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Abstract

We present explicit estimates for the growth of sine-type-functions
as well as for the derivatives at their zero sets, thus obtaining explicit
constants in a result of Levin. The estimates are then used to derive
explicit lower bounds for exponential Riesz bases, as they arise in
Avdonin’s Theorem on 1/4 in the mean or in a Theorem of Bogmér,
Horváth, Joó and Seip. An application is discussed, where knowledge
of explicit lower bounds of exponential Riesz bases is desirable.

1 Introduction

Consider the function sin(π·). From the triangle inequality, it follows that

| sin πz| ≤ eπ|=z| ∀ z ∈ C

and
1− e−2π

2
eπ|=z| ≤ | sin πz| ∀ z ∈ C : |=z| ≥ 1.

Furthermore, the integers are the zero set of sin(π·), and ( 1√
2π
ein(·))n∈Z is

an orthonormal basis for L2(−π, π). Motivated by this, Levin asked for
functions having similar properties to the sine function, such that their zero
sets give rise to more general bases of exponentials. In [12], he invented
sine-type-functions. We have the following

Definition 1.1 (a) An entire function F is of exponential type at most σ
(σ > 0), if for any ε > 0 there exists an Aε > 0 such that

|F (z)| ≤ Aε · e(σ+ε)|z| ∀ z ∈ C.

1
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If there is σ > 0, such that F is of exponential type at most σ, then F
is called of exponential type.

(b) Let σ > 0. An entire function F of exponential type is called σ-sine-
type-function, if there are positive constants C1, C2 and τ such that

C1 · eσ|y| ≤ |F (x+ iy)| ≤ C2 · eσ|y| ∀ x, y ∈ R : |y| ≥ τ. (1)

We shall say that F has growth constants (C1, C2, τ).

A large class of sine-type-functions was established by Sedleckǐi [19], see
also Young [24, Ch. 4, Sec. 5, Problem 3].

In [12], Levin proved that (eiλn(·))n∈Z will be a Schauder basis for L2(−σ, σ)
if (λn)n∈Z is the zero set of a σ-sine-type-function and if it is separated. In [5],
Golovin showed that (eiλn(·))n∈Z will then even be a Riesz basis for L2(−σ, σ).
Here we have the following definitions:

Definition 1.2 A sequence (λn)n∈Z of complex numbers is called separated,
if there is δ > 0 such that

|λn − λm| ≥ δ ∀ n,m ∈ Z : n 6= m.

The constant δ is called a separation constant.

Definition 1.3 Let σ > 0 and (λn)n∈Z be a sequence of complex numbers.
Then (eiλn(·))n∈Z is a Riesz basis for L2(−σ, σ), if (eiλn(·))n∈Z is complete in
L2(−σ, σ) and if there are positive constants A and B such that

A
∑
|ck|2 ≤

∫ σ

−σ

∣∣∣∑ ck e
iλkx
∣∣∣2 dx ≤ B

∑
|ck|2 (2)

holds for all finite sequences (ck) of complex scalars. The constants A and B
are called lower and upper bounds of the Riesz basis.

Riesz bases of exponentials allow representations of functions as infinite
series. They also give rise to irregular sampling series. For the correspond-
ing truncation error, explicit estimates for the bounds of the Riesz basis are
needed. This will be discussed in Section 3.

To obtain the result of Levin and Golovin mentioned above, Levin [12, 13]
showed that a sine-type-function has the following properties. The proofs can
be found in Levin [12], [13], [14, Lectures 6, 17, 22].
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Theorem 1.4 Let F be a σ-sine-type-function with zero sequence (λn)n∈Z,
counted according to multiplicity, and ordered such that

<λn ≤ <λn+1 ∀ n ∈ Z. (3)

Then holds:

(a)
∃M > 0 : |λn+1 − λn| ≤M ∀ n ∈ Z. (4)

(b) For any positive number r, there exists some positive integer Sr such
that for every t ∈ R,

card {n ∈ Z : −r ≤ <λn − t < r} ≤ Sr. (5)

(c) If we put

Gλn (z) :=

{
1− z/λn, if λn 6= 0

z, if λn = 0,

then there is a constant CF 6= 0 such that

F (z) = CF · lim
R→∞

∏
n∈Z:|λn|≤R

Gλn(z) ∀ z ∈ C. (6)

The product converges locally uniformly on C.

(d)
∃C ′2 > 0 : |F (z)| ≤ C ′2 · eσ|=z| ∀ z ∈ C.

