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Abstract

The main focus of this thesis is to give a characterization of the existence of strictly
stationary solutions of multivariate ARMA and univariate ARIMA equations.
In Chapter 2 we consider the multivariate ARMA(p,q) equation

Yt −Ψ1Yt−1 − . . .−ΨpYt−p = Θ0Zt + . . .+ ΘqZt−q, t ∈ Z,

where m, d ∈ N = {1, 2 . . . , }, p, q ∈ N0 = N ∪ {0}, (Zt)t∈Z is a d-variate inde-
pendent and identically distributed (i.i.d.) noise sequence of random vectors defined
on some probability space (Ω,F ,P), Ψ1, . . . ,Ψp ∈ Cm×m and Θ0, . . . ,Θq ∈ Cm×d

are deterministic complex-valued matrices. No a priori moment assumptions on the
noise sequence are made.
First we give necessary and sufficient conditions for the existence of a strictly sta-
tionary solution to an ARMA(1,q) equation in terms of the Jordan canonical de-
composition of Ψ1 and properties of Z0 and the coefficients Θk. An explicit solution,
assuming its existence, is also derived and the question of uniqueness of this solution
is solved.
Then, applying this, we give equivalent conditions for the existence of a strictly sta-
tionary solution to an ARMA(p,q) equation in terms of finite log-moments of certain
linear combinations of the components of Z0 and the characteristic polynomials

P (z) := Idm −
p∑

k=1
Ψkz

k and Q(z) :=
q∑

k=0
Θkz

k for z ∈ C.

Again, an explicit solution, assuming its existence, is derived and the question of
uniqueness of this solution is solved.
In Chapter 3 we consider the univariate ARIMA(p,D,q) equation

Φ(B)Yt = Θ(B)[∇−DZt], t ∈ Z,

where (Zt)t∈Z is a real-valued i.i.d. noise sequence, Φ(z) := 1−∑p
k=1 ϕkz

k, Θ(z) :=
1+∑q

k=1 θkz
k, z ∈ C, ϕ1, ..., ϕp, θ1, ..., θq ∈ C, ϕp 6= 0 and θq 6= 0,∇−D = (1−B)−D =∑∞

j=0(−1)j
(
−D
j

)
Bj, B the backwards shift operator. We characterize for which i.i.d.
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ii Abstract

noise sequences (Zt)t∈Z the series defining the fractional noise ∇−DZt converges
almost surely and give necessary and sufficient conditions for the existence of a
strictly stationary solution to the above ARIMA equation to exist, derive an explicit
solution, given its existence, and solve the question of uniqueness of the solution.



Zusammenfassung

Das Hauptaugenmerk dieser Arbeit liegt auf einer Charakterisierung der Existenz
von strikt stationären Lösungen multivariater ARMA- und univariater ARIMA-
Gleichungen.
In Kapitel 2 betrachten wir die multivariate ARMA(p,q) Gleichung

Yt −Ψ1Yt−1 − . . .−ΨpYt−p = Θ0Zt + . . .+ ΘqZt−q, t ∈ Z,

wobei m, d ∈ N = {1, 2 . . . , }, p, q ∈ N0 = N ∪ {0}, (Zt)t∈Z eine d-variate, un-
abhängig und identisch verteilte Folge von Zufallsvektoren ist, definiert auf demsel-
ben Wahrscheinlichkeitsraum (Ω,F ,P), und Ψ1, . . . ,Ψp ∈ Cm×m, Θ0, . . . ,Θq ∈ Cm×d

deterministische, komplexwertige Matrizen sind. A priori wird keine Momentenbe-
dingung an die Folge (Zt)t∈Z gestellt.
Zu Beginn geben wir notwendige und hinreichende Bedingungen für die Existenz
strikt stationärer Lösungen einer ARMA(1,q)-Gleichung vermittels der Jordanschen
Normalform von Ψ1 und Eigenschaften von Z0 und den Koeffizienten Θk. Im Falle
der Existenz wird eine explizite Lösung hergeleitet und die Frage der Eindeutigkeit
dieser Lösung beantwortet.
Darauf aufbauend geben wir äquivalente Bedingungen für die Existenz strikt sta-
tionärer Lösungen einer ARMA(p,q)-Gleichung vermittels endlicher log-Momente
bestimmter Linearkombinationen der Komponenten von Z0 und vermittels der cha-
rakteristischen Polynome

P (z) := Idm −
p∑

k=1
Ψkz

k und Q(z) :=
q∑

k=0
Θkz

k for z ∈ C.

Im Falle der Existenz wird hier ebenfalls eine explizite Lösung hergeleitet und die
Frage der Eindeutigkeit dieser Lösung beantwortet.
In Kapitel 3 betrachten wir die univariate ARIMA(p,D,q)-Gleichung

Φ(B)Yt = Θ(B)[∇−DZt], t ∈ Z,

wobei (Zt)t∈Z eine reellwertige, unabhängig und identisch verteilte Folge von Zu-
fallsvariablen ist, Φ(z) := 1 −∑p

k=1 ϕkz
k, Θ(z) := 1 +∑q

k=1 θkz
k, z ∈ C, ϕ1, ..., ϕp,

iii



iv Zusammenfassung in deutscher Sprache

θ1, ..., θq ∈ C, ϕp 6= 0 und θq 6= 0, ∇−D = (1 − B)−D = ∑∞
j=0(−1)j

(
−D
j

)
Bj, B der

Backwards-Shift-Operator. Wir charakterisieren für welche unabhängig und iden-
tisch verteilten Folgen (Zt)t∈Z die den fraktionalen Noise definierende Reihe ∇−DZt
fast sicher konvergiert und geben notwendige und hinreichende Bedingungen für die
Existenz strikt stationärer Lösungen der obigen ARIMA-Gleichung, leiten im Falle
der Existenz eine explizite Lösung her und beantworten die Frage der Eindeutigkeit
dieser Lösung.
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1 Introduction

In everyday life there are numerous examples of time series. For instance, for hun-
dreds of years people have been keeping records of various weather data like the daily
maximum temperature, the Department of Labor monthly announces the unemploy-
ment rate, or various stock market indices are determined nearly continuously, to
name just a few examples. To single out the first of these examples, why do people
over such a long time collect certain weather data? One main reason certainly is
the will to forecast tomorrow’s weather, next week’s weather or even next month’s
weather with the help of the collected data from the past.

Consequently, when wanting to get to know information about future events, tech-
niques to describe and analyze the collected data are needed, and this is where
mathematical time series analysis comes into play. It is based on the assumption
that the collected data from different points in time is a realization of a random
model in order to allow for the unpredictable nature of future. More precisely, it is
assumed that the collected data is a realization of an unknown real-valued sequence
of random variables (Yt)t∈Z defined on some probability space (Ω,F ,P).

One goal of time series analysis now is to describe and analyze chronologies and
interdependencies of such above-mentioned data, which involves finding appropriate
models for the dependence structure. At this, it seems desirable to sort out such
(more or less) deterministic components of the data that reflect a certain trend or
are periodically recurring in order to get a purely stochastic model. For instance,
when looking at monthly accidental deaths data over the last 30 years, a linear
and decreasing trend immediately becomes evident, which is due to technological
change, improved traffic infrastructure or improved medical care, among others.
After subtracting this trend, there still is a seasonal fluctuation in the data which is,
for instance, due to a higher risk of having a car accident on frosted roads in winter.

1



2 1 Introduction

But then, after eliminating such seasonal components, one can reasonably hope that
the remaining process is in a certain state of equilibrium over time. This leads to
the following definition of stationarity.

Definition 1.1. (a) A real-valued time series (Yt)t∈Z is said to be weakly station-
ary if each Yt has finite second moment, and if EYt and Cov(Yt, Yt+h) do not
depend on t ∈ Z for each h ∈ Z.

(b) A real-valued time series (Yt)t∈Z is said to be strictly stationary if the joint
distributions (Yt1 , ..., Ytk) and (Yt1+h, ..., Ytk+h) are the same for all positive
integers k and for all t1, ..., tk, h ∈ Z.

Loosely speaking, a stationary time series shows similar characteristics over two
time intervals of the same length. In classical mathematical time series analysis,
weak stationarity plays an important role. In this case, the focus is on first- and
second-order moments and on properties that depend only on these. However, fi-
nancial time series, for instance, often exhibit apparent heavy-tailed behaviour with
asymmetric marginal distributions, so that second-order properties are inadequate
to account for the data. To deal with such phenomena we concentrate in this thesis
on strict stationarity.

In their recent paper, Brockwell and Lindner [4] focus on so called strict ARMA pro-
cesses, which are strictly stationary solutions of certain linear recurrence equations.
There has been an increased interest in these ARMA processes coming along with an
increasing importance of heavy-tailed and asymmetric time series models, particu-
larly in mathematical finance, where for example series of daily log returns on assets
show such behaviour. Brockwell and Lindner characterize when strictly stationary
solutions of ARMA equations exist. In this thesis, we shall examine two generaliza-
tions, namely to strict multivariate ARMA processes and to strict ARIMA processes.

However, in this introduction we shall first give a short overview over the main
results for weakly stationary processes that are related to our results. For a more
detailed exposition on these topics of time series analysis see Kreiß and Neuhaus [16]
or Brockwell and Davis [3]. After our short overview we then outline the differences
to the results presented in this thesis and give a short overview of the main ideas.
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1.1 Preliminary definitions and results
Weak univariate ARMA

One of the most simple and basic examples of a weakly stationary time series is the
weak white noise. A real- or complex-valued sequence (Zt)t∈Z is called weak white
noise if EZt = µ is finite, E|Zt|2 = σ2 ∈ [0,∞) for all t ∈ Z, and Cov(Zt, Zt′) = 0
for all t, t′ ∈ Z. From this simple example, three important classes of time series can
be deduced, autoregressive (short AR) and moving average (short MA) time series,
and a composite of both, so called autoregressive moving average (short ARMA)
time series.

A weak moving average process (Yt)t∈Z of order q, short MA(q) process, is defined
as

Yt = Zt + θ1Zt−1 + ...+ θqZt−q t ∈ Z,

where (Zt)t∈Z is a weak white noise sequence, θ1, ..., θq ∈ C, θq 6= 0 and q ∈ N =
{1, 2, . . .}. As this process is a sum of uncorrelated weakly stationary processes, it
is clear that it is again weakly stationary.

A weakly stationary time series (Yt)t∈Z is called weakly autoregressive of order p,
short AR(p), if it satisfies the equation

Yt − ϕ1Yt−1 − . . .− ϕpYt−p = Zt t ∈ Z, (1.1)

where (Zt)t∈Z is a weak white noise sequence, ϕ1, ..., ϕp ∈ C, ϕp 6= 0 and p ∈ N.
So, besides the noise, the value of the process at time t does linearly depend on p

previous values of the process. In contrast to a moving average time series, it is not
immediately clear that a weakly stationary solution to Equation (1.1) exists. But we
will see as a special case of the well known Theorem 1.3 below that this is the case if
and only if the polynomial Φ(z) := 1−ϕ1z− ...−ϕpzp has no zeros on the unit circle.

A composition of the above two equations now leads us to the following definition.

Definition 1.2. Let (Zt)t∈Z be a weak white noise sequence, p, q ∈ N0 = N ∪ {0},
ϕ1, ..., ϕp, θ1, ..., θq ∈ C, ϕp 6= 0, θq 6= 0, where ϕ0 := θ0 := 1. Then any weakly
stationary stochastic process (Yt)t∈Z which satisfies

Yt − ϕ1Yt−1 − . . .− ϕpYt−p = Zt + θ1Zt−1 + ...+ θqZt−q t ∈ Z
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is called a weak autoregressive moving average process of autoregressive order p and
moving average order q, short weak ARMA(p,q) process. Defining polynomials

Φ(z) = 1− ϕ1z − ...− ϕpzp, Θ(z) = 1 + θ1z + ...+ θqz
q, z ∈ C,

and B the backwards shift operator defined by BjYt = Yt−j, j ∈ Z, (1.2) can be
written more compactly in the form

Φ(B)Yt = Θ(B)Zt, t ∈ Z. (1.2)

Apparently, AR(p) and MA(q) processes are special cases of ARMA(p,q) processes.
As already mentioned above, it is not immidiately clear that weak ARMA processes
exist, i.e. that Equation (1.2) has a weakly stationary solution (Yt)t∈Z. However, the
following Theorem 1.3 gives necessary and sufficient conditions for a weak ARMA
process to exist. It is a reformulation of Theorem 7.4 in Kreiß and Neuhaus [16] and
its proof relies heavily on the spectral representation of Yt and shall be omitted here.

Theorem 1.3. Let (Zt)t∈Z be a weak white noise sequence with mean µ and variance
σ2 > 0. Then the ARMA(p,q) equation (1.2) admits a weakly stationary solution if
and only if all singularities of Θ(z)/Φ(z) on the unit circle are removable.
In this case, a weakly stationary solution of (1.2) is given by

Yt =
∞∑

k=−∞
ψkZt−k t ∈ Z, (1.3)

where
∞∑

k=−∞
ψkz

k = Θ(z)
Φ(z) , 1− δ < |z| < 1 + δ for some δ ∈ (0, 1),

is the Laurent expansion of Θ(z)/Φ(z). The sum in (1.3) converges absolutely almost
surely.
If Φ does not have a zero on the unit circle, the solution is unique.

