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Abstract We collect some continuous time GARCH models and report on
how they approximate discrete time GARCH processes. Similarly, certain
continuous time volatility models are viewed as approximations to discrete
time volatility models.

1 Stochastic volatility models and discrete GARCH

Both stochastic volatility models and GARCH processes are popular mod-
els for the description of financial time series. Recall that a discrete time
stochastic volatility model (SV-model) is a process (Xn)n∈N0 together with a
non-negative volatility process (σn)n∈N0 , such that

Xn = σnεn, n ∈ N0, (1)

where the noise sequence (εn)n∈N0 is a sequence of independent and identi-
cally distributed (i.i.d.) random variables, which is assumed to be indepen-
dent of (σn)n∈N0 . Further information about these processes can be found e.g.
in Shephard (2008) and Davis and Mikosch (2008). In contrast to stochastic
volatility models, GARCH processes have the property that the volatility pro-
cess is specified as a function of the past observations. The classical ARCH(1)
process by Engle (1982) and the GARCH(1,1) process by Bollerslev (1986),
for example, are processes (Xn)n∈N0 with a non-negative volatility process
(σn)n∈N0 , such that

Xn = σnεn, n ∈ N0, (2)
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σ2
n = ω + λX2

n−1 + δσ2
n−1, n ∈ N. (3)

Here, (εn)n∈N0 is again an i.i.d. noise sequence, and the parameters ω, λ, δ
satisfy ω > 0, λ > 0 and δ > 0 (GARCH(1,1)) or δ = 0 (ARCH(1)), respec-
tively. See e.g. Teräsvirta (2008) and Lindner (2008) for further information
regarding GARCH processes and their probabilistic properties.

While financial data are usually observed only at discrete times, financial
mathematicians often tend to work in continuous time, which appears to be
more convenient for option pricing. However, continuous time models may
also offer a good approximation to discrete observations. Typical examples
are high-frequency data or irregularly observed data. While in discrete time,
(Xn)n∈N0 models the increments of the log price, in continuous time one
rather models the log price (Gt)t≥0 itself. Typically, one has an unobserved
volatility process (σt)t≥0 modelled as a semimartingale, and the log price is
described by

Gt =
∫ t

0

(µ + bσ2
s) ds +

∫ t

0

σs−dMs, (4)

where (Mt)t≥0 is a Lévy process and µ, b are real constants. For continuous
time stochastic volatility models, the process (Mt)t≥0 is usually independent
of (σt)t≥0, and more specifically, taken to be a standard Brownian motion. In
the latter case, the quadratic variation of G until time t is

∫ t

0
σ2

s ds, justifying
the name volatility for σt.

The aim of this paper is to present some continuous time GARCH and SV
models and to discuss in which sense they can be seen as approximations to
corresponding discrete time models.

2 Continuous time GARCH approximations

If a continuous time model serves as an approximation to a GARCH process,
one may ask in which sense the process when sampled at discrete times is
close to a GARCH process. An optimal situation would be that the process
itself is a GARCH process, whenever sampled at equidistant times (hn)n∈N0 ,
for each h > 0. This however cannot be achieved: Drost and Nijman (1993),
Example 3, have shown that GARCH processes are not closed under tempo-
ral aggregation, i.e., if (Xt)t∈N0 is a GARCH process driven by some noise
(εt)t∈N0 with volatility process (σt)t∈N0 , then – apart from some situations
when the noise is degenerate – there does not exist an i.i.d. noise sequence
(ε̃2t)t∈N0 and a volatility process (σ̃2t)t∈N0 such that (X2t)t∈N0 is a GARCH
process driven by (ε̃2t)t∈N0 with volatility process (σ̃2t)t∈N0 . In particular, a
continuous time process (Yt)t≥0 which happens to be a GARCH(1,1) process
when sampled at {0, h, 2h, . . .} for some frequency h will not be GARCH when
sampled at {0, 2h, 4h, . . .}. Similarly, if for some log price process (Gt)t≥0, the
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increments (Gnh − G(n−1)h)n∈N of length h constitute a GARCH(1,1) pro-
cess with non-degenerate noise, then the increments (Gn2h − G(n−1)2h)n∈N
of length 2h will usually not be GARCH. Hence one has to work with other
concepts of GARCH approximations.