(e) For any ε > 0 there exists mε > 0 such that

|F (z)| ≥ mε · eσ|=z| ∀ z ∈ C : dist (z, {λn : n ∈ Z}) ≥ ε. (7)

(f) If (λn)n∈Z is separated, then there exist positive constants C3 and C4

such that
C3 ≤ |F ′(λn)| ≤ C4 ∀ n ∈ Z. (8)

Properties (a) and (b) refer to the sequence (λn)n∈Z, and are usually easy
to check. We also remark that by the Hadamard Factorization Theorem, the
zero-set of any sine-type-function must be countable infinite. Furthermore,
the exponential type σ is related with the numbers Sr via the following
Lemma by Horváth and Joó [6, Lemma 2]:
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Lemma 1.5 Let F be a σ-sine-type function with zero sequence (λn)n∈Z.
Then it holds

lim
r→∞

1

r
max
t∈R

card {n ∈ Z : −r ≤ <λn − t < r} =

lim
r→∞

1

r
min
t∈R

card {n ∈ Z : −r ≤ <λn − t < r} =
σ

π
.

In particular, if Sr denotes the best constant occuring in (5), then

inf
r>0

Sr
2r

= lim
r→∞

Sr
2r

=
σ

π
.

Suppose that F is a σ-sine-type-function which has growth constants
(C1, C2, τ). Then it is easy to show that possible choices for C ′2 and C4 are

C ′2 := C2 · eστ ,

C4 :=
2

δ
· C2 · eστ+σδ/2

(using the maximum principle for C ′2 and Levin’s proof for C4). However,
Levin’s proof for the existence of the sequence (mε)ε>0 was indirect. He thus
obtained no explicit values for mε, in terms of the growth constants, of σ
and of constants describing the sequence (λn)n∈Z, e.g. a separation constant
or the constants M and S appearing in (a) and (b). Since he derived the ex-
istence of C3 using mδ/2 (where δ is the separation constant), he neither did
obtain an explicit expression for C3. In this paper, we shall obtain explicit
estimates for mε and for C3. This will be done in the next section, where we
also give examples to discuss the goodness of these estimates.

In [11, Theorem 2], Katsnel’son proved a generalization of Levin and
Golovin’s Theorem, which was further generalized by Avdonin [1, Theorem
2]. The latter proved, that if the deviation of (λn)n∈Z from the zero set of
a sine-type-function is less than ”1/4 in the mean”, then (eiλn(·))n∈Z forms a
Riesz basis for L2(−π, π). However, while it is easy to give an explicit ex-
pression for an upper bound, Avdonin’s proof for the lower bound rested on
property (f) of Theorem 1.4. Thus, its existence was proved indirectly and
he did not obtain an explicit expression for the lower bound, in terms of the
restricting data. Using our results on sine-type-functions from Section 2 en-
ables us to give an explicit lower bound for Avdonin’s Theorem on 1/4 in the
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mean. This will be done in Section 3, along with applications for Riesz bases
of exponentials and their bounds. We shall also give explicit lower bounds
for a Theorem of Bogmér–Horváth–Joó–Seip [2, Theorem 3], [20, Theorem
2.3] and for a Theorem of Duffin–Schaeffer [4, Theorem I]. For special cases,
explicit estimates have already been given in [15], [21]. Here, we shall obtain
lower bounds for the Theorems in full generality. Lower bounds for the The-
orem of Duffin–Schaeffer in full generality (i.e., for complex sequences) have
also been obtained by Voß [22, 23].

The motivation for our studies is that for practical applications of bases
of exponentials, knowledge of the occuring bounds is essential (cf. Section
3). To obtain such bounds, explicit estimates for sine-type-functions turn
out to be a good tool.

It should be noted that our results are aimed to provide first estimates
for the occuring theorems. While the derived estimates for the sine-type-
function seem to be quite good, our values for Avdonin’s theorem are too
small to be valuable in practice so that further research would be desirable.

To conclude this section we want to mention the characterization of ex-
ponential Riesz bases by Pavlov [18, Theorem 1]:

Theorem 1.6 Let (λn)n∈Z be a sequence of complex numbers satisfying

0 < c1 ≤ =λn ≤ c2 ∀ n ∈ Z

with two positive constants c1 and c2. Let a > 0. Then (eiλn(·))n∈Z forms a
Riesz basis for L2(0, a) if and only if (λn)n∈Z is separated, if

lim
r→∞

card {n ∈ Z : |λn| ≤ r,<λn ≥ 0}
r

=

lim
r→∞

card {n ∈ Z : |λn| ≤ r,<λn < 0}
r

=
a

2π
,

limr→∞
∑
|λn|≤r λ

−1
n exists, and the function W : R→]0,∞[, defined by

W (x) :=

∣∣∣∣∣∣ limr→∞

∏
|λn|≤r

(
1− x

λn

)∣∣∣∣∣∣
2
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fulfills the (A2)-Muckenhoupt-condition, i.e. there exists a constant C such
that for any bounded interval I in R we have

1

|I|

∫
I

W (x) dx · 1

|I|

∫
I

W−1(x) dx ≤ C.