Strict univariate ARMA

As already mentioned above, the involved second-order properties when examining
weak ARMA processes are inappropriate to model heavy-tailed behaviour. To allow
for such situations, one can focus on strict ARMA processes, by which we mean
strictly stationary solutions of (1.2) when (Zt)t∈Z is supposed to be an independent
and identically distributed (i.i.d.) sequence of random variables, not necessarily with
finite variance.
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While sufficient conditions for the existence of strict ARMA processes are reasonably
straightforward to find and have been given in the past, see for instance Cline and
Brockwell [7], necessary conditions are way more sophisticated to find since the
basic argument based on the spectral density in the proof of Theorem 1.3 does not
apply here. However, Brockwell and Lindner [4] establish necessary and sufficient
conditions on the independent white noise and the zeros of the defining polynomials
in (1.2) for the existence of a strictly stationary solution (Yt)t∈Z of (1.2). Further,
they specify a solution when these conditions hold and give necessary and sufficient
conditions for its uniqueness. More precisely, they prove the following theorem, see
[4], Theorem 1.

Theorem 1.4. Suppose that (Zt)t∈Z is a nondeterministic i.i.d. noise sequence.
Then the ARMA equation (1.2) admits a strictly stationary solution (Yt)t∈Z if and
only if

(i) all singularities of Θ(z)/Φ(z) on the unit circle are removable and E log+ |Z1| <
∞, or

(ii) all singularities of Θ(z)/Φ(z) in C are removable.

If (i) or (ii) above holds, then a strictly stationary solution of (1.2) is given by

Yt =
∞∑

k=−∞
ψkZt−k, t ∈ Z, (1.4)

where
∞∑

k=−∞
ψkz

k = Θ(z)
Φ(z) , 1− δ < |z| < 1 + δ for some δ ∈ (0, 1),

is the Laurent expansion of Θ(z)/Φ(z). The sum in (1.4) converges absolutely almost
surely.
If Φ does not have a zero on the unit circle, then (1.4) is the unique strictly stationary
solution of (1.2).

Weak multivariate ARMA

Coming back to our initial weather data example, it seems realistic to assume that
in practice oftentimes multiple data is collected at one time t ∈ Z, for example
temperature, air pressure and air humidity at one certain place every day at a
certain time. For m ∈ N, this leads to a vector

Yt = (Yt,1, ..., Yt,m)T , t ∈ Z,
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and Y = (Yt)t∈Z is called an m-variate time series or m-variate sequence of random
vectors.
Now, let d ∈ N, p, q ∈ N0 = N∪{0}, (Zt)t∈Z be a d-variate weak white noise sequence
of random vectors and Ψ1, . . . ,Ψp ∈ Cm×m and Θ0, . . . ,Θq ∈ Cm×d be deterministic
complex-valued matrices. Then any m-variate weakly stationary stochastic process
(Yt)t∈Z which satisfies almost surely

Yt −Ψ1Yt−1 − . . .−ΨpYt−p = Θ0Zt + . . .+ ΘqZt−q, t ∈ Z, (1.5)

is called a weak (multivariate) ARMA(p, q) process. Such a process is often also called
a weak VARMA (vector ARMA) process to distinguish it from the scalar case, but
we shall simply use the term ARMA throughout. Denoting the identity matrix in
Cm×m by Idm, the characteristic polynomials P (z) and Q(z) of the ARMA(p, q)
equation (1.5) are defined as

P (z) := Idm −
p∑

k=1
Ψkz

k and Q(z) :=
q∑

k=0
Θkz

k for z ∈ C.

With the aid of the backwards shift operator B, Equation (1.5) can be written more
compactly in the form

P (B)Yt = Q(B)Zt, t ∈ Z. (1.6)

The following sufficient condition for the existence of a weakly stationary multivari-
ate ARMA process is well known, and we present its short proof.

Theorem 1.5. Let (Zt)t∈Z be a weak white noise sequence in Cd. If detP (z) 6= 0
for all z ∈ C such that |z| = 1, then (1.6) has a weakly stationary solution

Yt =
∞∑

k=−∞
MjZt−j, (1.7)

where the matrices Mj are the coefficients of the Laurent expansion of M(z) =
P−1(z)Q(z) in a neighborhood of the unit circle.

Proof. Denoting the adjugate matrix of P (z) by Adj(P (z)), it follows from Cramér’s
inversion rule that the inverse P−1(z) of P (z) may be written as

P−1(z) = (detP (z))−1Adj(P (z))

which is a Cm×m-valued rational function, i.e. all its entries are rational functions.
For the matrix-valued rational function z 7→M(z) of the form M(z) = P−1(z)Q(z),
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the singularities of M(z) are the zeroes of detP (z). But as detP (z) 6= 0 for all
|z| = 1, M(z) can be expanded in a Laurent series M(z) = ∑∞

j=−∞Mjz
j, absolutely

convergent in a neighborhood of the unit circle. Define Y = (Yt)t∈Z by (1.7). Then
Y is weakly stationary. We conclude that

P (B)Yt = P (B)P−1(B)Q(B)Zt = Q(B)Zt, t ∈ Z,

showing that (Yt)t∈Z is a weakly stationary solution of (1.6). �

In contrast to the univariate case, to the best of our knowledge necessary and suf-
ficient conditions for the existence of weak multivariate ARMA processes have not
been given in the literature so far. We shall obtain such a condition in terms of the
matrix rational function z 7→ P−1(z)Q(z) in Theorem 2.3, the proof being an easy
extension of the corresponding one-dimensional result. However, the main focus of
this thesis will be on strictly stationary processes.

1.2 Main results of this thesis
Strict multivariate ARMA

In Chapter 2 we shall concentrate on strict multivariate ARMA processes, by which
we mean strictly stationary solutions of (1.6) when (Zt)t∈Z is supposed to be an i.i.d.
Cd-valued sequence of random vectors, not necessarily with finite variance. While
it is known that finite log-moment of Z0 together with detP (z) 6= 0 for |z| = 1 is
sufficient for a strictly stationary solution to exist, by the same arguments used for
weakly stationary solutions (cf. Theorem 1.5), necessary and sufficient conditions
have not been available so far, and we shall obtain a complete solution to this ques-
tion in Theorem 2.2, thus generalizing the results of Brockwell and Lindner [4] to
higher dimensions.

The chapter is organized as follows. After an introduction, we state in Section 2.2
the main results of the chapter. First of all, we consider the multivariate ARMA(1, q)
model

Yt −Ψ1Yt−1 =
q∑
j=0

ΘjZt−j, t ∈ Z, (1.8)

where Ψ1 ∈ Cm×m and (Zt)t∈Z is an i.i.d. sequence. Theorem 2.1 gives necessary
and sufficient conditions for (1.8) to have a strictly stationary solution. Elementary
considerations will show that the question of strictly stationary solutions may be



8 1 Introduction

reduced to the corresponding question when Ψ1 is assumed to be in Jordan block
form, and Theorem 2.1 gives a characterization of the existence of strictly stationary
ARMA(1, q) processes in terms of the Jordan canonical decomposition of Ψ1 and
properties of Z0 and the coefficients Θk. An explicit solution of (1.8), assuming its
existence, is also derived and the question of uniqueness of this solution is solved.
The proof of Theorem 2.1 is given in Section 2.3.

In the following we shall consider a special case to illustrate exemplary the main
ideas and arguments of Theorem 2.1. To this end we assume that m = d = 4.
As C is an algebraically closed field, there is a (necessarily non-singular) matrix
S ∈ Cm×m such that S−1Ψ1S is in Jordan canonical form. Observe that (1.8) has
a strictly stationary solution (Yt)t∈Z if and only if the corresponding equation for
Xt := S−1Yt, namely

Xt − S−1Ψ1SXt−1 =
q∑
j=0

S−1ΘjZt−j, t ∈ Z, (1.9)

has a strictly stationary solution. We assume here that

S−1Ψ1S =
Φ1 0

0 Φ2

 , with Φ1 =
λ1 0

1 λ1

 , Φ2 =
λ2 0

1 λ2

 ,
and |λ1| > 1, |λ2| = 1. With these assumptions, (1.9) has a strictly stationary
solution (Xt)t∈Z if and only if the equation for the first and for the second block

X
(l)
t − ΦlX

(l)
t−1 =

q∑
j=0

IlS
−1ΘjZt−j, t ∈ Z, l = 1, 2 (1.10)

with

I1 :=
1 0 0 0

0 1 0 0

 , I2 :=
0 0 1 0

0 0 0 1

 ,
has a strictly stationary solution X(1)

t = I1Xt and X(2)
t = I2Xt, respectively.

If we now additionally assume that Z0 is symmetric (i.e. that Z0 has the same
distribution as −Z0) then Theorem 2.1 says that (1.8) has a strictly stationary
solution if and only if

(i) E log+

∥∥∥∥∥∥
 q∑
j=0

Φq−j
1 I1S

−1Θj

Z0

∥∥∥∥∥∥ <∞, and

(ii)
 q∑
j=0

Φq−j
2 I2S

−1Θj

Z0 = 0. (1.11)
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The sufficiency of these conditions can be derived very similarly to the univariate
case in Theorem 1.4, so we don’t go into detail here and refer to Section 2.3.2.
For the necessity assume that (Yt)t∈Z is a strictly stationary solution of Equation
(1.8). As observed above, this implies that both equations in (1.10) admit a strictly
stationary solution (X(l)

t )t∈Z, l = 1, 2. The necessity of condition (i) now can be
derived similar to the finite log-moment condition in the univariate case in Theorem
1.4, so we omit it here and refer to the proof in Section 2.3. The essential step when
going from the univariate to the multivariate case is the necessity of condition (ii),
involving the Jordan blocks with associated eigenvalues of absolute value 1. One
difficulty in the multivariate case becomes evident when considering what happens
when multiplying the random vector X(2)

t−1 from the left with the Jordan block Φ2.
Writing X(2)

t = (X(2)
t,1 , X

(2)
t,2 )T , the left hand side of (1.10) with l = 2 reads as

X
(2)
t − Φ2X

(2)
t−1 =

 X
(2)
t,1 − λ2X

(2)
t−1,1

X
(2)
t,2 −X

(2)
t−1,1 − λ2X

(2)
t−1,2

 =
X(2)

t,1

X
(2)
t,2

− λ2

X(2)
t−1,1

X
(2)
t−1,2

−
 0
X

(2)
t−1,1

.
While the first row of this vector only depends on the first row (X(2)

t,1 )t∈Z of the
process (X(2)

t )t∈Z and thus can be treated as in the univariate case, the second
row, however, contains with (X(2)

t−1,1)t∈Z a component of the first row of the vector
(X(2)

t )t∈Z. Essentially, this problem can be solved by first proving the assertion for
the first row and then taking advantage of this in order to prove the assertion for
the second row. In the general case this is done via induction on i = 1, ...,m, see
Section 2.3 for the details.

The next result stated in Section 2.2 is Theorem 2.2, which addresses strict multivari-
ate ARMA(p,q) processes. It is well known that every m-variate ARMA(p, q) process
can in general be expressed in terms of a corresponding mp-variate ARMA(1, q)
process as specified in Proposition 2.5 of Section 2.5. Questions of existence and
uniqueness can thus, in principle, be resolved by Theorem 2.1. However, since the
Jordan canonical form of the corresponding mp×mp-matrix Ψ1 in the correspond-
ing higher-dimensional ARMA(1, q) representation is in general difficult to handle,
another more compact characterization is derived in Theorem 2.2. This character-
ization is given in terms of properties of the matrix rational function P−1(z)Q(z)
and finite log-moments of certain linear combinations of the components of Z0, ex-
tending the corresponding condition obtained in Theorem 1.4 for m = d = 1 in a
natural way. Although in the statement of Theorem 2.2 no transformation to Jordan
canonical forms is needed, its proof makes fundamental use of Theorem 2.1.
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To show the main ideas of the theorem, we again consider a special case, for the
general version see Theorem 2.2. Namely we assume the i.i.d. sequence of Cd-valued
random vectors (Zt)t∈Z to be such that the distribution of a∗Z0 is not degenerate to
a Dirac measure for every a ∈ Cd \ {0}, where a∗ = aT is the conjugate transpose
vector of a.
Then Theorem 2.2 asserts that a strictly stationary solution to the ARMA(p, q)
equation (1.6) exists if and only if the following statements (i)—(iii) hold:

(i) All singularities on the unit circle of M(z) = P−1(z)Q(z) are removable.
(ii) If M(z) = ∑∞

j=−∞Mjz
j denotes the Laurent expansion of M in a neighbour-

hood of the unit circle, then

E log+ ‖MjZ0‖ <∞ ∀ j ∈ {mp+ q − p+ 1, . . . ,mp+ q} ∪ {−p, . . . ,−1}.

Further, if (i) above holds, then condition (ii) can be replaced by

(ii’) If M(z) = ∑∞
j=−∞Mjz

j denotes the Laurent expansion of M in a neighbour-
hood of the unit circle, then ∑∞j=−∞MjZt−j converges a.s. absolutely for every
t ∈ Z.

An explicit solution of (1.6), assuming its existence, is also derived and the question
of uniqueness of this solution is solved.
Observe that the general version of Theorem 2.2 involves an additional condition
(iii). This condition is automatically satisfied under the special case assumption that
the distribution of a∗Z0 is not degenerate to a Dirac measure for every a ∈ Cd \ {0}
and is thus dropped here.

The proof of Theorem 2.2 is given in Section 2.5 and will make use of both Theo-
rem 2.1 and Theorem 2.3. The latter is the corresponding characterization for the
existence of weakly stationary solutions of ARMA(p, q) equations, expressed in terms
of the characteristic polynomials P (z) and Q(z) as already mentioned above. The
proof of Theorem 2.3, which is similar to the proof in the one-dimensional case in
Theorem 1.5, will be given in Section 2.4.