2.1 Preserving the random recurrence equation
property

One approach to construct continuous time GARCH approximations is to
require that certain properties of discrete time GARCH continue to hold. For
example, a GARCH(1,1) process has the elegant property that its squared
volatility satisfies the random recurrence equation σ2

n = ω+(δ+λε2
n−1)σ

2
n−1,

where σn−1 is independent of εn−1. Denoting An−1
n = δ +λε2

n−1 and Cn−1
n =

ω, this can be written as

σ2
n = An−1

n σ2
n−1 + Cn−1

n ,

where σ2
n−1 is independent of (An−1

n , Cn−1
n ) and (An−1

n , Cn−1
n )n∈N is i.i.d. Re-

quiring at least this random recurrence equation property to hold for candi-
dates of squared volatility processes, it is natural to look at processes (Yt)t≥0

which satisfy
Yt = As

tYs + Cs
t , 0 ≤ s ≤ t, (5)

for appropriate sequences (As
t , C

s
t )0≤s≤t of bivariate random vectors. In order

to ensure the i.i.d. property of (A(n−1)h
nh , C

(n−1)h
nh )n∈N for every h > 0, one

rather assumes that for every 0 ≤ a ≤ b ≤ c ≤ d, the families of random
variables (As

t , C
s
t )a≤s≤t≤b and (As

t , C
s
t )c≤s≤t≤d are independent, and that

the distribution of (As+h
t+h , Cs+h

t+h )0≤s≤t does not depend on h ≥ 0. Finally, a
natural continuity condition seems to be desirable, namely that

A0
t > 0 a.s. ∀ t ≥ 0, and (At, Ct) := (A0

t , C
0
t ) P→ (1, 0) as t ↓ 0,

where “ P→” denotes convergence in probability. De Haan and Karandikar
(1989) showed that if (As

t , C
s
t )0≤s≤t are such that they satisfy the proper-

ties described above, then (At, Ct)t≥0 admit càdlàg versions, and with these
versions chosen, (Yt)t≥0 satisfies (5) if and only if there is a bivariate Lévy
process (ξt, ηt)t≥0 such that

Yt = e−ξt

(
Y0 +

∫ t

0

eξs− dηs

)
, t ≥ 0. (6)

This is a generalised Ornstein-Uhlenbeck process, which is discussed in detail
in Maller et al. (2008b). From the point of view described above, gener-
alised Ornstein-Uhlenbeck processes are natural continuous time analogues
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of random recurrence equations, and hence a desirable property of a contin-
uous time GARCH(1,1) approximation is that its squared volatility process
is a generalised Ornstein-Uhlenbeck process. As we shall see later, both the
diffusion limit of Nelson (1990) as well as the COGARCH(1,1) process of
Klüppelberg et al. (2004) satisfy this requirement. Also, the volatility model
of Barndorff-Nielsen and Shephard (2001a) and (2001b) falls into this class,
even if not constructed as a GARCH(1,1) approximation.

2.2 The diffusion limit of Nelson

A common method to construct continuous time processes from discrete ones
is to use a diffusion approximation. Here, one takes a series of discrete time
series defined on a grid (such as hN0) with mesh h ↓ 0, extends the processes
between grid points in a suitable way (such as interpolation, or piecewise con-
stancy), and hopes that this sequence of processes defined on [0,∞) converges
weakly to some limit process. Since the processes encountered will typically
have sample paths in the Skorokhod space D([0,∞),Rd) of Rd-valued càdlàg
functions defined on [0,∞), by weak convergence we mean weak convergence
in D([0,∞),Rd), when endowed with the (J1-)Skorokhod topology, cf. Ja-
cod and Shiryaev (2003), Sections VI.1 and VI.3. If the limit process has no
fixed points of discontinuity (which will be the case in all cases encountered),
then weak convergence in D([0,∞),Rd) implies weak convergence of the fi-
nite dimensional distributions, and the converse is true under an additional
tightness condition, cf. Jacod and Shiryaev (2003), Proposition VI.3.14 and
VI.3.20.

Nelson (1990) derived a diffusion limit for GARCH(1,1) processes. In the
same paper, he also considered the diffusion limit of EGARCH processes.
An extension to diffusion limits of a more general class of GARCH processes
(called augmented GARCH) was obtained by Duan (1997). Here, we shall
concentrate on Nelson’s diffusion limit of GARCH(1,1): for each h > 0, let
(εkh,h)k∈N0 be an i.i.d. sequence of standard normal random variables, let
ωh, λh > 0 and δh ≥ 0, and let (G0,h, σ2

0,h) be starting random variables,
independent of (εkh,h)k∈N0 . Then (Gkh,h − G(k−1)h,h, σkh,h)k∈N, defined re-
cursively by