We note that by a Theorem of Hunt, Muckenhoupt and Wheeden [9],
the (A2)-Muckenhoupt-condition is equivalent to the Helson-Szegö condi-
tion. Using this condition, Hruščev [7] could derive Avdonin’s Theorem from
Pavlov’s characterization. A good account of all of this is given in Hruščev,
Nikol’skĭi and Pavlov [8, Sections III.1/2]. For another approach to Pavlov’s
Theorem, which covers also Lp-spaces, we refer to Lyubarskii and Seip [17].
We mention that explicit constants for Pavlov’s characterization have been
given in [16, Section 3.4]. However, it is not clear how estimates for Avdonin’s
Theorem could be obtained using this approach.

It should be noted that, while Pavlov’s Theorem gives a full characteri-
zation of exponential Riesz bases, it may be hard to apply. In contrast, the
conditions of Avdonin are usually easy to check. This is the reason why we
concentrate on Avdonin’s Theorem and want to derive explicit bounds for
this.

The results of this paper are part of the author’s doctoral thesis [16, Ch.
2, 3].

2 Explicit growth estimates

The following Theorem gives explicit values for the numbers mε, appearing
in part (e) of Theorem 1.4.

Theorem 2.1 Let σ > 0 and let F be a σ-sine-type-function with growth
constants (C1, C2, τ) and with zero sequence (λn)n∈Z, ordered according to
(3). Suppose (5) holds for r > 0 and Sr ∈ N. Define

τ ′ := sup
k∈Z
=λk − inf

k∈Z
=λk.

Then for any ε > 0 and any z ∈ C such that dist (z, {λk : k ∈ Z}) = ε, it
holds

|F (z)| ≥ C1e
−
√
τ2+2τ min(2τ,τ ′+ε)πSr/(2r)+στ

·
(

1 +
τ 2 + 2τ min(2τ, τ ′ + ε)

ε2

)−Sr/2
eσ|=z|. (9)
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In particular, if mε is defined by

mε := C1e
−
√

5πτSr/(2r)+στ

(
1 +

5τ 2

ε2

)−Sr/2
, (10)

then (7) holds for any ε > 0 with mε defined as above.

Proof. Let z ∈ C such that |=z| ≤ τ and dist (z, {λk : k ∈ Z}) = ε > 0.
Put

τ̃ :=

{
τ, if =z ≥ 0,

−τ, else.

Then |=(z + iτ̃)| ≥ τ . Since∣∣∣∣Gλk(z + iτ̃)

Gλk(z)

∣∣∣∣ =

∣∣∣∣λk − z − iτ̃λk − z

∣∣∣∣ =

∣∣∣∣1− iτ̃

λk − z

∣∣∣∣ ,
we obtain from (6)∣∣∣∣F (z + iτ̃)

F (z)

∣∣∣∣ = lim
R→∞

∏
k∈Z:|λk|≤R

∣∣∣∣1− iτ̃

λk − z

∣∣∣∣ . (11)

Furthermore, it holds∣∣∣∣1− iτ̃

λk − z

∣∣∣∣2 = 1 +
τ 2 − 2τ̃=(λk − z)

|λk − z|2
=: 1 + ak. (12)

Thus (11) gives ∣∣∣∣F (z + iτ̃)

F (z)

∣∣∣∣2 = lim
R→∞

∏
k∈Z:|λk|≤R

(1 + ak). (13)

For j ∈ Z define

Kj := Kj(z) := {k ∈ Z : r(2j − 1) ≤ <λk −<z < r(2j + 1)}.

By (5),
|Kj| ≤ Sr ∀ j ∈ Z. (14)

Furthermore, we have |λk − z| ≥ r(2|j| − 1) for k ∈ Kj. Thus, for k ∈ Kj

and |j| ≥ 1,

|ak| ≤
τ 2 + 2τ min(2τ, τ ′ + ε)

r2(2|j| − 1)2
. (15)
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Recalling cos πw =
∏∞

j=1(1−4w2(2j−1)−2) for w ∈ C, we obtain, using (14)
and (15),

∏
|j|≥j1

∏
k∈Kj

(1 + ak) ≤

(
∞∏
j=1

(
1 +

τ 2 + 2τ min(2τ, τ ′ + ε)

r2(2j − 1)2

))2Sr

=
(

cosh π
√
τ 2 + 2τ min(2τ, τ ′ + ε)/(2r)

)2Sr

≤ eπ
√
τ2+2τ min(2τ,τ ′+ε)Sr/r. (16)

Since ∏
k∈K0

(1 + ak) ≤
(

1 +
τ 2 + 2τ min(2τ, τ ′ + ε)

ε2

)Sr
, (17)

it follows from (13) that

|F (z)| ≥ |F (z + iτ̃)|

∏
j∈Z

∏
k∈Kj

(1 + ak)

−1/2

.