In the following we shall have a closer look at the necessity of the above condition
(i) in order to outline one main idea in the proof of Theorem 2.2. To this end,
suppose that (Yt)t∈Z is a strictly stationary solution of (1.6) and that Z0 is sym-
metric. As mentioned above, every m-variate ARMA(p, q) process can in general be
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expressed in terms of a corresponding mp-variate ARMA(1, q) process. Define Y t

as the mp-dimensional strictly stationary solution of the corresponding mp-variate
ARMA(1, q) equation, and Θk and Φ as the corresponding matrices. For the details
see Proposition 2.5. For simplicity we assume here that Φ has only eigenvalues λ
with |λ| > 1 and |λ| = 1. Let Φ1 denote a matrix in Jordan block form with all
Jordan blocks corresponding to the eigenvalues |λ| > 1, and Φ2 a matrix in Jordan
block form with all Jordan blocks corresponding to the eigenvalues |λ| = 1. Taking

an invertible S ∈ Cmp×mp such that S−1ΦS =
Φ1 0

0 Φ2

, it follows analogously to

(1.11) from Theorem 2.1, with the obvious definition of I1, I2, that
q∑

k=0
Φq−k

2 I2S
−1ΘkZ0 = 0.

But by the assumption that a∗Z0 is not degenerate to a Dirac measure for a ∈
Cd \ {0}, this implies

q∑
k=0

Φq−k
2 I2S

−1Θk = 0. (1.12)

Now let (Z ′t)t∈Z be an i.i.d. N(0, Idd) distributed sequence. Then

E log+
∥∥∥∥∥

q∑
k=0

Φq−k
1 I1S

−1ΘkZ
′
0

∥∥∥∥∥ <∞, and
q∑

k=0
Φq−k

2 I2S
−1ΘkZ

′
0 = 0

by (1.12). It then follows from Theorem 2.1 that there is a strictly stationary solution
Y ′t of the ARMA(1, q) equation Y ′t −ΦY ′t−1 = ∑q

k=0 ΘkZ
′
t−k. From the explicit rep-

resentation of the solution obtained in Theorem 2.1 it will follow immediately that
(Y t)t∈Z is a Gauss process. Then going back to the m-variate ARMA(p, q) process,
we see that there is a Gauss process (Y ′t )t∈Z which is a strictly stationary solution
of P (B)Y ′t = Q(B)Z ′t. In particular, this solution is weakly stationary, too. Hence
we can apply Theorem 2.3 which yields that z 7→ P−1(z)Q(z) has only removable
singularities on the unit circle, which is condition (i).

Finally, in Section 2.6 at the end of Chapter 2, the main results are further discussed
and, as an application, a result of Bougerol and Picard [2] on non-anticipative strictly
stationary solutions is generalized.

Strict univariate ARIMA

In Chapter 3 we consider another generalization of the strict univariate ARMA
model, namely the strict univariate ARMA model with fractional noise, often also
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called ARIMA model (autoregressive integrated moving average) or FARIMA (frac-
tional ARIMA). The main goal of the chapter is to give necessary and sufficient
conditions for the existence of so called strict ARIMA(p,D,q) processes.

Let (Zt)t∈Z be a real-valued noise sequence of random variables defined on some
probability space (Ω,F ,P) and define univariate autoregressive and moving average
polynomials as above, namely

Φ(z) = 1−
p∑

k=1
ϕkz

k, and Θ(z) = 1 +
q∑

k=1
θkz

k, z ∈ C, (1.13)

with p, q ∈ N0, ϕ1, ..., ϕp, θ1, ..., θq ∈ C, ϕp 6= 0 and θq 6= 0, where ϕ0 := θ0 := 1.
For any D ∈ R \ {1, 2, ...} and B the backwards shift operator, define the difference
operator ∇D = (1−B)D by means of the binomial expansion,

∇D = (1−B)D =
∞∑
j=0

(−1)j
(
D

j

)
Bj.

Now, for (Zt)t∈Z weak white noise, Granger and Joyeux [10] and Hosking [11] intro-
duced weak ARIMA(p,D,q) processes as weakly stationary solutions of the equation

Φ(B)∇DYt = Θ(B)Zt, t ∈ Z. (1.14)

It is shown in [11] that a sufficient condition for a weak ARIMA process to exist is
D < 1

2 and Φ(z) having no zeros on the unit circle. Furthermore, they found out
that a sufficient condition for a solution of (1.14) to be invertible is D > −1

2 and
Θ(z) having no zeros on the unit circle.

A couple of years later, Kokoszka and Taqqu [14] and Kokoszka [15] developed the
theory of infinite variance stable fractional ARIMA(p,D,q) time series defined by
the equation

Φ(B)Yt = [Θ(B)∇−D]Zt, t ∈ Z, (1.15)

where the noise sequence (Zt)t∈Z is i.i.d. symmetric α-stable (in [14]) or belongs to
the domain of attraction of an α-stable law (in [15]), respectively, with 0 < α < 2
and fractional D such that the right hand side of (1.15) converges. Among other re-
sults, they obtained a unique strictly stationary solution of (1.15) with this specific
noise in terms of the Laurent series of Θ(z)(1 − z)−D/Φ(z), provided Φ(z) 6= 0 for
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all |z| ≤ 1, and Φ(z) and Θ(z) having no roots in common.

In Chapter 3 of this thesis however, we study a slightly different approach by in-
terpreting Equation (1.15) as an ARMA(p,q) equation with fractional noise ∇−DZt,
i.e.

Φ(B)Yt = Θ(B)[∇−DZt], t ∈ Z, (1.16)

whereD ∈ R\{−1,−2, ...}, and (Zt)t∈Z is an i.i.d. sequence of real random variables,
not necessarily with finite variance. Here, the fractional noise has a representation
∇−DZt = ∑∞

j=0 ψjZt−j with coefficients

ψj = (−1)j
(
−D
j

)
=

∏
0<k≤j

k − 1 +D

k
= Γ(j +D)

Γ(j + 1)Γ(D) , j = 0, 1, 2, ... (1.17)

Note that an application of Stirling’s formula, according to which Γ(x) ∼
√

2πe−x+1

(x− 1)x−1/2 as x→∞, yields

ψj ∼
jD−1

Γ(D) as j →∞. (1.18)

Now, we call a complex-valued process Y := (Yt)t∈Z defined on the same prob-
ability space (Ω,F ,P) a strict ARIMA(p,D,q) process (or more precisely a strict
ARMA(p,q) process with fractional noise) if the series ∇−DZt = ∑∞

j=0 ψjZt−j con-
verges almost surely and Y is a strictly stationary solution of (1.16).

Here, we do only consider the cases D ∈ (−∞, 0)\{−1,−2, ...} and 0 < D < 1
2 . This

is because for D ≥ 1
2 , the series ∑∞j=0 ψjZt−j can only converge for Zt ≡ 0, t ∈ Z,

because in this case the series ∑∞j=0 ψ
2
j does not converge due to the asymptotic be-

haviour (1.18) of the coefficients ψj. But the convergence of this series is necessary
for∑∞j=0 ψjZt−j to converge (see Chow and Teicher [6], Theorem 5.1.4), i.e. fractional
noise ∇−DZt cannot exist for D ≥ 1

2 unless Zt ≡ 0. In the case D ∈ {0,−1,−2, ...},
Equation (1.16) reduces to an ARMA equation with i.i.d. noise sequence and the
question of existence and uniqueness of strictly stationary solutions to this equation
is thus solved by Theorem 1.4.

Before being able to give equivalent conditions for a strict ARIMA process to ex-
ist, questions of convergence of the series ∇−DZt = ∑∞

j=0 ψjZt−j need to be ad-
dressed. These questions are solved in Section 3.2, where Theorem 3.1 gives a
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necessary and sufficient condition for ∑∞j=0 ψjZt−j to converge almost surely in
terms of moment conditions on Z0. More precisely, the theorem states that for
D ∈ (−∞, 0) \ {−1,−2, ...} the series ∑∞j=0 ψjZt−j converges almost surely if and
only if E|Z0|1/(1−D) <∞, and for D ∈ (0, 1

2) it is additionally required that EZ0 = 0.

The crucial step in the proof is to show the sufficiency of the conditions. For D ∈
(−∞, 0)\{−1,−2, ...}, we make fundamental use of Kolmogorov’s three series crite-
rion (see Kallenberg [13], Theorem 4.18). This criterion states that ∑∞j=0 ψjZt−j con-
verges almost surely if and only if the following conditions hold: ∑∞j=1P(|ψjZt−j| >
1) < ∞, ∑∞j=1E(ψjZt−j1{|ψjZt−j |≤1}) converges, and ∑∞

j=1V(ψjZt−j1{|ψjZt−j |≤1}) <
∞. For showing the convergence of these three series, we make use of the integral
criterion for convergence and the asymptotic behaviour (1.18) of the coefficients
ψj. For D ∈ (0, 1

2), these arguments do not apply directly which is because of the
fact that (1.18) implies that ∑j∈N |ψj| is not finite for D ∈ (0, 1

2). This is why we
have to impose the additional condition EZ0 = 0, which ensures that (Sn)n∈N, with
Sn := ∑n

j=1 ψjZt−j, is a martingale. In a technical lemma we do then show that
supn∈NE|Sn| <∞. Hence (Sn)n∈N is an L1-bounded martingale and so it converges
a.s. (see e.g. Kallenberg [13], Theorem 7.18).

Then, after having resolved the question of convergence of ∇−DZt = ∑∞
j=0 ψjZt−j,

we give in Section 3.3 necessary and sufficient conditions for a strict ARIMA process
to exist. These conditions are stated in Theorem 3.5, where also an explicit solu-
tion to (1.16), given its existence, is derived and the question of uniqueness of this
solution is solved. In contrast to the results in [14] and [15], we make no a priori
assumptions on the roots of Φ and Θ, and allow for more general noise distributions.

More precisely, let (Zt)t∈Z be a nondeterministic i.i.d. sequence of real random vari-
ables and let Φ and Θ be defined as in (1.13). Then Theorem 3.5 states that for
D ∈ [−1

2 , 0), the ARIMA equation

Φ(B)Yt = Θ(B)[∇−DZt], t ∈ Z, (1.19)

admits a strictly stationary solution (Yt)t∈Z if and only if all singularities of Θ(z)/Φ(z)
on the unit circle are removable and E|Z0|1/(1−D) < ∞. For D ∈ (0, 1

2) the addi-
tional condition EZ0 = 0 is required. And for D ∈ (−∞,−1

2) \ {−1,−2, ...} the
above characterization is shown to hold if additionally Φ(1) 6= 0 is assumed.
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In all three cases, a strictly stationary solution of (1.19) is given by

Yt =
∞∑

j=−∞
ξj
(
∇−DZt−j

)
, t ∈ Z, (1.20)

where
∞∑

j=−∞
ξjz

j = Θ(z)
Φ(z) , 1− δ < |z| < 1 + δ for some δ ∈ (0, 1),

is the Laurent expansion of Θ(z)/Φ(z) around zero. The sum in (1.20) converges ab-
solutely almost surely, in the sense that ∑∞j=−∞ |ξj||∇−DZt−j| <∞ a.s. If Φ(z) 6= 0
for all |z| = 1, then (1.20) is the unique strictly stationary solution of (1.19).

The proof of the theorem uses similar techniques as the proof of Theorem 1.4, though
a main difference is that in the present case the sum on the right hand side of the
defining Equation (1.19) is not a finite sum like in the ARMA equation. This needs
some special handling.

At the end of Chapter 3 we discuss the connection of our results to the results of
Kokoszka and Taqqu [14]. In their paper, they study fractional ARIMA processes
defined by the equations

Φ(B)Yt = R(B)Zt, (1.21)

with

R(z) := Θ(z)(1− z)−D =
∞∑
j=0

j∧q∑
k=0

θkψj−k

 zj =
∞∑
j=0

ψ′jz
j,

and i.i.d. symmetric α-stable noise (Zt)t∈Z. Among other results, they obtain a
unique strictly stationary solution of (1.21) with this specific noise in terms of the
Laurent series of R(z)/Φ(z), provided Φ(z) 6= 0 for all |z| ≤ 1, and Φ(z) and Θ(z)
having no roots in common.
In contrast, we characterized all strictly stationary solutions of the equation

Φ(B)Yt = Θ(B)[∇−DZt], (1.22)

that are, strictly speaking, ARMA equations with fractional noise. However, it is
not immediately clear that these both approaches are equivalent. But Theorem
3.9 states that if Θ(1) 6= 0, the series ∑∞j=0 ψ

′
jZt−j converges almost surely if and
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only if ∑∞j=0 ψjZt−j converges almost surely, and in this case it follows R(B)Zt =
Θ(B)[∇−DZt]. Furthermore, it says that (1.21) admits a strictly stationary solution
(Yt)t∈Z (in the sense that ∑∞j=0 ψ

′
jZt−j converges almost surely and (Yt) satisfies

(1.21) and is strictly stationary) if and only if (1.22) admits a strictly stationary so-
lution. Any strictly stationary solution of (1.21) is a solution of (1.22) and vice versa.

Summing up, the main contributions of this thesis are a characterization of the ex-
istence of strictly stationary solutions of multivariate ARMA equations (in Chapter
2) and of univariate ARIMA equations (in Chapter 3).



2 Strictly stationary solutions of
multivariate ARMA equations
with i.i.d. noise

Based on [5]: Brockwell, P.J., Lindner, A. and Vollenbröker, B. (2011):
Strictly stationary solutions of multivariate ARMA equations with i.i.d. noise.
Annals of the Institute of Statistical Mathematics, to appear.

Abstract. We obtain necessary and sufficient conditions for the existence of strictly
stationary solutions of multivariate ARMA equations with independent and iden-
tically distributed noise. For general ARMA(p, q) equations these conditions are
expressed in terms of the characteristic polynomials of the defining equations and
moments of the driving noise sequence, while for p = 1 an additional characteriza-
tion is obtained in terms of the Jordan canonical decomposition of the autoregressive
matrix, the moving average coefficient matrices and the noise sequence. No a pri-
ori assumptions are made on either the driving noise sequence or the coefficient
matrices.