Gkh,h = G(k−1)h,h + h1/2σkh,hεkh,h, k ∈ N,

σ2
kh,h = ωh + (λhε2

(k−1)h,h + δh)σ2
(k−1)h,h, k ∈ N,

is a GARCH(1,1) process for every h > 0. Then (Gkh,h, σ2
kh,h)k∈N0 is embed-

ded into a continuous time process (Gt,h, σ2
t,h)t≥0 by defining

Gt,h := Gkh,h, σ2
t,h := σ2

kh,h, kh ≤ t < (k + 1)h.
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The latter process has sample paths in D([0,∞),R2), and Nelson (1990) gives
conditions for (Gt,h, σ2

t,h)t≥0 to converge weakly to some process (Gt, σ
2
t )t≥0

as h ↓ 0. Namely, suppose that there are constants ω ≥ 0, θ ∈ R and λ > 0
as well as starting random variables (G0, σ

2
0) such that (G0,h, σ2

0,h) converges
weakly to (G0, σ

2
0) as h ↓ 0, such that P (σ2

0 > 0) = 1 and

lim
h↓0

h−1ωh = ω, lim
h↓0

h−1(1− δh − λh) = θ, lim
h↓0

2h−1λ2
h = λ2. (7)

Then (Gt,h, σ2
t,h)t≥0 converges weakly as h ↓ 0 to the unique solution

(Gt, σ
2
t )t≥0 of the diffusion equation

dGt = σt dBt, t ≥ 0, (8)
dσ2

t = (ω − θσ2
t ) dt + λσ2

t dWt, t ≥ 0, (9)

with starting value (G0, σ
2
0), where (Bt)t≥0 and (Wt)t≥0 are independent

Brownian motions, independent of (G0, σ
2
0). Nelson also showed that (9) has

a strictly stationary solution (σ2
t )t≥0 if 2θ/λ2 > −1 and ω > 0, in which case

the marginal stationary distribution of σ2
0 is inverse Gamma distributed with

parameters 1+2θ/λ2 and 2ω/λ2. An example for possible parameter choices
to satisfy (7) is given by ωh = ωh, δh = 1− λ

√
h/2− θh, and λh = λ

√
h/2.

Observe that the limit volatility process (σ2
t )t≥0 in (9) is a generalised

Ornstein-Uhlenbeck process as defined in (6), with (ξt, ηt) = (−λWt + (θ +
λ2/2)t, ωt), see e.g. Fasen (2008) or Maller et al. (2008b).

A striking difference between discrete time GARCH processes and their
diffusion limit is that the squared volatility process (σ2

t )t≥0 in (9) is indepen-
dent of the Brownian motion (Bt)t≥0, driving the log price process. So the
volatility model (8), (9) has two independent sources of randomness, namely
(Bt)t≥0 and (Wt)t≥0. On the other hand, discrete time GARCH processes
are defined only in terms of a single noise sequence (εn)n∈N0 , rather than
two. While it was believed for a long time that Nelson’s limit result justified
the estimation of stochastic volatility models by GARCH-estimation proce-
dures, Wang (2002) showed that statistical inference for GARCH modelling
and statistical inference for the diffusion limit (8), (9) are not asymptotically
equivalent, where asymptotic equivalence is defined in terms of Le Cam’s
deficiency distance (see Le Cam (1986)). As a heuristic explanation, Wang
(2002) mentions the different kinds of noise propagations in the GARCH
model with one source of randomness and the volatility model with two
sources of randomness. It is possible to modify Nelson’s approximation to
obtain a limit process which is driven by a single Brownian motion only (see
Corradi (2000)), but in that case the limiting volatility process is determin-
istic, an undesirable property of price processes. Observe however that for
the latter case, the statistical estimation procedures are equivalent, cf. Wang
(2002).
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2.3 The COGARCH model

Apart from the fact that Nelson’s diffusion limit is driven by two independent
sources of randomness, it also has a continuous volatility process. Nowadays,
jumps in the volatility of continuous time processes are often considered as a
stylised fact, which hence is not met by model (8), (9). This led Klüppelberg
et al. (2004) to the introduction of a new continuous time GARCH(1,1) pro-
cess, called COGARCH(1,1), where “CO” stands for continuous time. Its
construction starts from the observation that the recursions (2), (3) can be
solved recursively, and σ2

n and Xn can be expressed by

σ2
n = ω

n−1∑

i=0

n−1∏

j=i+1

(δ + λε2
j ) + σ2

0

n−1∏

j=0

(δ + λε2
j ) (10)

=


ω

∫ n

0

exp



−

bsc∑

j=0

log(δ + λε2
j )



 ds + σ2

0


 exp





n−1∑

j=0

log(δ + λε2
j )



 ,

Xn = σnεn = σn




n∑

j=0

εj −
n−1∑

j=0

εj


 . (11)