Using (16) and (1) implies (9) for |=z| ≤ τ . Since πSr/(2r) ≥ σ by Lemma
1.5, (1) implies (9) for |=z| ≥ τ , too. That (7) holds with mε as defined by
(10) now follows immediately. 2

From Lemma 1.5 we know that limr→∞
πSr
2r

= σ. Furthermore, if τ ′ and ε

are small compared to τ , then
√
τ 2 + 2τ min(2τ, τ ′ + ε) ≈ τ+τ ′+ε. Thus, if

additionally πSr
2r

is close to σ, the exponential term in (9) is close to e−σ(τ ′+ε).
However, the larger r the larger Sr will be, so that the non-exponential term
in (9) will grow with increasing r. Thus we expect that formula (9) will yield
in particular good estimates when already for small r, we have πSr

2r
≈ σ. We

illustrate that by a few examples.

Example 2.2 a) Let F (z) = (sin πz)n. Then σ = nπ, S1/2 = n,
πS1/2

2·1/2 = πn,

and τ ′ = 0. We are mainly interested in the behavior of (9) for small ε. It
is clear that the true asymptotic behavior of |F (z)|, as ε = dist (z,Z) → 0,
is given by πnεn. On the other hand, (9) gives that |F (z)| is asymptotically

greater or equal than C1τ
−1εn. For τ = 1, we have C1 =

(
1−e−2π

2

)n
, and the
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estimate appears quite good. Also note that in (16) we used for convenience
the estimate coshx ≤ ex. For large x, however, we would have coshx ≈ ex/2,
so that with this estimate we would obtain an additional improving factor
which is a bit less than 2S1/2 = 2n. Comparing (1−e−2π)n and πn now is still
better.
b) Let F (z) = (sinπz)zn−1

∏n−1
k=1(z − m − k)−1 for some n,m ∈ N, n �

m. Then |F (z)| behaves approximately as m−(n−1)πεn, as ε = |z| → 0.
Now F is a π-sine-type-function, where for τ = 1 we have a constant C1

which is about C1 ≈ m−(n−1)/2. Using (9) with r = 1/2 and S1/2 = n
gives that the asymptotic behavior of |F (z)| as ε = |z| → 0 is given by
C1e

−(n−1)τπτ−nεn ≈ 1
2
m−(n−1)e−(n−1)πεn for τ = 1. Thus we see that in that

case (9) gives estimates which differ by a factor of about 1
2π
e−(n−1)π.

c) Let F (z) = (sinπz)n(sin π(z − i/2))n. Then S1/2 = 2n,
πS1/2

2·1/2 = 2πn = σ,

and τ ′ = 1/2. Then |F (z)| behaves asymptotically as
(
eπ/2−e−π/2

2

)n
πnεn,

as ε = dist (z,Z ∪ ( i
2

+ Z)) → 0. However, (9) gives only that |F (z)| is

asymptotically greater or equal than C1e
−(
√

2−1)τ2πn(
√

2τ)−2nε2n, where C1 =(
1−e−2π

2
1−e−π

2
e−π/2

)n
and τ = 1. The worst shortcoming of this result is of

course that it behaves like a constant times ε2n as ε → 0, whereas the true
behavior is like a constant times εn. This is because the derivation of (9) is
done for quite general F , which does not make use of special structures of
certain sine-type-functions.

We can now obtain explicit estimates for the derivate of a sine-type-
function at its zero set, as they appear in part (f) of Theorem 1.4.

Theorem 2.3 Let σ > 0 and let F be a σ-sine-type-function with growth
constants (C1, C2, τ). Let (λn)n∈Z be its zero sequence, ordered according to
(3) and separated with separation constant δ. Let (5) be fulfilled for some
r > 0 and Sr ∈ N. Put

τ ′ := sup
k∈Z
=λk − inf

k∈Z
=λk, (18)

C3 := C1e
−
√
τ2+2ττ ′πSr/(2r)+στ (τ 2 + 2ττ ′)−1/2

(
1 +

τ 2 + 2ττ ′

δ2

)−(Sr−1)/2

(19)

C4 :=
2

δ
C2e

στ+σδ/2. (20)
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Then (8) holds with C3, C4 defined as above. If τ ′ = 0, then r = δ/2 and
Sδ/2 = 1 can be chosen and (19) can be replaced by

C3 := C1e
(σ−π/δ)ττ−1. (21)

Proof. Noting that (λn)n∈Z is separated by δ, it follows from (12) and
(17) in the proof of Theorem 2.3, that (with the notations used there),

lim
ε→0

ε2
∏
k∈K0

(1 + ak) ≤
(

1 +
τ 2 + 2ττ ′

δ2

)−(Sr−1)

(τ 2 + 2ττ ′).