2.1 Introduction

Letm, d ∈ N = {1, 2 . . . , }, p, q ∈ N0 = N∪{0}, (Zt)t∈Z be a d-variate noise sequence
of random vectors defined on some probability space (Ω,F ,P) and Ψ1, . . . ,Ψp ∈
Cm×m and Θ0, . . . ,Θq ∈ Cm×d be deterministic complex-valued matrices. Then any
m-variate stochastic process (Yt)t∈Z defined on the same probability space (Ω,F ,P)
which satisfies almost surely

Yt −Ψ1Yt−1 − . . .−ΨpYt−p = Θ0Zt + . . .+ ΘqZt−q, t ∈ Z, (2.1)

17
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is called a solution of the ARMA(p, q) equation (2.1) (autoregressive moving average
equation of autoregressive order p and moving average order q). Such a solution is
often called a VARMA (vector ARMA) process to distinguish it from the scalar case,
but we shall simply use the term ARMA throughout. Denoting the identity matrix
in Cm×m by Idm, the characteristic polynomials P (z) and Q(z) of the ARMA(p, q)
equation (2.1) are defined as

P (z) := Idm −
p∑

k=1
Ψkz

k and Q(z) :=
q∑

k=0
Θkz

k for z ∈ C. (2.2)

With the aid of the backwards shift operator B, Equation (2.1) can be written more
compactly in the form

P (B)Yt = Q(B)Zt, t ∈ Z.

There is evidence to show that, although VARMA(p, q) models with q > 0 are more
difficult to estimate than VARMA(p, 0) (vector autoregressive) models, significant
improvement in forecasting performance can be achieved by allowing the moving
average order q to be greater than zero. See, for example, Athanosopoulos and
Vahid [1], where such improvement is demonstrated for a variety of macroeconomic
time series.
Much attention has been paid to weak ARMA processes, i.e. weakly stationary so-
lutions to (2.1) if (Zt)t∈Z is a weak white noise sequence. Recall that a Cr-valued
process (Xt)t∈Z is weakly stationary if each Xt has finite second moment, and if
EXt and Cov (Xt, Xt+h) do not depend on t ∈ Z for each h ∈ Z. If additionally
every component of Xt is uncorrelated with every component of Xt′ for t 6= t′, then
(Xt)t∈Z is called weak white noise. In the case when m = d = 1 and Zt is weak
white noise having non-zero variance, it can easily be shown using spectral analysis,
see e.g. Brockwell and Davis [3], Problem 4.28, that a weak ARMA process exists
if and only if the rational function z 7→ Q(z)/P (z) has only removable singularities
on the unit circle in C, see Theorem 1.3 in this thesis. For higher dimensions, it is
well known that a sufficient condition for weak ARMA processes to exist is that the
polynomial z 7→ detP (z) has no zeroes on the unit circle, see Theorem 1.5 in this
thesis. However, to the best of our knowledge necessary and sufficient conditions
have not been given in the literature so far. We shall obtain such a condition in
terms of the matrix rational function z 7→ P−1(z)Q(z) in Theorem 2.3, the proof
being an easy extension of the corresponding one-dimensional result.
Weak ARMA processes, by definition, are restricted to have finite second moments.
However financial time series often exhibit apparent heavy-tailed behaviour with
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asymmetric marginal distributions, so that second-order properties are inadequate
to account for the data. To deal with such phenomena we focus in this chapter
on strict ARMA processes, by which we mean strictly stationary solutions of (2.1)
when (Zt)t∈Z is supposed to be an independent and identically distributed (i.i.d.)
sequence of random vectors, not necessarily with finite variance. A sequence (Xt)t∈Z
is strictly stationary if all its finite dimensional distributions are shift invariant.
Much less is known about strict ARMA processes, and it was shown only recently
for m = d = 1 in Brockwell and Lindner [4] that for i.i.d. non-deterministic noise
(Zt)t∈Z, a strictly stationary solution to (2.1) exists if and only if Q(z)/P (z) has
only removable singularities on the unit circle and Z0 has finite log moment, or if
Q(z)/P (z) is a polynomial, see Theorem 1.4 in this thesis. For higher dimensions,
while it is known that finite log-moment of Z0 together with detP (z) 6= 0 for |z| = 1
is sufficient for a strictly stationary solution to exist, by the same arguments used
for weakly stationary solutions, necessary and sufficient conditions have not been
available so far, and we shall obtain a complete solution to this question in Theo-
rem 2.2, thus generalizing the results of [4] to higher dimensions. A related question
was considered by Bougerol and Picard [2] who, using their powerful results on ran-
dom recurrence equations, showed in Theorem 4.1 of [2] that if E log+ ‖Z0‖ < ∞
and the characteristic polynomials are left-coprime, meaning that the only common
left-divisors of P (z) and Q(z) are unimodular (see Section 2.6 for the precise defini-
tions), then a non-anticipative strictly stationary solution to (2.1) exists if and only
if detP (z) 6= 0 for |z| ≤ 1. Observe that for the characterization of the existence of
strict (not necessarily non-anticipative) ARMA processes obtained in this chapter,
we shall not make any a priori assumptions on log-moments of the noise sequence
or on left-coprimeness of the characteristic polynomials, but rather obtain related
conditions as parts of our characterization. As an application of our main results,
we shall then obtain a slight extension of Theorem 4.1 of Bougerol and Picard [2]
in Theorem 2.14, by characterizing all non-anticipative strictly stationary solutions
to (2.1) without any moment assumptions, however still assuming left-coprimeness
of the characteristic polynomials.
This chapter is organized as follows. In Section 2.2 we state the main results of the
chapter. Theorem 2.1 gives necessary and sufficient conditions for the multivariate
ARMA(1, q) model

Yt −Ψ1Yt−1 =
q∑

k=0
ΘkZt−k, t ∈ Z, (2.3)

where (Zt)t∈Z is an i.i.d. sequence, to have a strictly stationary solution. Elementary
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considerations will show that the question of strictly stationary solutions may be
reduced to the corresponding question when Ψ1 is assumed to be in Jordan block
form, and Theorem 2.1 gives a characterization of the existence of strictly stationary
ARMA(1, q) processes in terms of the Jordan canonical decomposition of Ψ1 and
properties of Z0 and the coefficients Θk. An explicit solution of (2.3), assuming its
existence, is also derived and the question of uniqueness of this solution is solved.
Strict ARMA(p, q) processes are addressed in Theorem 2.2. Since every m-variate
ARMA(p, q) process can in general be expressed in terms of a corresponding mp-
variate ARMA(1, q) process, questions of existence and uniqueness can, in principle,
be resolved by Theorem 2.1. However, since the Jordan canonical form of the corre-
sponding mp×mp-matrix Ψ1 in the corresponding higher-dimensional ARMA(1, q)
representation is in general difficult to handle, another more compact characteriza-
tion is derived in Theorem 2.2. This characterization is given in terms of properties
of the matrix rational function P−1(z)Q(z) and finite log-moments of certain lin-
ear combinations of the components of Z0, extending the corresponding condition
obtained in [4] for m = d = 1 in a natural way. Although in the statement of The-
orem 2.2 no transformation to Jordan canonical forms is needed, its proof makes
fundamental use of Theorem 2.1.
Theorem 2.3 deals with the corresponding question for weak ARMA(p, q) processes.
The proofs of Theorems 2.1, 2.3 and 2.2 are given in Sections 2.3, 2.4 and 2.5,
respectively. The proof of Theorem 2.2 makes crucial use of Theorems 2.1 and 2.3.
The main results are further discussed in Section 2.6 and, as an application, the
aforementioned characterization of non-anticipative strictly stationary solutions is
obtained in Theorem 2.14, generalizing slightly the result of Bougerol and Picard [2].
Throughout the chapter, vectors will be understood as column vectors and ei will
denote the ith unit vector in Cm. The zero matrix in Cm×r is denoted by 0m,r or simply
0, the zero vector in Cr by 0r or simply 0. The transpose of a matrix A is denoted by
AT , and its complex conjugate transpose matrix by A∗ = A

T . By ‖ · ‖ we denote an
unspecific, but fixed vector norm on Cs for s ∈ N, as well as the corresponding matrix
norm ‖A‖ = supx∈Cs,‖x‖=1 ‖Ax‖. We write log+(x) := log max{1, x} for x ∈ R, and
denote by P− lim limits in probability.

2.2 Main results
Theorems 2.1 and 2.2 give necessary and sufficient conditions for the ARMA(1, q)
equation (2.3) and the ARMA(p, q) equation (2.1), respectively, to have a strictly sta-
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tionary solution. In Theorem 2.1, these conditions are expressed in terms of the i.i.d.
noise sequence (Zt)t∈Z, the coefficient matrices Θ0, . . . ,Θq and the Jordan canonical
decomposition of Ψ1, while in Theorem 2.2 they are given in terms of the noise
sequence and the characteristic polynomials P (z) and Q(z) as defined in (2.2).
As background for Theorem 2.1, suppose that Ψ1 ∈ Cm×m and choose a (necessarily
non-singular) matrix S ∈ Cm×m such that S−1Ψ1S is in Jordan canonical form.
Suppose also that S−1Ψ1S has H ∈ N Jordan blocks, Φ1, . . . ,ΦH , the hth block
beginning in row rh, where r1 := 1 < r2 < · · · < rH < m + 1 =: rH+1. A Jordan
block with associated eigenvalue λ will always be understood to be of the form

λ 0
1 λ

. . . . . .
0 1 λ

 (2.4)

i.e. the entries 1 are below the main diagonal.
Observe that (2.3) has a strictly stationary solution (Yt)t∈Z if and only if the corre-
sponding equation for Xt := S−1Yt namely

Xt − S−1Ψ1SXt−1 =
q∑
j=0

S−1ΘjZt−j, t ∈ Z, (2.5)

has a strictly stationary solution. This will be the case only if the equation for the
hth block,

X
(h)
t := IhXt, t ∈ Z, (2.6)

where Ih is the (rh+1 − rh)×m matrix with (i, j) components,

Ih(i, j) =

1, if j = i+ rh − 1,
0, otherwise,

(2.7)

has a strictly stationary solution for each h = 1, . . . , H. But these equations are
simply

X
(h)
t − ΦhX

(h)
t−1 =

q∑
j=0

IhS
−1ΘjZt−j, t ∈ Z, h = 1, . . . , H, (2.8)

where Φh is the hth Jordan block of S−1Ψ1S.
Conversely if (2.8) has a strictly stationary solution X ′(h) for each h ∈ {1, . . . , H},
then we shall see from the proof of Theorem 2.1 that there exist (possibly different
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if |λh| = 1) strictly stationary solutions X(h) of (2.8) for each h ∈ {1, . . . , H}, such
that

Yt := S(X(1)T
t , . . . , X

(H)T
t )T , t ∈ Z, (2.9)

is a strictly stationary solution of (2.3).
Existence and uniqueness of a strictly stationary solution of (2.3) is therefore equiva-
lent to the existence and uniqueness of a strictly stationary solution of the Equations
(2.8) for each h ∈ {1, . . . , H}. The necessary and sufficient condition for each one
will depend on the value of the eigenvalue λh associated with Φh and in particular
on whether (a) |λh| ∈ (0, 1), (b) |λh| > 1, (c) |λh| = 1 and λh 6= 1, (d) λh = 1 and
(e) λh = 0. These cases will be addressed separately in the proof of Theorem 2.1,
which is given in Section 2.3. The aforementioned characterization in terms of the
Jordan decomposition of Ψ1 now reads as follows.

Theorem 2.1. [Strict ARMA(1, q) processes]
Let m, d ∈ N, q ∈ N0, and let (Zt)t∈Z be an i.i.d. sequence of Cd-valued random
vectors. Let Ψ1 ∈ Cm×m and Θ0, . . . ,Θq ∈ Cm×d be complex-valued matrices. Let
S ∈ Cm×m be an invertible matrix such that S−1Ψ1S is in Jordan block form as
above, with H Jordan blocks Φh, h ∈ {1, . . . , H}, and associated eigenvalues λh,
h ∈ {1, . . . , H}. Let r1, . . . , rH+1 be given as above and Ih as defined by (2.7). Then
the ARMA(1, q) equation (2.3) has a strictly stationary solution Y if and only if the
following statements (i) – (iii) hold:

(i) For every h ∈ {1, . . . , H} such that |λh| 6= 0, 1,

E log+
∥∥∥∥∥
( q∑
k=0

Φq−k
h IhS

−1Θk

)
Z0

∥∥∥∥∥ <∞. (2.10)

(ii) For every h ∈ {1, . . . , H} such that |λh| = 1, but λh 6= 1, there exists a constant
αh ∈ Crh+1−rh such that( q∑

k=0
Φq−k
h IhS

−1Θk

)
Z0 = αh a.s. (2.11)

(iii) For every h ∈ {1, . . . , H} such that λh = 1, there exists a constant αh =
(αh,1, . . . , αh,rh+1−rh)T ∈ Crh+1−rh such that αh,1 = 0 and (2.11) holds.

If these conditions are satisfied, then a strictly stationary solution to (2.3) is given
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by (2.9) with

X
(h)
t :=



∑∞
j=0 Φj−q

h

(∑j∧q
k=0 Φq−k

h IhS
−1Θk

)
Zt−j, |λh| ∈ (0, 1),

−∑∞j=1−q Φ−j−qh

(∑q
k=(1−j)∨0 Φq−k

h IhS
−1Θk

)
Zt+j, |λh| > 1∑m+q−1

j=0

(∑j∧q
k=0 Φj−k

h IhS
−1Θk

)
Zt−j, λh = 0,

fh +∑q−1
j=0

(∑j
k=0 Φj−k

h IhS
−1Θk

)
Zt−j, |λh| = 1,

(2.12)

where fh ∈ Crh+1−rh is a solution to

(Idh − Φh)fh = αh, (2.13)

which exists for λh = 1 by (iii) and, for |λ| = 1, λ 6= 1, by the invertibility of
(Idh − Φh). The series in (2.12) converge a.s. absolutely.
If the necessary and sufficient conditions stated above are satisfied, then, provided
the underlying probability space is rich enough to support a random variable which is
uniformly distributed on [0, 1) and independent of (Zt)t∈Z, the solution given by (2.9)
and (2.12) is the unique strictly stationary solution of (2.3) if and only if |λh| 6= 1
for all h ∈ {1, . . . , H}.

