreover, ¥,
is of exponential type (cf. LEVIN [8, pp. 30, 33]). The zeros of ¥; are given by

(Ak+0k)kec1/2 2, the zeros of @, are given by (Ag)re1/22. For z € C\{\, : k € 1/2 Z}
=P.V. H H (PV 11 H

—1

(. (. J/
-~

() (1)

L+ 5 1+—

\I/ (z)
(2)

v)Let € >0, z =z +iy, v,y € R, dist (2, {\p, \e + 0 : k € 1/27Z}) > €. Let N~
be an element of {\; : k € K7}, satisfying

|IM* — 2| = min [\y — z].
keKi

Denote by KJ an arbitrary subset of K7 with p elements (p € {2,3,...,2N}).
Then,

11 <1+)\k—z)_1+z)\k—z+z I A T =il

keKi keKi P=2 KICKJ keK}

;From (4) we have Y,y 0x/(M* — 2) = 0, hence

k(A% — Ag)
T D DD Dl |

keKi P=2 KICKJ keK}

This can be estimated by

o< BN 92N . ([/)2N
a; . .
B P L P

Let jo be an integer such that |[Mo# — x| = min{|\M* — | : j € Z}. Then,
|)\jo+j,z_z| >e+ (7| -1)N VjeZ. (6)

Defining

g1 = /AL +2(2L)2N /N2 + 1,



(5) and (6) give 10, laaisl < (4L + 202N [N2)72 /6
and |aj,4+;| < 1/2V|j] > ji1, hence
o— (L' +(2L)* /(2N?))x* < H 1+ a0 < L+ (2L')*N/(2N?))m?.
l71=51

Using
(I+L/e)y* M <1+aj| <(1+L/e)*N VjieZ

gives

(1+ g)—QN@jH—l)6—(L’+(2L’)2N/(2N2))7r2 <O <1+ g)2N(2j1+1)e(L’+(2L’)2N/(2N2))7r2‘

€ €
(7)
For z := 0, ¢ := ¢'/8, this yields an estimate for (II), which together with
(7) results in

Uy (2)
Dy (2)

D—lg‘

<D. VzeC:dist(z,{\;, e+ : k€ 1/2Z}) >e. (8)

vi) Define
U(z):=sinwf-cosnf-¥i(z+ ), ®(z):=sinnwf-cosnf-P1(z+ 3).

Then, W is an entire function of exponential type, real on the real axis, with zeros
(k 4 0k)ke1/2z- Standard complex analysis shows ®(z) = sinmz - sin7(z — 1/2).
Since

1 — —2r\ 2
(%) P <Dz +y)| < W VayeR: |y > 1,

(2) follows from (8) for € = 1.

Fix ko € 1/2Z. It is possible to choose a circle v with center ky+dx, and radius r €
{6'/4,0"/2}, such that dist (v,1/2 Z) > ¢'/8. Then, (8) combined with estimates
for ®(z) (which follow from the canonical factorization of sin7z) gives

7T2((3//8>26_7T2/4D(;}8 <|U(2)| < 7*/2- 6”2/4D5//8 V zen. 9)

If Uy, is defined by

W(z)
Uy (2) = { =Ko =0k 2 7 Ko + 0o

qf’(k‘o -+ 5k0)7 Z = /{ZQ -+ 5k07
then Wy, is an entire function without zeros in {z € C : |z — (ko + 0, )| < 7}
Applying the maximum/minimum principle to ¥, and using (9) gives (3). O
The following result represents a special case of Theorem 1.

Proposition 1. Under the assumptions of Lemma 2, (e!*T9%)%).cy is an evact
frame for L*(—m,7) with lower frame bound

Y

A o—20m*(2L)?N /N? (6/(9 L,))240(2L’)N
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where

L':=3/2+42L, ¢ :=(1/4—d)d.