Then it follows with the same proof as the one of Theorem 2.3, that for
n ∈ Z, it holds

|F ′(λn)| = lim
z→λn

∣∣∣∣ F (z)

z − λn

∣∣∣∣ ≥ C3,

with C3 as defined by (19). That Sδ/2 = 1 for τ ′ = 0 and that this implies
(21) is clear. To obtain (20), note that by the maximum principle,

|F (z)| ≤ C2e
σmax(τ,|=z|) ∀ z ∈ C.

The claim then follows using the maximum principle again, noting

|F ′(λn)| ≤ max
|z−λn|=δ/2

∣∣∣∣ F (z)

z − λn

∣∣∣∣ .2
Example 2.4 a) Let F (z) = sin(πz/δ). Then σ = π/δ, the zeroes (λn)n∈Z
of F are separated by δ > 0, and for τ = 1 we can choose C1 = (1−e−2π/δ)/2.
Thus, (21) gives |F ′(λn)| ≥ C1τ

−1 = (1 − e−2π/δ)/2. This is quite a good
estimate for the true value |F ′(λn)| = π

δ
. Since

lim
δ→∞

C1

π/δ
= lim

δ→∞

1− e−2π/δ

2π/δ
= 1,

the estimate is optimal in the limit δ →∞.
b) Let F (z) = z−δ

z−m sin πz for some large integer m and 0 < δ � 1. Then

infn∈Z |F ′(λn)| ≈ |F ′(0)| = πδ
m

. The function F is a π-sine-type-function. For
τ = 1 we can choose approximately C1 ≈ 1

2m
. Thus (21) gives

inf
n∈Z
|F ′(λn)| ≥ C1e

π(1−1/δ) ≈ 1

2m
eπ(1−1/δ),
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which can be quite a bad estimate in comparison with the true value πδ
m

.
Here it is better to use (19) with r = 1 and S1 = 2 to obtain

inf
n∈Z
|F ′(λn)| ≥ C1e

−πττ−1

(
1 +

τ 2

δ2

)−1/2

≈ δ

2m
e−πττ−2 =

δ

2m
e−π.

In that case, (19) gives an estimate which approximately differs from the true
value only by a factor of e−π

2π
.

c) For F (z) = (sin πz/δ)(sinπ(z−iδ)/δ), it follows infn∈Z |F ′(λn)| ≥ π
δ
eπ−e−π

2
.

On the other hand, (19) gives for τ = 1, r = δ/2 and Sr = 2, that

inf
n∈Z
|F ′(λn)| ≥ C1e

−(
√

2−1)2π/δ(
√

2)−1

(
1 +

2

δ2

)−1/2

.

For δ � 1, we have C1 ≈
(

1−e−2π

2

)2

for τ = 1, and thus we have approxi-

mately

inf
n∈Z
|F ′(λn)| ≥

(
1− e−2π

2

)2
δ

2
e−(
√

2−1)2π/δ,

which is quite a bad estimate in comparison with the true value. The reason
is that for τ ′ 6= 0, already the estimates in Theorem 2.1 were quite bad.

Remark 2.5 Originally, Levin [12] defined σ-sine-type-functions F as entire
functions of exponential type, for which constants C1, C2 > 0 and H > h > 0
exist, such that all zeros of F lie in the strip |=z| ≤ h,

C1e
σH ≤ |F (x+ iH)| ≤ C2e

σH ∀ x ∈ R

and

lim sup
y→+∞

log |F (iy)|
y

+ lim sup
y→−∞

log |F (iy)|
|y|

= 2σ.

This definition was used by Avdonin [1], too. Putting

a := lim sup
y→+∞

log |F (iy)|
y

and

G(z) := F (z) · ei(a−σ)z · e(a−σ)H ∀ z ∈ C,
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one can show (using a result of Levin and the method applied in the proof
of Theorem 2.1), that G is a σ-sine-type-function with growth constants
(C1b, C2e

2σH , H) in accordance with Definition 1.1, where b is defined by

b := e−3π2H2S ·
(

1 +
12H2

(H − h)2

)−S(
√

6H+1)

(and S fulfills (5)). The zero sets of F and G are the same. Hence it is no
restriction to work with the definition of sine-type-functions given by 1.1.