Special cases of Theorem 2.1 will be treated in Corollaries 2.7, 2.9 and Remark 2.8.
It is well known that every ARMA(p, q) process can be embedded into a higher
dimensional ARMA(1, q) process as specified in Proposition 2.5 of Section 2.5.
Hence, in principle, the questions of existence and uniqueness of strictly station-
ary ARMA(p, q) processes can be reduced to Theorem 2.1. However, it is generally
difficult to obtain the Jordan canonical decomposition of the (mp×mp)-dimensional
matrix Φ defined in Proposition 2.5, which is needed to apply Theorem 2.1. Hence,
a more natural approach is to express the conditions in terms of the character-
istic polynomials P (z) and Q(z) of the ARMA(p, q) equation (2.1). Observe that
z 7→ detP (z) is a polynomial in z ∈ C, not identical to the zero polynomial. Hence
P (z) is invertible except for a finite number of z. Also, denoting the adjugate matrix
of P (z) by Adj(P (z)), it follows from Cramér’s inversion rule that the inverse P−1(z)
of P (z) may be written as

P−1(z) = (detP (z))−1Adj(P (z))

which is a Cm×m-valued rational function, i.e. all its entries are rational functions. For
a general matrix-valued rational function z 7→M(z) of the formM(z) = P−1(z)Q̃(z)
with some matrix polynomial Q̃(z), the singularities of M(z) are the zeroes of
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detP (z), and such a singularity, z0 say, is removable if all entries of M(z) have
removable singularities at z0. Further observe that if M(z) has only removable sin-
gularities on the unit circle in C, then M(z) can be expanded in a Laurent series
M(z) = ∑∞

j=−∞Mjz
j, convergent in a neighborhood of the unit circle. The charac-

terization for the existence of strictly stationary ARMA(p, q) processes now reads
as follows.

Theorem 2.2. [Strict ARMA(p, q) processes]
Let m, d, p ∈ N, q ∈ N0, and let (Zt)t∈Z be an i.i.d. sequence of Cd-valued random
vectors. Let Ψ1, . . . ,Ψp ∈ Cm×m and Θ0, . . . ,Θq ∈ Cm×d be complex-valued matrices,
and define the characteristic polynomials as in (2.2). Define the linear subspace

K := {a ∈ Cd : the distribution of a∗Z0 is degenerate to a Dirac measure}

of Cd, denote by K⊥ its orthogonal complement in Cd, and let s := dimK⊥ the vector
space dimension of K⊥. Let U ∈ Cd×d be unitary such that U K⊥ = Cs×{0d−s} and
U K = {0s} × Cd−s, and define the Cm×d-valued rational function M(z) by

z 7→M(z) := P−1(z)Q(z)U∗
 Ids 0s,d−s

0d−s,s 0d−s,d−s

 . (2.14)

Then there is a constant u ∈ Cd−s and a Cs-valued i.i.d. sequence (wt)t∈Z such that

UZt =
 wt

u

 a.s. ∀ t ∈ Z, (2.15)

and the distribution of b∗w0 is not degenerate to a Dirac measure for any b ∈ Cs\{0}.
Further, a strictly stationary solution to the ARMA(p, q) equation (2.1) exists if and
only if the following statements (i)—(iii) hold:

(i) All singularities on the unit circle of the meromorphic function M(z) are re-
movable.

(ii) If M(z) = ∑∞
j=−∞Mjz

j denotes the Laurent expansion of M in a neighbour-
hood of the unit circle, then

E log+ ‖MjUZ0‖ <∞ ∀ j ∈ {mp+ q − p+ 1, . . . ,mp+ q} ∪ {−p, . . . ,−1}.
(2.16)

(iii) There exist v ∈ Cs and g ∈ Cm such that g is a solution to the linear equation

P (1)g = Q(1)U∗(vT , uT )T . (2.17)
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Further, if (i) above holds, then condition (ii) can be replaced by

(ii’) If M(z) = ∑∞
j=−∞Mjz

j denotes the Laurent expansion of M in a neighbour-
hood of the unit circle, then ∑∞j=−∞MjUZt−j converges almost surely absolutely
for every t ∈ Z,

and condition (iii) can be replaced by

(iii’) For all v ∈ Cs there exists a solution g = g(v) to the linear equation (2.17).

If the conditions (i)–(iii) given above are satisfied, then a strictly stationary solution
Y of the ARMA(p, q) equation (2.1) is given by

Yt = g +
∞∑

j=−∞
Mj(UZt−j − (vT , uT )T ), t ∈ Z, (2.18)

the series converging almost surely absolutely. Further, provided that the underlying
probability space is rich enough to support a random variable which is uniformly
distributed on [0, 1) and independent of (Zt)t∈Z, the solution given by (2.18) is the
unique strictly stationary solution of (2.1) if and only if detP (z) 6= 0 for all z on
the unit circle.

Special cases of Theorem 2.2 are treated in Remarks 2.10, 2.12 and Corollary 2.11.
Observe that for m = 1, Theorem 2.2 reduces to the corresponding result in Brock-
well and Lindner [4], stated as Theorem 1.4 in this thesis. Also observe that condition
(iii) of Theorem 2.2 is not implied by condition (i), which can be seen e.g. by al-
lowing a deterministic noise sequence (Zt)t∈Z, in which case M(z) ≡ 0. The proof
of Theorem 2.2 will be given in Section 2.5 and will make use of both Theorem 2.1
and Theorem 2.3 given below. The latter is the corresponding characterization for
the existence of weakly stationary solutions of ARMA(p, q) equations, expressed in
terms of the characteristic polynomials P (z) and Q(z). That detP (z) 6= 0 for all z
on the unit circle together with E(Z0) = 0 is sufficient for the existence of weakly
stationary solutions is well known (cf. Theorem 1.5 in this thesis), but that the con-
ditions given below are necessary and sufficient in higher dimensions seems not to
have appeared in the literature so far. The proof of Theorem 2.3, which is similar to
the proof in the one-dimensional case (cf. Theorem 1.3), will be given in Section 2.4.

Theorem 2.3. [Weak ARMA(p, q) processes]
Let m, d, p ∈ N, q ∈ N0, and let (Zt)t∈Z be a weak white noise sequence in Cd with
expectation EZ0 and covariance matrix Σ. Let Ψ1, . . . ,Ψp ∈ Cm×m and Θ0, . . . ,Θq ∈
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Cm×d, and define the matrix polynomials P (z) and Q(z) by (2.2). Let U ∈ Cd×d be

unitary such that UΣU∗ =
 D 0s,d−s

0d−s,s 0d−s,d−s

, where D is a real (s×s)-diagonal ma-

trix with the strictly positive eigenvalues of Σ on its diagonal for some s ∈ {0, . . . , d}.
(The matrix U exists since Σ is positive semidefinite). Then the ARMA(p, q) equa-
tion (2.1) admits a weakly stationary solution (Yt)t∈Z if and only if the Cm×d-valued
rational function

z 7→M(z) := P−1(z)Q(z)U∗
 Ids 0s,d−s

0d−s,s 0d−s,d−s


has only removable singularities on the unit circle and if there is some g ∈ Cm such
that

P (1) g = Q(1)EZ0. (2.19)

In that case, a weakly stationary solution of (2.1) is given by

Yt = g +
∞∑

j=−∞
Mj U(Zt−j − EZ0), t ∈ Z, (2.20)

where M(z) = ∑∞
j=−∞Mjz

j is the Laurent expansion of M(z) in a neighbourhood of
the unit circle, which converges absolutely there.

It is easy to see that if Σ in the theorem above is invertible, then the condition
that all singularities of M(z) on the unit circle are removable is equivalent to the
condition that all singularities of P−1(z)Q(z) on the unit circle are removable.

2.3 Proof of Theorem 2.1
In this section we give the proof of Theorem 2.1. In Section 2.3.1 we show that
the conditions (i) — (iii) are necessary. The suffiency of the conditions is proven in
Section 2.3.2, while the uniqueness assertion is established in Section 2.3.3.

2.3.1 The necessity of the conditions

Assume that (Yt)t∈Z is a strictly stationary solution of Equation (2.3). As observed
before Theorem 2.1, this implies that each of the Equations (2.8) admits a strictly
stationary solution, where X

(h)
t is defined as in (2.6). Equation (2.8) is itself an

ARMA(1, q) equation with i.i.d. noise, so that for proving (i) – (iii) we may assume



2.3 Proof of Theorem 2.1 27

that H = 1, that S = Idm and that Φ := Ψ1 is an m×m Jordan block corresponding
to an eigenvalue λ. Hence we assume throughout Section 2.3.1 that

Yt − ΦYt−1 =
q∑

k=0
ΘkZt−k, t ∈ Z, (2.21)

has a strictly stationary solution with Φ ∈ Cm×m of the form (2.4), and we have to
show that this implies (i) if |λ| 6= 0, 1, (ii) if |λ| = 1 but λ 6= 1, and (iii) if λ = 1.
Before we do this in the next subsections, we observe that iterating the ARMA(1, q)
equation (2.21) gives for n ≥ q

Yt =
q−1∑
j=0

Φj

 j∑
k=0

Φ−kΘk

Zt−j +
n−1∑
j=q

Φj

( q∑
k=0

Φ−kΘk

)
Zt−j

+
q−1∑
j=0

Φn+j

 q∑
k=j+1

Φ−kΘk

Zt−(n+j) + ΦnYt−n. (2.22)

The case |λ| ∈ (0, 1).

Suppose that |λ| ∈ (0, 1) and let ε ∈ (0, |λ|). Then there are constants C,C ′ ≥ 1
such that ∥∥∥Φ−j∥∥∥ ≤ C · |λ|−j · jm ≤ (C ′)(|λ| − ε)−j for all j ∈ N,

as a consequence of Theorem 11.1.1 in [9]. Hence, we have for all j ∈ N0 and t ∈ Z∥∥∥∥∥
( q∑
k=0

Φ−kΘk

)
Zt−j

∥∥∥∥∥ ≤ C ′(|λ| − ε)−j
∥∥∥∥∥Φj

( q∑
k=0

Φ−kΘk

)
Zt−j

∥∥∥∥∥ . (2.23)

Now, since limn→∞Φn = 0 and since (Yt)t∈Z and (Zt)t∈Z are strictly stationary, an
application of Slutsky’s lemma to Equation (2.22) shows that

Yt =
q−1∑
j=0

Φj

 j∑
k=0

Φ−kΘk

Zt−j + P- lim
n→∞

n−1∑
j=q

Φj

( q∑
k=0

Φ−kΘk

)
Zt−j. (2.24)

Hence the limit on the right hand side exists and, as a sum with independent sum-
mands, it converges almost surely (see Kallenberg [13], Theorem 4.18). Thus it
follows from Equation (2.23) and the Borel-Cantelli lemma that

∞∑
j=q
P

(∥∥∥∥∥
q∑

k=0
Φ−kΘkZ0

∥∥∥∥∥ > C ′(|λ| − ε)−j
)

≤
∞∑
j=q
P

(∥∥∥∥∥Φj

( q∑
k=0

Φ−kΘk

)
Z−j

∥∥∥∥∥ > 1
)
<∞,

and hence E
(
log+

∥∥∥(∑q
k=0 Φ−kΘk

)
Z0

∥∥∥) < ∞. Obviously, this is equivalent to con-
dition (i).
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The case |λ| > 1.

Suppose that |λ| > 1. Multiplying Equation (2.22) by Φ−n gives for n ≥ q

Φ−nYt =
q−1∑
j=0

Φ−(n−j)

 j∑
k=0

Φ−kΘk

Zt−j +
n−q∑
j=1

Φ−j
( q∑
k=0

Φ−kΘk

)
Zt−n+j

+
q−1∑
j=0

Φj

 q∑
k=j+1

Φ−kΘk

Zt−(n+j) + Yt−n.

Defining Φ̃ := Φ−1, and substituting u = t− n yields

Yu = −
q−1∑
j=0

Φ̃−j
 q∑
k=j+1

Φ−kΘk

Zu−j − n−q∑
j=1

Φ̃j

( q∑
k=0

Φ−kΘk

)
Zu+j

−
q−1∑
j=0

Φ̃n−j

 j∑
k=0

Φ−kΘk

Zu+n−j + Φ̃nYu+n. (2.25)

Letting n → ∞ then gives condition (i) with the same arguments as in the case
|λ| ∈ (0, 1).

The case |λ| = 1 and symmetric noise (Zt).