Here, bzc denotes the largest integer not exceeding z, and both
∑n−1

j=0 log(δ+
λε2

j ) = n log δ +
∑n−1

j=0 log(1 + λε2
j/δ) and

∑n
j=0 εj are random walks, which

are linked in such a way that the first can be reconstructed from the second.
The idea of Klüppelberg et al. (2004) was then to replace the appearing
random walks by Lévy processes, which are a continuous time analogue of
random walks, and to replace the εj by the jumps of a Lévy process L. More
precisely, they start with positive constants ω, δ, λ > 0 and a Lévy process
L = (Lt)t≥0 which has non-zero Lévy measure νL, and define an auxiliary
Lévy process ξt by

ξt = −t log δ −
∑

0<s≤t

log
(

1 +
λ

δ
(∆Ls)2

)
, t ≥ 0,

corresponding to the random walk −(n log δ+
∑n−1

j=0 log(1+λε2
j/δ)) in discrete

time. Given a starting random variable σ2
0 , independent of (Lt)t≥0, a (right-

continuous) volatility process (σt)t≥0 and the COGARCH(1,1) process are
then defined by

σ2
t =

(
ω

∫ t

0

eξs− ds + σ2
0

)
e−ξt , t ≥ 0, (12)

Gt =
∫ t

0

σs− dLs, t ≥ 0, (13)
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in complete analogy to (10) and (11). (Originally, Klüppelberg et al. (2004)
defined a left-continuous version of the volatility by considering σ2

t− rather
than σ2

t .) The process (ξt)t≥0 is indeed a Lévy process, which is the negative
of a subordinator together with drift − log δ. Hence the squared volatility
process is again a generalised Ornstein-Uhlenbeck process as in (6) driven by
(ξt, ωt). An application of Itô’s formula to (12) shows that (σ2

t )t≥0 satisfies
the stochastic differential equation

dσ2
t = (ω + log δ σ2

t−) dt +
λ

δ
σ2

t− d[L,L]dt ,

where [L,L]dt =
∑

0<s≤t(∆Ls)2 denotes the discrete part of the quadratic
variation of L. Note that G has only one source of randomness, namely
L, which drives both σ2

t and G. In particular, if L jumps then so does G,
with jump size ∆Gt = σt−∆Lt. Stationarity and moment conditions for
(σ2

t )t≥0 are given in Klüppelberg et al. (2004), and it follows that (σ2
t )t≥0

admits a stationary version if and only if
∫
R log(1 + λx2/δ) νL(dx) < − log δ,

which in particular forces δ < 1. As for discrete time GARCH processes, the
stationary COGARCH volatility has Pareto tails under weak assumptions,
cf. Klüppelberg et al. (2006). Under appropriate conditions, the increments
of G are uncorrelated, while the squares of the increments are correlated.
More precisely, the covariance structure of ((Gnh −G(n−1)h)2)n∈N is that of
an ARMA(1,1) process. Extensions of the COGARCH(1,1) process include
the COGARCH(p, q) model by Brockwell et al. (2006), an asymmetric CO-
GARCH(1,1) model by Haug et al. (2007) to include the leverage effect, and
a multivariate COGARCH(1,1) model by Stelzer (2008).

The COGARCH(1,1) model was motivated by replacing the innovations
in GARCH processes by the jumps of Lévy processes. The question in which
sense a COGARCH process is close to a discrete time GARCH process
was recently considered independently by Kallen and Vesenmayer (2008)
as well as Maller et al. (2008a). In both papers it is shown that the CO-
GARCH(1,1) model is a continuous time limit of certain GARCH(1,1) pro-
cesses: more precisely, given a COGARCH process (Gt)t≥0 with volatility pro-
cess (σt)t≥0, Kallen and Vesenmayer (2008) construct a sequence of discrete
time GARCH processes (Yk,n)k∈N with volatility (σk,n)k∈N, such that the pro-
cesses (

∑bntc
k=1 Yk,n, σbntc+1,n)t≥0 converge weakly to (Gt, σt)t≥0 as n → ∞.

Here, weak convergence in the Skorokhod space D([0,∞),R2) is obtained
by computing the semimartingale characteristics of (Gt, σt)t≥0 and showing
that they are the limit of those of (

∑bntc
k=1 Yk,n, σbntc+1,n)t≥0 as n →∞. The

infinitesimal generator of the strong Markov process (Gt, σt)t≥0 was also ob-
tained. They also showed how a given GARCH(1,1) process can be scaled
to converge to a COGARCH(1,1) process. Using completely different meth-
ods, given a COGARCH(1,1) process driven by a Lévy process with mean
zero and finite variance, Maller et al. (2008a) also obtain a sequence of dis-
crete time GARCH processes (Yk,n)k∈N with volatility processes (σk,n)k∈N
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such that (
∑bntc

k=1 Yk,n, σbntc+1,n)t≥0 converges in probability to (Gt, σt)t≥0

as n → ∞. Observe that convergence in probability is stronger than weak
convergence. The discrete time GARCH processes are constructed using a
“first-jump” approximation for Lévy processes as developed by Szimayer and
Maller (2007), which divides a compact interval into an increasing number
of subintervals and for each subinterval takes the first jump exceeding a cer-
tain threshold. Summing up, we have seen that the COGARCH(1,1) model
is a limit of GARCH(1,1) processes, although originally motivated by mim-
icking features of discrete GARCH(1,1) processes without referring to limit
procedures.