Proof: The proofs of Lemmas 7 and 9 in KATSNEL'SON [4] show that

C3C? a7 87 2\ ?
A= L8 (142 T | 1+ =
1 ci ( ™ Cs) T Srtar _ ( - 5/>

is a lower bound for (e/*+9)*), ., where Oy, Cy,Cs and Cy are as in Lemma 2.
Inserting the values for ('} - Cy and using some suitable estimates one can show
that A; > A. The existence of an upper bound follows from Lemma 1. For the
proof of the exactness of the frame, we refer to AVDONIN [1]. O

Proof of Theorem 1: For j € Z define

S;i={jN+N—[2L]+1,...,jN + N+ [2L]}.
We have S; N S; = () for j # j'. Define sequences (Vy)rez and (Sk)kez such that

19k = (Sk if k€ Z\ UjeZ Sj,

{0 +k:keS;} ={0h+k:keSj}VjeZand V,+k <V + Kk for
kK €S, k<K,

{On+k:ke{N+1,... .+ DN} ={0+k:ke {N+1...(+
1)N}} Vj € Z and

On+k<Op1+k+1VkeZ
We obtain |6, < 3L+ 1Vk € Z and
G+1)N

. 1/4 .
> 5k§d+2/ N VjeL.

k=jN+1

An application of Proposition 1 to (&c)keZ completes the proof of Theorem 1. O

Remark. The second part of Lemma VI in DUFFIN AND SCHAEFFER [3] was
proved indirectly. Since their proof rests on this lemma, they did not obtain an
explicit lower bound. We will prove Theorem 2, following a construction by SEIP

[9].

Proof of Theorem 2: Suppose first ¢ > 1 and 7 = 7. Define
Ly:=3M—-1/2, N:=2M(M+1), d:=1/(M +1).

Then
3/4+d

1/A—d’
and the number of points of the sequence (\,),ez in each interval of length M is
at least M + 1.

N > 2L4



Following the proof of Theorem 2.3 in SEIP [9], we conclude that there is a sequence
(0 )kez of real numbers, bounded by L 4, such that (k. )rez is strictly increasing,
{k+ 6 : k € Z} is a subset of {\; : k € Z}, and

(+1)N
Z 5r| < N-d VjezZ.
k=jN+1

Applying Proposition 1 shows that (e’*¥9%)*),_; is an exact frame for L?(—, )
with lower bound A > Aps(L,6,0,m). Then, Aps(L, 9,0, 7) is a lower bound for
(€2n*),.ez as well. The existence of an upper bound follows from Lemma 1. This
proves Theorem 2 for ¢ > 1,7 = m. The general case follows by a dilation. O

Remark. SEIP [9, Theorem 2.3] proved that, under the conditions of the theorem
of Duffin and Schaeffer, there is a subsequence (\,, )xez, such that (em®), 7 is an
exact frame for L?(—, 7). The proof of Theorem 2 even shows that Aps(L,d,,7)
is a lower bound for this exact frame.

Open question. Can sharp frame bounds be obtained, for the Theorems of
Avdonin and of Duffin and Schaeffer? (The lower bounds, obtained in Theorems
1 and 2, are not sharp.)

4. An application to irregular sampling

Suppose (A )nez is a sequence of real numbers such that (e¢*n*),cz is an (A, B)-
frame for L?*(—o,0). Define ¢, by

o sino(z—M\y)
Qpn(z):{; o(z )\n)’z%)\
Z, 2= A
Then, ¢, € PW2 and (pn)nez is an (2, £)-frame for PW2.

If S: PW2 — PWZ, f— > 7 [(A)@n, is the frame operator, corresponding to
this frame, then S is a bijective bounded linear operator satisfying [|S™!|| < 27 /A
(cf. BENEDETTO AND WALNUT [2, Theorem 3.2], DUFFIN AND SCHAEFFER |3,
Section 3], KOLzow [5, Section II.1]). Define

— Z fOwWS or,  fePW? neN.

k<n
Then, (s,(f))nen converges to f in the PW2-norm. For every n € N, ||s,(f) —
fllpwz is called the nth truncation error.

Proposition 2. Suppose (\,)nez is a sequence of real numbers such that (€7*),cz
is an (A, B)-frame for L?*(—o,0). Then, the nth truncation error satisfies

1/2

a5 = s <2 [ SS1r0wE) vrepwz

|k|>n



The first version of Proposition 2, proposed by BITTNER (private communication),
contained the factor v27B/A, instead of \/2m/A. The latter was suggested by
the referee, refering to the fact that T : PW2 — [*(Z), f — (f(Mn))nez is a
bounded injective linear operator with bounded inverse on its range satisfying

1774 < /27 /A
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