Suppose that Z0 is symmetric and that |λ| = 1. Denoting

J1 := Φ− λ Idm and Jl := J l1 for j ∈ N0,

we have

Φj =
m−1∑
l=0

(
j

l

)
λj−lJl, j ∈ N0,

since Jl = 0 for l ≥ m and
(
j
l

)
= 0 for l > j. Further, since for l ∈ {0, . . . ,m − 1}

we have

Jl = (el+1, el+2, ..., em, 0m, ..., 0m) ∈ Cm×m,

with unit vectors el+1, ..., em in Cm, it is easy to see that for i = 1, ...,m the ith row
of the matrix Φj is given by

eTi Φj =
m−1∑
l=0

(
j

l

)
λj−leTi Jl =

i−1∑
l=0

(
j

l

)
λj−leTi−l, j ∈ N0. (2.26)
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It follows from Equations (2.22) and (2.26) that for n ≥ q and t ∈ Z,

eTi Yt =
q−1∑
j=0

(
i−1∑
l=0

(
j

l

)
λj−leTi−l

) j∑
k=0

Φ−kΘk

Zt−j
+

n−1∑
j=q

(
i−1∑
l=0

(
j

l

)
λj−leTi−l

)( q∑
k=0

Φ−kΘk

)
Zt−j

+
q−1∑
j=0

(
i−1∑
l=0

(
n+ j

l

)
λn+j−leTi−l

) q∑
k=j+1

Φ−kΘk

Zt−(n+j)

+
i−1∑
l=0

(
n

l

)
λn−leTi−lYt−n. (2.27)

We claim that

eTi

q∑
k=0

Φ−kΘkZt = 0 a.s. ∀ i ∈ {1, . . . ,m} ∀ t ∈ Z, (2.28)

which clearly gives conditions (ii) and (iii), respectively, with α = α1 = 0m. Equation
(2.28) will be proved by induction on i = 1, . . . ,m. We start with i = 1. From
Equation (2.27) we know that for n ≥ q

eT1 Yt − λneT1 Yt−n

−
q−1∑
j=0

λjeT1

 j∑
k=0

Φ−kΘk

Zt−j − q−1∑
j=0

λn+jeT1

 q∑
k=j+1

Φ−kΘk

Zt−(n+j)

=
n−1∑
j=q

λjeT1

( q∑
k=0

Φ−kΘk

)
Zt−j. (2.29)

Due to the stationarity of (Yt)t∈Z and (Zt)t∈Z, there exists a constant K1 > 0 such
that

P

∣∣∣∣∣∣eT1 Yt − λneT1 Yt−n −
q−1∑
j=0

λjeT1

 j∑
k=0

Φ−kΘk

Zt−j
−

q−1∑
j=0

λn+jeT1

 q∑
k=j+1

Φ−kΘk

Zt−(n+j)

∣∣∣∣∣∣ < K1

 ≥ 1
2 ∀n ≥ q.

By (2.29) this implies

P

∣∣∣∣∣∣
n−1∑
j=q

λjeT1

( q∑
k=0

Φ−kΘk

)
Zt−j

∣∣∣∣∣∣ < K1

 ≥ 1
2 ∀n ≥ q. (2.30)

Therefore
∣∣∣∑n−1

j=q λ
jeT1

(∑q
k=0 Φ−kΘk

)
Zt−j

∣∣∣ does not converge in probability to +∞ as
n→∞. Since this is a sum of independent and symmetric terms, this implies that it
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converges almost surely (see Kallenberg [13], Theorem 4.17), and the Borel-Cantelli
lemma then shows that

eT1

( q∑
k=0

Φ−kΘk

)
Zt = 0, t ∈ Z,

which is (2.28) for i = 1. With this condition, Equation (2.29) simplifies for t = 0
and n ≥ q to

eT1 Y0 − λneT1 Y−n =
q−1∑
j=0

λjeT1

 j∑
k=0

Φ−kΘk

Z−j +
q−1∑
j=0

λn+jeT1

 q∑
k=j+1

Φ−kΘk

Z−(n+j).

Now setting t := −n in the above equation, multiplying it with λt = λ−n and
recalling that eT1 Φj = λjeT1 by (2.26) yields for t ≤ −q

eT1 Yt = −
q−1∑
j=0

eT1 Φj

 q∑
k=j+1

Φ−kΘk

Zt−j + λteT1

Y0 −
q−1∑
j=0

Φj

 j∑
k=0

Φ−kΘk

Z−j
 .

For the induction step let i ∈ {2, . . . ,m} and assume that

eTr

( q∑
k=0

Φ−kΘk

)
Zt = 0 a.s., r ∈ {1, ..., i− 1}, t ∈ Z, (2.31)

together with

eTr Yt = −eTr
q−1∑
j=0

Φj

 q∑
k=j+1

Φ−kΘk

Zt−j +

0, r ∈ {1, . . . , i− 2}, t ≤−rq,
λteTr Vr, r = i− 1, t ≤ −rq,

(2.32)

where

Vr := λ(r−1)q

Y−(r−1)q −
q−1∑
j=0

Φj

 j∑
k=0

Φ−kΘk

Z−j−(r−1)q

 , r ∈ {1, . . . ,m}.

We are going to show that this implies

eTi

( q∑
k=0

Φ−kΘk

)
Zt = 0 a.s., t ∈ Z, (2.33)

and

eTi Yt = −eTi
q−1∑
j=0

Φj

 q∑
k=j+1

Φ−kΘk

Zt−j + λteTi Vi a.s., t ≤ −iq, (2.34)

together with

eTi−1Vi−1 = 0. (2.35)

This will then imply (2.28). For doing that, in a first step we are going to prove the
following:
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Lemma 2.4. Let i ∈ {2, . . . ,m} and assume (2.31) and (2.32). Then it holds for
t ≤ −(i− 1)q and n ≥ q,

eTi Yt − λneTi Yt−n

=
q−1∑
j=0

eTi Φj

 j∑
k=0

Φ−kΘk

Zt−j +
n−1∑
j=q

λjeTi

( q∑
k=0

Φ−kΘk

)
Zt−j

+λn
q−1∑
j=0

eTi Φj

 q∑
k=j+1

Φ−kΘk

Zt−(n+j) + nλt−1eTi−1Vi−1, (2.36)

Proof. Let t ≤ −(i − 1)q and n ≥ q. Using (2.32) and (2.26), the last summand of
(2.27) can be written as
i−1∑
l=0

(
n

l

)
λn−leTi−lYt−n

= λneTi Yt−n +
i−1∑
r=1

(
n

i− r

)
λn−(i−r)eTr Yt−n,

= λneTi Yt−n −
q−1∑
j=0

(
i−1∑
r=1

r−1∑
l=0

(
j

l

)(
n

i− r

)
λn−(i−r)λj−leTr−l

) q∑
k=j+1

Φ−kΘk

Zt−(n+j)

+nλt−1eTi−1Vi−1

= λneTi Yt−n −
q−1∑
j=0

(
i−1∑
s=1

(
n+ j

s

)
λn+j−seTi−s

) q∑
k=j+1

Φ−kΘk

Zt−(n+j)

+λn
q−1∑
j=0

(
i−1∑
s=1

(
j

s

)
λj−seTi−s

) q∑
k=j+1

Φ−kΘk

Zt−(n+j) + nλt−1eTi−1Vi−1,

where we substituted s := i− r+ l and p := s− l and used Vandermonde’s identity∑s
p=1

(
j
s−p

)(
n
p

)
=
(
n+j
s

)
−
(
j
s

)
in the last equation. Inserting this back into Equation

(2.27) and using (2.31), we get for t ≤ −(i− 1)q and n ≥ q

eTi Yt − λneTi Yt−n

=
q−1∑
j=0

(
i−1∑
l=0

(
j

l

)
λj−leTi−l

) j∑
k=0

Φ−kΘk

Zt−j
+

n−1∑
j=q

λjeTi

( q∑
k=0

Φ−kΘk

)
Zt−j +

q−1∑
j=0

λn+jeTi

 q∑
k=j+1

Φ−kΘk

Zt−(n+j)

+λn
q−1∑
j=0

(
i−1∑
s=1

(
j

s

)
λj−seTi−s

) q∑
k=j+1

Φ−kΘk

Zt−(n+j)

+nλt−1eTi−1Vi−1.

An application of (2.26) then shows (2.36), completing the proof of the lemma. �
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To continue with the induction step, we first show that (2.35) holds true. Dividing
(2.36) by n and letting n→∞, the strict stationarity of (Yt)t∈Z and (Zt)t∈Z imply
that for t ≤ −(i− 1)q,

n−1
n−1∑
j=q

λjeTi

( q∑
k=0

Φ−kΘk

)
Zt−j

converges in probability to −λt−1eTi−1Vi−1. On the other hand, this limit in probabil-
ity must be clearly measurable with respect to the tail-σ-algebra ∩k∈Nσ(∪l≥kσ(Zt−l)),
which by Kolmogorov’s zero-one law is P-trivial. Hence this probability limit must
be constant, and because of the assumed symmetry of Z0 it must be symmetric,
hence is equal to 0, i.e.

eTi−1Vi−1 = 0 a.s.,

which is (2.35). Using this, we get from Lemma 2.4 that

eTi Yt − λneTi Yt−n

−
q−1∑
j=0

eTi Φj

 j∑
k=0

Φ−kΘk

Zt−j − λn q−1∑
j=0

eTi Φj

 q∑
k=j+1

Φ−kΘk

Zt−(n+j)

=
n−1∑
j=q

λjeTi

( q∑
k=0

Φ−kΘk

)
Zt−j, t ≤ −(i− 1)q. (2.37)

Again due to the stationarity of (Yt)t∈Z and (Zt)t∈Z there exists a constant K2 > 0
such that

P

∣∣∣∣∣∣eTi Yt − λneTi Yt−n −
q−1∑
j=0

eTi Φj

 j∑
k=0

Φ−kΘk

Zt−j
−λn

q−1∑
j=0

eTi Φj

 q∑
k=j+1

Φ−kΘk

Zt−(n+j)

∣∣∣∣∣∣ < K2

 ≥ 1
2 ∀ n ≥ q,

so that

P

∣∣∣∣∣∣
n−1∑
j=q

λjeTi

( q∑
k=0

Φ−kΘk

)
Zt−j

∣∣∣∣∣∣ < K2

 ≥ 1
2 ∀ n ≥ q, t ≤ −(i− 1)q.

Therefore
∣∣∣∑n−1

j=q λ
jeTi

(∑q
k=0 Φ−kΘk

)
Zt−j

∣∣∣ does not converge in probability to +∞
as n → ∞. Since this is a sum of independent and symmetric terms, this implies
that it converges almost surely (see Kallenberg [13], Theorem 4.17), and the Borel-
Cantelli lemma then shows that eTi

(∑q
k=0 Φ−kΘk

)
Zt = 0 a.s. for t ≤ −(i− 1)q and
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hence for all t ∈ Z, which is (2.33). Equation (2.37) now simplifies for t = −(i− 1)q
and n ≥ q to

eTi Y−(i−1)q − λneTi Y−(i−1)q−n

=
q−1∑
j=0

eTi Φj

 j∑
k=0

Φ−kΘk

Z−(i−1)q−j + λn
q−1∑
j=0

eTi Φj

 q∑
k=j+1

Φ−kΘk

Z−(i−1)q−n−j.

Multiplying this equation by λ−n and denoting t := −(i − 1)q − n, it follows that
for t ≤ −iq it holds

eTi Yt = −
q−1∑
j=0

eTi Φj

 q∑
k=j+1

Φ−kΘk

Zt−j
+λt+(i−1)qeTi

Y−(i−1)q −
q−1∑
j=0

Φj

 j∑
k=0

Φ−kΘk

Z−j−(i−1)q


= −

q−1∑
j=0

eTi Φj

 q∑
k=j+1

Φ−kΘk

Zt−j + λteTi Vi,

which is Equation (2.34). This completes the proof of the induction step and hence
of (2.28). It follows that conditions (ii) and (iii), respectively, hold with α1 = 0 if
|λ| = 1 and Z0 is symmetric.

The case |λ| = 1 and not necessarily symmetric noise (Zt).

As in the previous section, assume that |λ| = 1, but not necessarily that Z0 is
symmetric. Let (Y ′t , Z ′t)t∈Z be an independent copy of (Yt, Zt)t∈Z and denote Ỹt :=
Yt−Y ′t and Z̃t := Zt−Z ′t. Then (Ỹt)t∈Z is a strictly stationary solution of Ỹt−ΦỸt−1 =∑q
k=0 ΘkZ̃t−k, and (Z̃t)t∈Z is i.i.d. with Z̃0 being symmetric. It hence follows from

the previous section that( q∑
k=0

Φq−kΘk

)
Z0 −

( q∑
k=0

Φq−kΘk

)
Z ′0 =

( q∑
k=0

Φq−kΘk

)
Z̃0 = 0.

Since Z0 and Z ′0 are independent, this implies that there is a constant α ∈ Cm such
that ∑q

k=0 Φq−kΘkZ0 = α a.s., which is (2.11), hence condition (ii) if λ 6= 1. To show
condition (iii) in the case λ = 1, recall that the deviation of (2.30) in the previous
section did not need the symmetry assumption on Z0. Hence by (2.30) there is some
constant K1 such that P(|∑n−1

j=q 1jeT1 α| < K1) ≥ 1/2 for all n ≥ q, which clearly
implies eT1 α = 0 and hence condition (iii).
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2.3.2 The sufficiency of the conditions

Suppose that conditions (i) — (iii) are satisfied, and let X(h)
t , t ∈ Z, h ∈ {1, . . . , H},

be defined by (2.12). The fact that X(h)
t as defined in (2.12) converges a.s. for

|λh| ∈ (0, 1) is in complete analogy to the proof in the one-dimensional case treated
in Brockwell and Lindner [4], but we give the short argument for completeness:
observe that there are constants a, b > 0 such that ‖Φj

h‖ ≤ ae−bj for j ∈ N0. Hence
for b′ ∈ (0, b) we can estimate

∞∑
j=q

P
(∥∥∥∥∥Φj−q

h

q∑
k=0

Φq−k
h IhS

−1ΘkZt−j

∥∥∥∥∥ > e−b
′(j−q)

)

≤
∞∑
j=q

P
(

log+
(
a

∥∥∥∥∥
q∑

k=0
Φq−k
h IhS

−1ΘkZt−j

∥∥∥∥∥
)
> (b− b′)(j − q)

)
<∞,

the last inequality being due to the fact that
∥∥∥∑q

k=0 Φq−k
h IhS

−1ΘkZt−j
∥∥∥ has the

same distribution as
∥∥∥∑q

k=0 Φq−k
h IhS

−1ΘkZ0

∥∥∥ and the latter has finite log-moment
by Equation (2.10). An application of the Borel–Cantelli lemma then shows that the
event {‖Φj−q

h

∑q
k=0 Φq−k

h IhS
−1ΘkZt−j‖ > e−b

′(j−q) for infinitely many j} has proba-
bility zero, giving the almost sure absolute convergence of the series in (2.12). The
almost sure absolute convergence of (2.12) if |λh| > 1 is established similarly.
It is obvious that ((X(1)T

t , . . . , X
(H)T
t )T )t∈Z as defined in (2.12) and hence (Yt)t∈Z

defined by (2.9) is strictly stationary, so it only remains to show that (X(h)
t )t∈Z solves

(2.8) for each h ∈ {1, . . . , H}. For |λh| 6= 0, 1, this is an immediate consequence of
(2.12). For |λh| = 1, we have by (2.12) and the definition of fh that

X
(h)
t − ΦhX

(h)
t−1 = αh +

q−1∑
j=0

j∑
k=0

Φj−k
h IhS

−1ΘkZt−j −
q∑
j=1

j−1∑
k=0

Φj−k
h IhS

−1ΘkZt−j

= αh +
q−1∑
j=0

IhS
−1ΘjZt−j −

q−1∑
k=0

Φq−k
h IhS

−1ΘkZt−q

= IhS
−1

q∑
j=0

ΘjZt−j,

where the last equality follows from (2.11). Finally, if λh = 0, then Φj
h = 0 for j ≥ m,

implying that X(h)
t defined by (2.12) solves (2.8) also in this case.