2.4 Weak GARCH processes

Another approach to obtain continuous time GARCH processes is to weaken
the definition of a GARCH process. Observe that if (Xn)n∈N0 is a GARCH(1,1)
process with finite fourth moment and volatility process (σn)n∈N0 , driven by
i.i.d. noise (εn)n∈N0 such that Eε0 = 0 and Eε2

0 = 1, then

PLn(Xn) = 0 and PLn(X2
n) = σ2

n,

where PLn(Z) denotes the best linear predictor of a square integrable random
variable Z with respect to 1, σ2

0 , X0, . . ., Xn−1, X2
0 , . . ., X2

n−1. Drost and
Nijman (1993) use this property to define weak GARCH processes: they call
a univariate process (Xn)n∈N0 a weak GARCH(1,1) process with parameter
(ω, λ, δ), if Xn has finite fourth moment and there exists a volatility process
(σn)n∈N0 such that (σ2

n)n∈N0 is weakly stationary and satisfies (3) for n ∈ N,
and it holds PLn(Xn) = 0 and PLn(X2

n) = σ2
n. Here, ω > 0, λ ≥ 0, δ ≥ 0,

and either λ = δ = 0 or 0 < λ+ δ < 1. Unlike GARCH processes, the class of
weak GARCH processes is closed under temporal aggregation, i.e. if (Xn)n∈N0

is a symmetric weak GARCH(1,1) process, then so is (Xmn)n∈N0 for every
m ∈ N, see Drost and Nijman (1993), Example 1. Based on this property,
Drost and Werker (1996) define a continuous time weak GARCH(1,1) process
to be a univariate process (Gt)t≥0 such that (Gt0+nh − Gt0+(n−1)h)n∈N is a
weak GARCH(1,1) process for every h > 0 and t0 ≥ 0. They also show
that the parameters of the discretised weak GARCH process correspond to
certain parameters in the continuous time weak GARCH process, so that
estimation methods for discrete time weak GARCH processes carry over to
certain parameters of continuous time weak GARCH processes. Examples of
continuous time weak GARCH processes include the diffusion limit of Nelson,
provided it has finite fourth moment, or more generally processes (Gt)t≥0 with
finite fourth moments of the form dGt = σt−dLt, where (σ2

t )t≥0 is supposed
to be a stationary solution of the stochastic differential equation
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dσ2
t = (ω − θσ2

t−) dt + λσ2
t− dηt.

Here, (Lt)t≥0 and (ηt)t≥0 are two independent Lévy processes with finite
fourth moment, expectation 0 and variance 1, (Lt)t≥0 is symmetric and the
parameters ω > 0, θ > 0 and λ < 1 are chosen such that Eσ4

0 < ∞, see Drost
and Werker (1996), Example 4.1.

2.5 Stochastic delay equations

A somewhat different approach to obtain continuous time GARCH processes
is taken by Lorenz (2006). He considered a weak limit of scaled GARCH(pn+
1, 1) processes when the order pn+1 goes to ∞, and in the limit he obtained
the solution to a stochastic delay differential equation. More precisely, let
(εk)k∈N0 be a sequence of i.i.d. random variables with finite (4 + α)-moment
for some α > 0 such that E(ε1) = E(ε3

1) = 0 and E(ε2
1) = 1. Let p ∈ N and

(σt)t∈[−p,0] be some given strictly positive continuous function on [−p, 0],
and define Gt = 0 for t ∈ [−p, 0]. Let ωn > 0, δj,n ≥ 0 (j = 0, . . . , pn) and
λn ≥ 0, and consider the discrete time GARCH(pn + 1, 1) process (Yk,n)k∈N
with volatility (σk,n)k∈N given by