3 Applications to Riesz bases of exponentials

Suppose that (λn)n∈Z is a sequence of complex numbers such that (eiλn(·))n∈Z
is a Riesz basis for L2(−σ, σ) with bounds A and B. Then, there exists a
unique biorthogonal system (hn)n∈Z to (eiλn(·))n∈Z in L2(−σ, σ). It is com-
plete in this space, and any f ∈ L2(−σ, σ) can be written as

f =
∑
n∈Z

< f, eiλn(·) > hn (22)

=
∑
n∈Z

< f, hn > eiλn(·), (23)

where < f, g >:=
∫ σ
−σ f(x)g(x) dx denotes the inner product in L2(−σ, σ)

(cf., e.g., Young [24, Ch. 1, Sec. 7]). Define, for n ∈ N and f ∈ L2(−σ, σ),

s(1)
n (f) :=

∑
|k|≤n

< f, eiλk(·) > hk,

s(2)
n (f) :=

∑
|k|≤n

< f, hk > eiλk(·).

Then, the n-th truncation errors satisfy

‖s(1)
n (f)− f‖ ≤ 1√

A

∑
|k|>n

| < f, eiλk(·) > |2
1/2

, (24)

‖s(2)
n (f)− f‖ ≤

√
B

∑
|k|>n

| < f, hk > |2
1/2

(25)
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(cf. [15, Proposition 2] for (24); (25) follows by duality). Thus, Riesz bases
of exponentials allow representations of functions as nonharmonic Fourier
series, and for the corresponding truncation errors estimates for the occuring
bounds are needed.

Equation (22) also gives rise to an irregular sampling series. For, let PWσ

denote the Paley-Wiener space, consisting of all entire functions of exponen-
tial type at most σ, whose restriction to R belong to L2(R). Endowed with
the L2(R)-norm, PWσ becomes a Hilbert space. Since the Fourier Laplace
transform F , defined by

(Ff)(z) :=
1√
2π

∫ σ

−σ
e−iztf(t) dt (f ∈ L2(−σ, σ), z ∈ C),

is an isometry from L2(−σ, σ) onto PWσ by the Paley-Wiener theorem, and
since

< f, eiλn(·) >=
√

2π (Ff)(λn),

(22) is equivalent to

F =
∑
n∈Z

F (λn)
√

2πFhn ∀ F ∈ PWσ. (26)

Convergence holds in the PWσ-norm as well as uniformly on any horizontal
strip of finite width (cf. Young [24, Ch. 2, Pt. 2, Sec. 5]). Since (26) recovers
any function F ∈ PWσ from its samples F (λn) and since the sample points
(λn)n∈Z are (usually) spaced non-equidistantly, (26) is an irregular sampling
formula. The corresponding trunction error satisfies

‖F −
∑
|k|≤n

F (λk)
√

2πFhn‖PWσ ≤
√

2π

A

∑
|k|>n

|F (λk)|2
1/2

. (27)

A broad class of exponential Riesz bases is given by Avdonin’s Theorem on
1/4 in the mean, considering perturbations of zero sets of sine-type-functions.
For its formulation, we need the following

Definition 3.1 A sequence (Λj)j∈Z of non-empty, disjoint subintervals of R
is called an A-partition of R, if⋃

j∈Z

Λj = R,

sup Λj = inf Λj+1 ∀ j ∈ Z
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and if the lengths |Λj| of the intervals are uniformly bounded by some con-
stant l. We shall say, the A-partition is bounded by l.

Theorem 3.2 (Avdonin’s Theorem on 1/4 in the mean [1, Theorem
2]) . Let σ > 0 and (λk)k∈Z be the zero set of a σ-sine-type-function, ordered
according to (3). Let (δk)k∈Z be a bounded sequence of complex numbers, such
that (λk+δk)k∈Z is separated. For an A-partition (Λj)j∈Z of R define the sets
Kj (j ∈ Z) by

Kj := {k ∈ Z : <λk ∈ Λj}.

Suppose there is d ∈ [0, 1/4[, such that∣∣∣∣∣∣
∑
k∈Kj

<δk

∣∣∣∣∣∣ ≤ d · |Λj| ∀ j ∈ Z. (28)

Then (ei(λk+δk)·)k∈Z is a Riesz basis for L2(−σ, σ).