2.3.3 The uniqueness of the solution

Suppose that |λh| 6= 1 for all h ∈ {1, . . . , H} and let (Yt)t∈Z be a strictly stationary
solution of (2.3). Then (X(h)

t )t∈Z, as defined by (2.6), is a strictly stationary solution
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of (2.8) for each h ∈ {1, . . . , H}. It then follows as in Section 2.3.1 that by the equa-
tion corresponding to (2.24), X(h)

t is uniquely determined if |λh| ∈ (0, 1). Similarly,
X

(h)
t is uniquely determined if |λh| > 1. The uniqueness of X(h)

t if λh = 0 follows
from the equation corresponding to (2.22) with n ≥ m, since then Φj

h = 0 for j ≥ m.
We conclude that ((X(1)T

t , . . . , X
(H)T
t )T )t∈Z is unique and hence so is (Yt)t∈Z.

Now suppose that there is h ∈ {1, . . . , H} such that |λh| = 1. Let U be a random
variable which is uniformly distributed on [0, 1) and independent of (Zt)t∈Z. Then
(Rt)t∈Z, defined by Rt := λth(0, . . . 0, e2πiU)T ∈ Crh+1−rh , is strictly stationary and
independent of (Zt)t∈Z and satisfies Rt−ΦhRt−1 = 0. Hence, if (Yt)t∈Z is the strictly
stationary solution of (2.3) specified by (2.12) and (2.9), then

Yt + S(0Tr2−r1 , . . . , 0
T
rh−rh−1

, RT
t , 0Trh+2−rh+1

, . . . , 0TrH+1−rH )T , t ∈ Z,

is another strictly stationary solution of (2.3), violating uniqueness.

2.4 Proof of Theorem 2.3
In this section we shall prove Theorem 2.3. Denote

R := U∗

D1/2 0s,d−s
0d−s,s 0d−s,d−s

 and Wt :=
D−1/2 0s,d−s

0d−s,s 0d−s,d−s

U(Zt−EZ0), t ∈ Z,

where D1/2 is the unique diagonal matrix with strictly positive eigenvalues such that
(D1/2)2 = D. Then (Wt)t∈Z is a white noise sequence in Cd with expectation 0 and co-

variance matrix
 Ids 0s,d−s

0d−s,s 0d−s,d−s

. It is further clear that all singularities ofM(z) on

the unit circle are removable if and only if all singularities of M ′(z) := P−1(z)Q(z)R
on the unit circle are removable, and in that case, the Laurent expansions of both
M(z) and M ′(z) converge absolutely in a neighbourhood of the unit circle.
To see the sufficiency of the condition, suppose that (2.19) has a solution g and that
M(z) and hence M ′(z) have only removable singularities on the unit circle. Define
Y = (Yt)t∈Z by (2.20), i.e.

Yt = g +
∞∑

j=−∞
Mj

 D1/2 0s,d−s
0d−s,s 0d−s,d−s

Wt−j = g +M ′(B)Wt, t ∈ Z.

The series converges almost surely absolutely due to the exponential decrease of the
entries of Mj as |j| → ∞. Further, Y is clearly weakly stationary, and since the last
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(d − s) components of U(Zt − EZ0) vanish, having expectation zero and variance
zero, it follows that

RWt = U∗

 Ids 0s,d−s
0d−s,s 0d−s,d−s

U(Zt − EZ0) = U∗U(Zt − EZ0) = Zt − EZ0, t ∈ Z.

We conclude that

P (B)(Yt−g) = P (B)M ′(B)Wt = P (B)P−1(B)Q(B)RWt = Q(B)(Zt−EZ0), t ∈ Z.

Since P (1)g = Q(1)EZ0, this shows that (Yt)t∈Z is a weakly stationary solution of
(2.1).
Conversely, suppose that Y = (Yt)t∈Z is a weakly stationary solution of (2.1). Taking
expectations in (2.1) yields P (1)EY0 = Q(1)EZ0, so that (2.19) has a solution. The
Cm×m-valued spectral measure µY of Y satisfies

P (e−iω) dµY (ω)P (e−iω)∗ = 1
2πQ(e−iω)ΣQ(e−iω)∗ dω, ω ∈ (−π, π].

It follows that, with the finite set N := {ω ∈ (−π, π] : P (e−iω) = 0},

dµY (ω) = 1
2πP

−1(e−iω)Q(e−iω)ΣQ(e−iω)∗P−1(e−iω)∗ dω on (−π, π] \N.

Observing that RR∗ = Σ, it follows that the function ω 7→M ′(e−iω)M ′(e−iω)∗ must
be integrable on (−π, π] \N . Now assume that the matrix rational function M ′ has
a non-removable singularity at z0 with |z0| = 1 in at least one matrix element. This
must then be a pole of order r ≥ 1. Denoting the spectral norm by ‖ · ‖2 it follows
that there are ε > 0 and K > 0 such that

‖M ′(z)∗‖2 ≥ K|z − z0|−1 ∀ z ∈ C : |z| = 1, z 6= z0, |z − z0| ≤ ε;

this may be seen by considering first the row sum norm of M ′(z)∗ and then using
the equivalence of norms. Since the matrix M ′(z)M ′(z)∗ is hermitian, we conclude
that

‖M ′(z)M ′(z)∗‖2 = sup
v∈Cn:|v|=1

|v∗M ′(z)M ′(z)∗v| = sup
v∈Cn:|v|=1

|M ′(z)∗v|2 ≥ K2|z − z0|−2

for all z 6= z0 on the unit circle such that |z − z0| ≤ ε. But this implies that
ω 7→ M ′(e−iω)M ′(e−iω)∗ cannot be integrable on (−π, π] \ N , giving the desired
contradiction. This finishes the proof of Theorem 2.3.
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2.5 Proof of Theorem 2.2

In this section we shall prove Theorem 2.2. For that, we first observe that ARMA(p, q)
equations can be embedded into higher dimensional ARMA(1, q) processes, as stated
in the following proposition. This is well known and its proof is immediate, hence
omitted.

Proposition 2.5. Let m, d, p ∈ N, q ∈ N0, and let (Zt)t∈Z be an i.i.d. sequence
of Cd-valued random vectors. Let Ψ1, . . . ,Ψp ∈ Cm×m and Θ0, . . . ,Θq ∈ Cm×d be
complex-valued matrices. Define the matrices Φ ∈ Cmp×mp and Θk ∈ Cmp×d, k ∈
{0, . . . , q}, by

Φ :=



Ψ1 Ψ2 · · · Ψp−1 Ψp

Idm 0m,m · · · 0m,m 0m,m
0m,m

. . . . . . ... ...
... . . . . . . 0m,m

...
0m,m · · · 0m,m Idm 0m,m


and Θk =


Θk

0m,d
...

0m,d

 . (2.38)

Then the ARMA(p, q) equation (2.1) admits a strictly stationary solution (Yt)t∈Z of
m-dimensional random vectors Yt if and only if the ARMA(1, q) equation

Y t − ΦY t−1 = Θ0Zt + Θ1Zt−1 + . . .+ ΘqZt−q, t ∈ Z, (2.39)

admits a strictly stationary solution (Y t)t∈Z of mp-dimensional random vectors Y t.
More precisely, if (Yt)t∈Z is a strictly stationary solution of (2.1), then

(Y t)t∈Z := ((Y T
t , Y

T
t−1, . . . , Y

T
t−(p−1))T )t∈Z (2.40)

is a strictly stationary solution of Equation (2.39), and conversely, if (Y t)t∈Z =
((Y (1)T

t , . . . , Y
(p)T
t )T )t∈Z with random components Y (i)

t ∈ Cm is a strictly stationary
solution of (2.39), then (Yt)t∈Z := (Y (1)

t )t∈Z is a strictly stationary solution of (2.1).

For the proof of Theorem 2.2 we need some notation: define Φ and Θk as in (2.38).
Choose an invertible Cmp×mp matrix S such that S−1ΦS is in Jordan canonical
form, with H Jordan blocks Φ1, . . . ,ΦH , say, the hth Jordan block Φh starting in
row rh, with r1 := 1 < r2 < · · · < rH < mp + 1 =: rH+1. Let λh be the eigenvalue
associated with Φh, and, similarly to (2.7), denote by Ih the (rh+1−rh)×mp-matrix
with components Ih(i, j) = 1 if j = i + rh − 1 and Ih(i, j) = 0 otherwise. For
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h ∈ {1, . . . , H} and j ∈ Z let

Nj,h :=



1j≥0Φj−q
h

∑j∧q
k=0 Φq−k

h IhS
−1Θk, |λh| ∈ (0, 1),

−1j≤q−1Φj−q
h

∑q
k=(1+j)∨0 Φq−k

h IhS
−1Θk, |λh| > 1,

1j∈{0,...,mp+q−1}
∑j∧q
k=0 Φj−k

h IhS
−1Θk, λh = 0,

1j∈{0,...,q−1}
∑j
k=0 Φj−k

h IhS
−1Θk, |λh| = 1,

and
N j := S−1(NT

j,1, . . . , N
T
j,H)T ∈ Cmp×d. (2.41)

Further, let U and K be defined as in the statement of the theorem, and denote

Wt := UZt, t ∈ Z.

Then (Wt)t∈Z is an i.i.d. sequence. Equation (2.15) is then an easy consequence of
the fact that for a ∈ Cd the distribution of a∗W0 = (U∗a)∗Z0 is degenerate to a
Dirac measure if and only if U∗a ∈ K, i.e. if a ∈ UK = {0s} × Cd−s: taking for a
the ith unit vector in Cd for i ∈ {s+ 1, . . . , d}, we see that Wt must be of the form
(wTt , uT )T for some u ∈ Cd−s, and taking a = (bT , 0Td−s)T for b ∈ Cs we see that b∗w0

is not degenerate to a Dirac measure for b 6= 0s. The remaining proof of the necessity
of the conditions, the sufficiency of the conditions and the stated uniqueness will be
given in the next subsections.

2.5.1 The necessity of the conditions

Suppose that (Yt)t∈Z is a strictly stationary solution of (2.1). Define Y t by (2.40).
Then (Y t)t∈Z is a strictly stationary solution of (2.39) by Proposition 2.5. Hence,
by Theorem 2.1, there is f ′ ∈ Cmp, such that (Y ′t)t∈Z, defined by

Y ′t = f ′ +
∞∑

j=−∞
N jZt−j, t ∈ Z, (2.42)

is (possibly another) strictly stationary solution of

Y ′t − ΦY ′t−1 =
q∑

k=0
ΘkZt−k =

q∑
k=0

Θ̃kWt−k, t ∈ Z,

where Θ̃k := ΘkU
∗. The sum in (2.42) converges almost surely absolutely. Now

define Ah ∈ C(rh+1−rh)×s and Ch ∈ C(rh+1−rh)×(d−s) for h ∈ {1, . . . , H} such that
|λh| = 1 by

(Ah, Ch) :=
q∑

k=0
Φq−k
h IhS

−1Θ̃k. (2.43)
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By conditions (ii) and (iii) of Theorem 2.1, for every such h with |λh| = 1 there
exists a vector αh = (αh,1, . . . , αh,rh+1−rh)

T ∈ Crh+1−rh such that

(Ah, Ch)W0 = αh a.s.

with αh,1 = 0 if λh = 1. Since W0 = (wT0 , uT )T , this implies Ahw0 = αh − Chu, but
since b∗w0 is not degenerate to a Dirac measure for any b ∈ Cs \ {0s}, this gives
Ah = 0 and hence Chu = αh for h ∈ {1, . . . , H} such that |λh| = 1. Now let v ∈ Cs

and (W ′′
t )t∈Z be an i.i.d. N(

 v

u

 ,
 Ids 0s,d−s

0d−s,s 0d−s,d−s

)-distributed sequence, and

let Z ′′t := U∗W ′′
t . Then

(Ah, Ch)W ′′
0 = Chu = αh a.s. for h ∈ {1, . . . , H} : |λh| = 1

and

E log+
∥∥∥∥∥

q∑
k=0

Φq−k
h IhS

−1Θ̃kW
′′
0

∥∥∥∥∥ <∞ for h ∈ {1, . . . , H} : |λh| 6= 0, 1.