Yk,n = n−1/2 σk,nεk, k ∈ N,

σ2
k,n = ωn +

np∑

j=0

δj,nσ2
k−1−j,n + λnσ2

k−1,nε2
k−1, k ∈ N,

where σj,n := σ−j/n for j ∈ {−pn, . . . , 0}. Define further (Gt,n, σt,n)t≥−p :=
(
∑bntc

k=1 Yk,n, σbntc+1,n)t≥−p. Assuming that

lim
n→∞

nωn = ω > 0, lim
n→∞

n(1−δ0,n−λn) = θ ∈ R, lim
n→∞

(Eε4
1−1)nλ2

n = λ2

(14)
and that the sequence (γn)n∈N of discrete measures γn on [−p, 0] defined by
γn({−j/n}) = nδj,n for 1 ≤ j ≤ pn and γn({0}) = 0 converges vaguely
to some finite measure γ on [−p, 0] such that γ({0}) = 0, Lorenz (2006),
Theorem 2.5.10, showed that (Gt,n, σt,n)t≥0 converges weakly as n → ∞
to the unique weak solution (Gt, σt)t≥0 of the stochastic delay differential
equation

dGt = σt dBt, t ≥ 0, (15)

dσ2
t = (ω − θσ2

t ) dt +

(∫

[−p,0]

σ2
t+u dγ(u)

)
dt + λσ2

t dWt, (16)

with starting values as given, and where (Bt)t≥0 and (Wt)t≥0 are two inde-
pendent Brownian motions. A sufficient condition for a stationary solution
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of the stochastic delay equation (16) to exist is also given in Lorenz (2006).
Observe that if δj,n = 0 for j = 1, . . . , pn, the discrete GARCH(pn + 1, 1)
processes are actually GARCH(1,1) processes, the limit measure γ is zero,
and (14), (15), (16) reduce to the corresponding equations (7), (8), (9) for
Nelson’s diffusion limit.

A related paper regarding limits of HARCH processes which give rise to
stochastic delay equations is Zheng (2005).

2.6 A continuous time GARCH model designed for
option pricing

The previous continuous time GARCH models have been mainly designed as
limits of discrete time GARCH processes or as processes with properties simi-
lar to GARCH. Option pricing for such models may be demanding, since they
often give rise to incomplete markets. Inspired by this, Kallsen and Taqqu
(1998) developed a continuous time process which is a GARCH process when
sampled at integer times. Their process is also driven by a single Brownian
motion only. More specifically, let ω, λ > 0, δ ≥ 0 and (Bt)t≥0 be a standard
Brownian motion. For some starting random variable σ2

0 , define the volatility
process (σt)t≥0 by σ2

t = σ2
0 for t ∈ [0, 1) and

σ2
t = ω + λ

(∫ btc

btc−1

σs−dBs

)2

+ δσ2
btc−1, t ≥ 1. (17)

The continuous time GARCH process (Gt)t≥0 then models the log-price pro-
cess, and is given by

Gt = G0 +
∫ t

0

(µ(σs−)− σ2
s−/2) ds +

∫ t

0

σs dBs.

Here, the drift function µ is assumed to have continuous derivatives. Observe
that the volatility process (σt)t≥0 given by (17) is constant on intervals [n, n+
1) for n ∈ N0. Also observe that the process (Gt − Gt−1, σt−1)t≥1, when
sampled at integer times, gives rise to a discrete time GARCH(1,1)-M process

Gn −Gn−1 = µ(σn−1)− σ2
n−1/2 + σn−1(Bn −Bn−1), n ∈ N,

σ2
n = ω + λσ2

n−1(Bn −Bn−1)2 + δσ2
n−1, n ∈ N.

This differs from a usual GARCH(1,1) process only by the term µ(σn−1) −
σ2

n−1/2, which vanishes if the function µ is chosen as µ(x) = x2/2. If we are
not in the classical GARCH situation but rather have lim supx→∞ µ(x)/x <
∞, then Kallsen and Taqqu (1998) show that the continuous time model is
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arbitrage free and complete. This is then used to derive pricing formulas for
contingent claims such as European options.

3 Continuous time stochastic volatility approximations

Recall from Section 1 that by a discrete time stochastic volatility model we
mean a process (Xn)n∈N0 satisfying (1), where (εn)n∈N0 is i.i.d. and (σn)n∈N0

is a stochastic volatility process, independent of (εn)n∈N0 . Here, we shall usu-
ally restrict ourselves to the case when (εn)n∈N0 is i.i.d. normally distributed
with expectation zero. Also recall that we defined continuous time stochastic
volatility models by (4). Now, we shall further restrict ourselves to the case
where µ = b = 0 and M in (4) is Brownian motion, i.e. we consider models
of the form

Gt =
∫ t

0

σs− dBs, t ≥ 0, (18)

where B = (Bt)t≥0 is a standard Brownian motion, independent of the
volatility process σ = (σt)t≥0. The latter is assumed to be a strictly posi-
tive semimartingale, in particular it has càdlàg paths.

3.1 Sampling a continuous time SV model at
equidistant times

In the setting as given above, it is easy to see that discrete time SV models
are closed under temporal aggregation, however, with a possibly unfamiliar
volatility process after aggregation. Similarly, the continuous time SV model
(18) gives rise to a discrete time SV model, when sampled at equidistant time
points. To see the latter, let G be given by (18), h > 0, and define

εk :=
Gkh −G(k−1)h

(
∫ kh

(k−1)h
σ2

s ds)1/2
, k ∈ N.