Note that for d = 0 and =λk = 0, Avdonin’s Theorem reduces to the
Theorem of Levin and Golovin. On the other hand, for σ = π, Λj := [j −
1/2, j+1/2[ and λk := k (i.e. consider the π-sine-type-function sin π(·)), (28)
reduces to

|<δk| ≤ d ∀ k ∈ Z,

and we have Kadec’s 1/4-theorem [10, Theorem 2].
We have seen that explicit estimates for the occuring bounds of the Riesz

bases are important for the truncation errors in (24), (25) and (27). The
following Lemma, a version of a Theorem of Plancherel and Pólya, shows
that an explicit upper bound for sequences of exponentials is usually easy to
obtain. We have

Lemma 3.3 Let σ > 0 and (λn)n∈Z be a sequence of complex numbers,
with imaginary parts bounded by some constant τ . Suppose furthermore that
(λn)n∈Z is separated, with separation constant δ > 0. Then, the right hand
side inequality in (2) is fulfilled with

B := B(δ, τ, σ) :=
2

σ
(e2σ(τ+1) − 1)

(
2

δ
+ 1

)2

.
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The proof follows from [15, Lemma 1] and a Theorem of Boas (cf. Young
[24, Ch. 4, Theorem 3]).

While it is easy to obtain an explicit upper bound for exponential se-
quences, Avdonin’s proof for the existence of the lower bound was indirect.
For, in his proof he constructed a certain 2σ-sine-type-function and then ap-
plied property (f) of Theorem 1.4. To obtain an explicit estimate for the lower
bound, an explicit estimate for C3 in (8) would have been needed. Having
now obtained such an explicit expression in Theorem 2.3, we can also obtain
an explicit lower bound for Avdonin’s Theorem on 1/4 in the mean. The
proof follows by explicating Avdonin’s proof (and that of Katsnel’son [11],
which Avdonin’s proof is based on) and applying Theorem 2.3. We omit the
long and technical details, which are carried out in [16, Ch. 3].

Theorem 3.4 (An explicit lower bound for Avdonin’s Theorem).
Let the assumptions of Theorem 3.2 be valid. Let the σ-sine-type-function
have growth constants (C1, C2, τ), and let its zero set (λk)k∈Z fulfill (4) and
(5) with some constants M and S = S1 (for r = 1). Let (δk)k∈Z be bounded
by some L ≥ 1, and let δ > 0 be a separation constant for (λk + δk)k∈Z.
Suppose the A-partition (Λj)j∈Z is bounded by l. Define

N := 36τ + 20L+ 25M + 12 + l +
64S(L+ 2M)(L+ 2M + 1)

1− 4d

and

δ′ := min

{
δ,

M

(NS)3
· 2−NS−1

}
.

Then, an explicit lower bound for the Riesz basis (ei(λk+δk)·)k∈Z in L2(−σ, σ)
is given by

AAvd = AAvd(L, δ,M, S, d, l, C1/C2, τ)

:=

(
C1

C2

)44
· (δ′)73N2S · (8N)−234(2N)2NS

.

Remark 3.5 A possible choice for S in Theorem 3.4 is

S :=
4(2 + 2L+ δ)(2τ + 2L+ δ)

πδ2
.

Thus, the lower bound in the Theorem depends only on L, δ,M, d, l, C1/C2

and τ .
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An important special case of Theorem 3.4 is the following. For the case
of real sequences, an explicit lower bound for it has already been given in
[15, Theorem 1].

Corollary 3.6 Let (δk)k∈Z be a sequence of complex numbers, bounded by
L ≥ 1. Suppose (k + δk)k∈Z is separated, with separation constant δ > 0.
Suppose there is d ∈ [0, 1/4[ and a natural number T such that∣∣∣∣∣∣

(j+1)T∑
k=jT+1

<δk

∣∣∣∣∣∣ ≤ T · d ∀ j ∈ Z.

Define

N := 73 + 20L+ T +
192(L+ 2)(L+ 3)

1− 4d

and

δ′ := min

{
δ,

1

(3N)3
· 2−3N−1

}
.

Then, (ei(k+δk)·)k∈Z is a Riesz basis for L2(−π, π) with lower bound

A = A(L, δ, d, T ) := 2−88 · (δ′)219N2
· (8N)−234(2N)6N

.