Since conditionally on (σt)t≥0, Gkh − G(k−1)h is normally distributed with
expectation zero and variance

∫ kh

(k−1)h
σ2

s ds, it follows that conditionally on
(σt)t≥0, εk is standard normally distributed, and since this distribution does
not depend on (σt)t≥0, εk itself is N(0, 1) distributed. With similar argu-
ments one sees that εk is independent of σ and that (εk)k∈N is i.i.d. Then
(Gkh−G(k−1)h = σ̃kεk)k∈N is a discrete time stochastic volatility model, with
discrete time volatility process
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σ̃k :=

(∫ kh

(k−1)h

σ2
s ds

)1/2

, k ∈ N. (19)

Hence we see that unlike GARCH processes, continuous time SV models
yield discrete time SV models when sampled, i.e. they stay in their own
class. Unfortunately, the volatility process (σ̃k)k∈N obtained by this method
is not always in a very tractable form, and often it might be desirable to
retain a particular structure on the volatility process. As an illustration of
a process, where most but not all of the structure is preserved, consider the
stochastic volatility model of Barndorff-Nielsen and Shephard (2001a) and
(2001b). Here, the volatility process (σt)t≥0 is modeled via dσ2

t = −λσ2
t dt +

dLλt, where λ > 0 and L is a subordinator, i.e. a Lévy process with increasing
sample paths. The solution to this Lévy driven Ornstein-Uhlenbeck process
is given by

σ2
t = (σ2

0 +
∫ t

0

eλs dLλs)e−λt, t ≥ 0. (20)

Taking λ = 1 and h = 1 for simplicity, it follows that σ2
t satisfies

σ2
t = e−1σ2

t−1 +
∫ t

t−1

eu−t dLu, t ≥ 1, (21)

so that

σ̃2
k =

∫ k

k−1

σ2
s ds = e−1σ̃2

k−1 +
∫ k

k−1

∫ s

s−1

eu−s dLu ds, k ∈ N \ {1}. (22)

Like the Ornstein-Uhlenbeck process, which is a continuous time AR(1)
process, (22) yields a discrete time AR(1) process for (σ̃2

k)k∈N. However,
(20) is driven by a Lévy process which can be interpreted as a continu-
ous time analogue to i.i.d. noise, while (22) has 1-dependent noise given by
(
∫ k

k−1

∫ s

s−1
eu−s dLu ds)k∈N\{1}.

We have seen that sampled continuous time SV models give rise to discrete
time SV models, however the discrete time volatility may lose certain struc-
tural features. Allowing more general definitions of discrete and continuous
time stochastic volatility models, in a spirit similar to the weak GARCH pro-
cesses by Drost and Nijman (1993) and Drost and Werker (1996), Meddahi
and Renault (2004) consider many continuous time SV models which keep
the same structure when sampled at equidistant time points. We do not go
into further detail, but refer to Meddahi and Renault (2004) and the overview
article by Ghysels et al. (1996).
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3.2 Approximating a continuous time SV model

Rather than working with the unfamiliar discrete time volatility (σ̃k)k∈N as
given in (19), one might try to use an Euler type approximation for the
process G, and sample the (unobserved) volatility process (σ2

t )t≥0 directly
at equidistant times. More precisely, consider Gt as defined in (18), where
(σt)t≥0 is a strictly positive semimartingale, independent of (Bt)t≥0. For h >
0, define

Yk,h := σ(k−1)h(Bkh −B(k−1)h), k ∈ N, (23)

where σ(k−1)h is the continuous time volatility process (σt)t≥0 taken at
times (k − 1)h. Then (Yk,h)k∈N defines a discrete time SV model, which
approximates (Gkh −G(k−1)h)k∈N. Indeed, since (σt(ω))t≥0 is a càdlàg func-
tion for almost every ω in the underlying probability space, one can easily
show that the sequence of processes σ(n) =

∑∞
k=1 σk/n1[(k−1)/n,k/n) con-

verges almost surely on every compact interval [0, T ] with T ∈ N in the
Skorokhod topology of D([0, T ],R) to (σt)0≤t≤T , as n → ∞. On the other
hand, the process (

∑bntc+1
k=1 Yk,1/n)0≤t≤T converges uniformly in probability

to (
∫ t

0
σs− dBs)0≤t≤T as n → ∞, see Protter (2004), Theorem II.21. Using

the continuity of (Gt)t≥0, it is then easy to deduce that the bivariate pro-
cess (σ(n)(t),

∑bntc+1
k=1 Yk,1/n)0≤t≤T converges in probability to (σt, Gt)0≤t≤T

in the Skorokhod space D([0, T ],R2), from which convergence in probability
on the whole space D([0,∞),R2) can be deduced. Hence the continuous time
SV model is a limit of the discrete time SV models (23), as h = 1/n → 0.
The structure of (σt)t≥0 is usually much more compatible with the struc-
ture of (σkh)k∈N than with the structure of (σ̃k)k∈N of (19), and often the
discretisation (23) leads to popular discrete time SV models. We give some
examples.