Proof. Set Φ(z) := sin πz and Λj := [jT + 1/2, (j + 1)T + 1/2[. Then
Φ is a π-sine-type-function with growth constants (1/4, 1, 1) and zero set
Z. (Λj)j∈Z is an A-Partition of R satisfying |Λj| = T ∀ j ∈ Z and
{k ∈ Z : k ∈ Λj} = {jT + 1, . . . , (j + 1)T}. Putting M := 1, S := 3, l := T
und σ := π, the claim follows from Theorem 3.4. 2

Using Corollary 3.6, we can obtain an explicit lower bound in a Theorem
of Bogmér–Horváth–Joó and Seip [2, Theorem 3], [20, Theorem 2.3]:

Theorem 3.7 (An explicit lower bound in the Theorem of Bogmér–
Horváth–Joó and Seip). Let (λn)n∈Z be a separated sequence of complex
numbers, with separation constant δ > 0. Let σ > 0, L ≥ 0, γ > σ/π, and
suppose ∣∣∣∣λn − n

γ

∣∣∣∣ ≤ L ∀ n ∈ Z.
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Then there exists a subsequence (λnk)k∈Z of (λn)n∈Z such that (eiλnk (·))k∈Z is
a Riesz basis for L2(−σ, σ) with lower bound

ABHJS(L, δ, σ, γ) :=
σ

π
(δ′)1, 3 · 109M6

·M−M
1,3·105M3

,

where

M := max

{
4,

⌈
3 + 2γL

πγ/σ − 1

⌉}
+ 1, δ′ := min

{
σδ

π
, 2−7070M3

}
.

Bogmér–Horváth–Joó and Seip obtained the existence of the subsequence
mentioned in Theorem 3.7 using the special case of Avdonin’s Theorem con-
sidered in Corollary 3.6 (without its explicit lower bound). Using the explicit
lower bound in Corollary 3.6 and explicating the proof of Bogmér–Horváth–
Joó and Seip then gives the lower bound in the Theorem above. The details
are carried out in [16, Satz 3.27]. For the case of real sequences, this has
already been done in [15, Remark 3].

Remark 3.8 Theorem 3.7 also gives rise to explicit lower bounds in a The-
orem of Duffin and Schaeffer [4, Theorem I]. The latter states that if the as-
sumptions of Theorem 3.7 are valid, then (eiλn(·))n∈Z is a frame for L2(−σ, σ),
i.e. there exist positive constants A,B such that

A

∫ σ

−σ
|f(x)|2 dx ≤

∑
n∈Z

∣∣∣∣∫ σ

−σ
f(x)e−iλnx dx

∣∣∣∣2 ≤ B

∫ σ

−σ
|f(x)|2 dx

holds for all f ∈ L2(−σ, σ). While an explicit value for B is given by Lemma
3.3, Duffin and Schaeffer’s proof for the existence of A was indirect. However,
using the fact that every Riesz basis is a frame with the same constants, it
is now easy to see that ABHJS(L, δ, σ, γ) is a possible choice for A. A better
estimate for A was found by Voß in [22, Korollar 5.1.3], [23, Corollary 4.1.2].
The considerations of Voß also cover generalizations to Lp-spaces and include
derivatives. For the case of Duffin-Schaeffer’s Theorem with real sequences,
explicit lower bounds have already been given in Lindner [15, Theorem 2]
and Voß [21, Corollary to Theorem 1].

It should be noted that the lower bounds obtained in Theorems 3.4, 3.7
and Corollary 3.6 are too small to be useful in practice. For special cases
of Avdonin’s Theorem, such as Kadec’s 1/4-Theorem or the Levin-Golovin
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Theorem, better estimates for the lower bounds are known, cf., e.g., Chris-
tensen and Lindner [3, Theorem 1.3 and the example in Section 2].
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[8] Hruščev, S.V., Nikol’skĭi, N.K., Pavlov, B.S., Unconditional bases of
exponentials and of reproducing kernels, Complex Analysis and Spectral



sine-type-functions 19

Theory (Leningrad, 1979/80), Lecture Notes in Math. 864 (1981), 214-
335.

[9] Hunt, R., Muckenhoupt, B., Wheeden, R., Weighted norm inequalities
for the conjugate function and Hilbert transform, Trans. Amer. Math.
Soc. 176 (1973), 227-251.

[10] Kadec, M.I., The exact value of the Paley-Wiener constant, Dokl. Akad.
Nauk. SSSR 155 no. 6 (1964), 1253-1254 (Russian); English transl. in
Sov. Math. Dokl. 5 (1964), 559-561.
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[22] Voß, J., Irreguläres Abtasten: Fehleranalyse, Anwendungen und Er-
weiterungen, Thesis, Univ. Erlangen-Nürnberg (1999).

[23] Voß, J., Irregular sampling: error analysis, applications, and extensions,
Mitt. Math. Sem. Giessen 238 (1999).

[24] Young, R.M., An introduction to nonharmonic Fourier series, Academic
Press, New York (1980).

Alexander M. Lindner
Zentrum Mathematik
Technische Universität München
D-80290 München
Germany
E-mail: lindner@mathematik.tu-muenchen.de