Example 1 In the volatility model of Hull and White (1987) the contin-
uous time volatility process (σt)t≥0 follows a geometric Brownian motion,
i.e. dσ2

t = σ2
t (b dt + δ dWt), where (Wt)t≥0 is a Brownian motion. Then

σ2
t = exp{(b− δ2/2)t + δWt}, so that for each h > 0, log σ2

kh − log σ2
(k−1)h =

(b−δ2/2)h+δ(Wkh−W(k−1)h), meaning that (log σ2
kh)k∈N0 is a random walk

with i.i.d. N((b− δ2/2)h, δ2) innovations.

Example 2 In the volatility model of Wiggins (1987), see also Scott (1987),
the log-volatility is modelled as a Gaussian Ornstein-Uhlenbeck process, i.e.
σ2

t satisfies the stochastic differential equation d log σ2
t = (b1− b2 log σ2

t ) dt +
δ dWt with a Brownian motion (Wt)t≥0. The solution to this equation is

log σ2
t = e−b2t

(
log σ2

0 +
∫ t

0

eb2s(b1 ds + δ dWs)
)

, t ≥ 0,

so that for each h > 0 we obtain
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log σ2
kh = e−b2h log σ2

(k−1)h +
∫ kh

(k−1)h

eb2(s−kh)(b1 ds + δ dWs), k ∈ N,

which is an AR(1) process with i.i.d. normal noise. So in this case we recog-
nize model (23) as the volatility model of Taylor (1982). Unlike for Nelson’s
GARCH(1,1) diffusion limit, the continuous time SV model of Wiggins and
its diffusion approximation (23) are statistically equivalent, as investigated
by Brown et al. (2003).

Example 3 In the volatility model of Barndorff-Nielsen and Shephard
(2001a) and (2001b), where the squared volatility is modelled as a subor-
dinator driven Ornstein-Uhlenbeck process, one obtains similarly to (21),

σ2
kh = e−λhσ2

(k−1)h +
∫ kh

(k−1)h

eλ(u−kh) dLλu, k ∈ N,

so that the discretised squared volatility satisfies an AR(1) process with non-
Gaussian but positive i.i.d. noise.

Example 4 If one models the squared volatility (σ2
t )t≥0 by a subordinator

driven continuous time ARMA process (CARMA) as suggested by Brock-
well (2004), then the discretised squared volatility follows a discrete time
ARMA process, but not necessarily with i.i.d. noise, see Brockwell (2008). If
one models instead the log-volatility (log σ2

t )t≥0 by a Lévy driven CARMA
process, similarly to the method of Haug and Czado (2007) who specify the
volatility of an exponential continuous time GARCH process in this way,
then the discretised log-volatility (log σ2

kh)k∈N follows a discrete time ARMA
process. If the driving Lévy process is a Brownian motion, then the discrete
time ARMA process also has i.i.d. Gaussian noise.

Example 5 If one approximates the GARCH diffusion limit (8), (9) via
(23), the resulting discretised squared volatility process (σ2

kh)k∈N0 satisfies
a random recurrence equation σ2

kh = A
(k−1)h
kh σ2

(k−1)h + C
(k−1)h
kh with i.i.d.

(A(k−1)h
kh , C

(k−1)h
kh )k∈N, where

A
(k−1)h
kh = eλ(Wkh−W(k−1)h)−(θ+λ2/2)h,

C
(k−1)h
kh = ω

∫ kh

(k−1)h

eλ(Wkh−Ws)−(θ+λ2/2)(kh−s) ds.

This follows from the fact that the squared volatility process satisfies a gen-
eralised Ornstein-Uhlenbeck process as pointed out in Section 2. Also observe
that a random recurrence equation may be viewed as kind of an AR(1) pro-
cess with random coefficients.

Summing up, we have seen that many of the popular continuous time
stochastic volatility models can be approximated by corresponding discrete
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time stochastic volatility models. Similarly, one can understand a continuous
time SV model as an approximation to corresponding discrete time SV mod-
els. One could further consider diffusion limits of specific given discrete time
SV models after proper scaling, but we will not report on such results for
stochastic volatility models, since the discrete time SV models obtained from
continuous time SV models via (23) already cover a wide range of popular
volatility models.
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