It then follows from Theorem 2.1 that there is a strictly stationary solution Y ′′t of
the ARMA(1, q) equation Y ′′t − ΦY ′′t−1 = ∑q

k=0 Θ̃kW
′′
t−k = ∑q

k=0 ΘkZ
′′
t−k, which can

be written in the form Y ′′t = f ′′ +∑∞
j=−∞N jZ

′′
t−j for some f ′′ ∈ Cmp. In particular,

(Y ′′t )t∈Z is a Gaussian process. Again from Proposition 2.5 it follows that there is a
Gaussian process (Y ′′t )t∈Z which is a strictly stationary solution of

Y ′′t −
p∑

k=1
ΨkY

′′
t−k =

q∑
k=0

Θ̃kW
′′
t−k =

q∑
k=0

ΘkZ
′′
t−k, t ∈ Z.

In particular, this solution is also weakly stationary. Hence it follows from Theo-
rem 2.3 that z 7→M(z) has only removable singularities on the unit circle and that
(2.17) has a solution g ∈ Cm, since EZ ′′0 = U∗(vT , uT )T . Hence we have established
that (i) and (iii’), and hence (iii), of Theorem 2.2 are necessary conditions for a
strictly stationary solution to exist.
To see the necessity of conditions (ii) and (ii’), we need the following lemma, which
is interesting in itself since it expresses the Laurent coefficients of M(z) in terms of
the Jordan canonical decomposition of Φ.

Lemma 2.6. With the notations of Theorem 2.2 and those introduced after Propo-
sition 2.5, suppose that condition (i) of Theorem 2.2 holds, i.e. that M(z) has only
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removable singularities on the unit circle. Denote by M(z) = ∑∞
j=−∞Mjz

j the Lau-
rent expansion of M(z) in a neighborhood of the unit circle. Then

M j := (MT
j ,M

T
j−1, . . . ,M

T
j−p+1)T = N jU

∗

 Ids 0s,d−s
0d−s,s 0d−s,d−s

 ∀ j ∈ Z. (2.44)

In particular,

M jUZt−j = N jZt−j −N jU
∗(0Ts , uT )T ∀ j, t ∈ Z. (2.45)

Proof. Define Λ :=
 Ids 0s,d−s

0d−s,s 0d−s,d−s

 and let (Z ′t)t∈Z be an i.i.d. N(0d, U∗ΛU)-

distri-buted noise sequence and define Y ′t := ∑∞
j=−∞MjUZ

′
t−j. Then (Y ′t )t∈Z is a

weakly and strictly stationary solution of P (B)Y ′t = Q(B)Z ′t by Theorem 2.3, and
the entries of Mj decrease geometrically as |j| → ∞. By Proposition 2.5, the process
(Y ′t)t∈Z defined by Y ′t = (Y ′t

T , Y ′t−1
T , . . . , Y ′t−p+1

T ) = ∑∞
j=−∞M jUZ

′
t−j is a strictly

stationary solution of

Y ′t − ΦY ′t−1 =
q∑
j=0

ΘjZ
′
t−j, t ∈ Z. (2.46)

Denoting Θj = 0mp,d for j ∈ Z \ {0, . . . , q}, it follows that
∞∑

k=−∞
(Mk − ΦMk−1)UZ ′t−k =

∞∑
k=−∞

ΘkZ
′
t−k,

and multiplying this equation from the right by Z ′Tt−j, taking expectations and
observing that M(z)Λ = M(z) we conclude that

(M j − ΦM j−1)U = (M j − ΦM j−1)ΛU = ΘjU
∗ΛU ∀ j ∈ Z. (2.47)

Next observe that since (Y ′t)t∈Z is a strictly stationary solution of (2.46), it follows
from Theorem 2.1 that (Y ′′t )t∈Z, defined by Y ′′t = ∑∞

j=−∞N jZ
′
t−j, is also a strictly

stationary solution of (2.46). With precisely the same argument as above it follows
that

(N j − ΦN j−1)U∗ΛU = ΘjU
∗ΛU ∀ j ∈ Z. (2.48)

Now let Lj := M j−N jU
∗Λ, j ∈ Z. Then Lj−ΦLj−1 = 0mp,d from (2.47) and (2.48),

and the entries of Lj decrease exponentially as |j| → ∞ since so do the entries of
M j and N j. It follows that for h ∈ {1, . . . , H} and j ∈ Z we have

IhS
−1Lj − ΦhIhS

−1Lj−1 = Ih

S−1Lj −


Φ1

. . .
ΦH

S−1Lj−1

 = 0rh+1−rh,d.

(2.49)
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Since Φh is invertible for h ∈ {1, . . . , H} such that λh 6= 0, this gives IhS−1L0 =
Φ−jh IhS

−1Lj for all j ∈ Z and λh 6= 0. Since for |λh| ≥ 1, ‖Φ−jh ‖ ≤ κjmp for all
j ∈ N0 for some constant κ, it follows that ‖IhS−1L0‖ ≤ κjmp‖IhS−1Lj‖, which
converges to 0 as j → ∞ by the geometric decrease of the coefficients of Lj as
j → ∞, so that IhS−1Lk = 0 for |λh| ≥ 1 and k = 0 and hence for all k ∈ Z.
Similarly, letting j → −∞, it follows that IhS−1Lk = 0 for |λh| ∈ (0, 1) and k = 0
and hence for all k ∈ Z. Finally, for h ∈ {1, . . . , H} such that λh = 0 observe that
IhS

−1Lk = Φmp
h IhS

−1Lk−mp for k ∈ Z by (2.49), and since Φmp
h = 0, this shows that

IhS
−1Lk = 0 for k ∈ Z. Summing up, we have S−1Lk = 0 and hence Mk = NkU

∗Λ
for k ∈ Z, which is (2.44). Equation (2.45) then follows from (2.15), since

M jUZt−j = M j

 wt−j

u

 = N jU
∗

 wt−j

0d−s

 = N jU
∗

UZt−j −
 0
u

 .
�

Returning to the proof of the necessity of conditions (ii) and (ii’) for a strictly
stationary solution to exist, observe that ∑∞j=−∞N jZt−j converges almost surely
absolutely by (2.42), and since the entries of N j decrease geometrically as |j| →
∞, this together with (2.45) implies that ∑∞j=−∞M jUZt−j converges almost surely
absolutely, which shows that (ii’) must hold. To see (ii), observe that for j ≥ mp+ q

we have

Nj,h =

Φj−q
h

∑q
k=0 Φq−k

h IhS
−1Θk, |λh| ∈ (0, 1),

0, |λh| 6∈ (0, 1),

while

N−1,h =

Φ−1−q
h

∑q
k=0 Φq−k

h IhS
−1Θk, |λh| > 1,

0, |λh| ≤ 1.

Since a strictly stationary solution of (2.39) exists, it follows from Theorem 2.1 that
E log+ ‖N jZ0‖ <∞ for j ≥ mp+ q and E log+ ‖N−1Z0‖ <∞. Together with (2.45)
this shows that condition (ii) of Theorem 2.2 is necessary.

2.5.2 The sufficiency of the conditions and uniqueness of the
solution

In this subsection we shall show that (i), (ii), (iii) as well as (i), (ii’), (iii) of Theo-
rem 2.2 are sufficient conditions for a strictly stationary solution of (2.1) to exist,
and prove the uniqueness assertion.



42 2 Strictly stationary solutions of multivariate ARMA equations

(a) Assume that conditions (i), (ii) and (iii) hold for some v ∈ Cs and g ∈ Cm. Then
E log+ ‖N−1Z0‖ <∞ and E log+ ‖Nmp+qZ0‖ <∞ by (ii) and (2.45). In particular,
since S is invertible, E log+ ‖N−1,hZ0‖ <∞ for |λh| > 1 and E log+ ‖Nmp+q,hZ0‖ <
∞ for |λh| ∈ (0, 1). The invertibility of Φh for λh 6= 0 then shows that

E log+
∥∥∥∥∥

q∑
k=0

Φq−k
h IhS

−1ΘkZ0

∥∥∥∥∥ <∞ ∀ h ∈ {1, . . . , H} : |λh| ∈ (0, 1) ∪ (1,∞). (2.50)

Now let (W ′′′
t )t∈Z be an i.i.d. N(

 v

u

 ,
 Ids 0s,d−s

0d−s,s 0d−s,d−s

) distributed sequence

and define Z ′′′t := U∗W ′′′
t . Then EZ ′′′t = U∗(vT , uT )T . By conditions (i) and (iii)

and Theorem 2.3, (Y ′′′t )t∈Z, defined by Y ′′′t := P (1)−1Q(1)EZ ′′′0 + ∑∞
j=−∞Mj(W ′′′

t−j −
(vT , uT )T ), is a weakly stationary solution of Y ′′′t −

∑p
k=1 ΨkY

′′′
t−k = ∑q

k=0 ΘkZ
′′′
t−k, and

obviously, it is also strictly stationary. It now follows in complete analogy to the ne-
cessity proof presented in Section 2.5.1 thatAh = 0 and Chu = (αh,1, . . . , αh,rh+1−rh)

T

for |λh| = 1, where (Ah, Ch) is defined as in (2.43) and αh,1 = 0 if λh = 1. Hence∑q
k=0 Φq−k

h IhS
−1Θ̃kW0 = (αh,1, . . . , αh,rh+1−rh)

T for |λh| = 1. By Theorem 2.1, this
together with (2.50) implies the existence of a strictly stationary solution of (2.39),
so that a strictly stationary solution (Yt)t∈Z of (2.1) exists by Proposition 2.5.
(b) Now assume that conditions (i), (ii’) and (iii) hold for some v ∈ Cs and g ∈ Cm

and define Y = (Yt)t∈Z by (2.18). Then Y is clearly strictly stationary. Since UZt =
(wTt , uT ), we further have, using (iii), that

P (B)Yt = P (1)g − P (1)M(1)
 v

u

+Q(B)U∗
 Ids 0s,d−s

0d−s,s 0d−s,d−s

 wt

u


= Q(1)U∗

 v

u

−Q(1)U∗
 v

0d−s

+Q(B)U∗
 wt

0d−s


= Q(B)U∗

 wt

u

 = Q(B)Zt

for t ∈ Z, so that (Yt)t∈Z is a solution of (2.1).
(c) Finally, the uniqueness assertion follows from the fact that by Proposition 2.5,
(2.1) has a unique strictly stationary solution if and only if (2.39) has a unique
strictly stationary solution. By Theorem 2.1, the latter is equivalent to the fact that
Φ does not have an eigenvalue on the unit circle, which in turn is equivalent to
detP (z) 6= 0 for z on the unit circle, since detP (z) = det(Idmp−Φz) (e.g. Gohberg
et al. [8], p. 14). This finishes the proof of Theorem 2.2.
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2.6 Discussion and consequences of main results
In this section we shall discuss the main results and consider special cases. Some
consequences of the results are also listed. We start with some comments on Theo-
rem 2.1. If Ψ1 has only eigenvalues of absolute value in (0, 1)∪ (1,∞), then a much
simpler condition for stationarity of (2.3) can be given:

Corollary 2.7. Let the assumptions of Theorem 2.1 be satisfied and suppose that
Ψ1 has only eigenvalues of absolute value in (0, 1)∪(1,∞). Then a strictly stationary
solution of (2.3) exists if and only if

E log+
∥∥∥∥∥
( q∑
k=0

Ψq−k
1 Θk

)
Z0

∥∥∥∥∥ <∞. (2.51)

Proof. It follows from Theorem 2.1 that there exists a strictly stationary solution if
and only if (2.10) holds for every h ∈ {1, . . . , H}. But this is equivalent to

E log+ ‖(
q∑

k=0
(S−1Ψ1S)q−kIdmS−1Θk)Z0‖ <∞,

which in turn is equivalent to (2.51), since S is invertible and hence for a random
vector R ∈ Cm we have E log+ ‖SR‖ <∞ if and only if E log+ ‖R‖ <∞. �

Remark 2.8. Suppose that Ψ1 has only eigenvalues of absolute value in (0, 1) ∪
(1,∞). Then E log+ ‖Z0‖ is a sufficient condition for (2.3) to have a strictly sta-
tionary solution, since it implies (2.51). But it is not necessary. For example, let
q = 1, m = d = 2 and

Ψ1 =
2 0

0 3

 , Θ0 = Id2, Θ1 =
−1 −1

1 −4

 , so that
1∑

k=0
Ψq−k

1 Θk =
1 −1

1 −1

 .
By (2.51), a strictly stationary solution exists for example if the i.i.d. noise (Zt)t∈Z
satisfies Z0 = (R0, R0 +R′0)T , where R′0 is a random variable with finite log-moment
and R0 a random variable with infinite log-moment. In particular, E log+ ‖Z0‖ =∞
is possible.

An example like in the remark above cannot occur if the matrix ∑q
k=0 Ψq−k

1 Θk is
invertible if m = d. More generally, we have the following result:

Corollary 2.9. Let the assumptions of Theorem 2.1 be satisfied and suppose that
Ψ1 has only eigenvalues of absolute value in (0, 1) ∪ (1,∞). Suppose further that
d ≤ m and that ∑q

k=0 Ψq−k
1 Θk has full rank d. Then a strictly stationary solution of

(2.3) exists if and only if E log+ ‖Z0‖ <∞.
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Proof. The sufficiency of the condition has been observed in Remark 2.8, and for
the necessity, observe that with A := ∑q

k=0 Ψq−k
1 Θk and U := AZ0 we must have

E log+ ‖U‖ <∞ by (2.51). Since A has rank d, the matrix ATA ∈ Cd×d is invertible
and we have Z0 = (ATA)−1ATU , i.e. the components of Z0 are linear combinations
of those of U . It follows that E log+ ‖Z0‖ <∞. �

Next, we shall discuss the conditions of Theorem 2.2 in more detail. The following
remark is obvious from Theorem 2.2. It implies in particular the well known fact
that E log+ ‖Z0‖ < ∞ together with detP (z) 6= 0 for all z on the unit circle is
sufficient for the existence of a strictly stationary solution.

Remark 2.10. (a) E log+ ‖Z0‖ < ∞ is a sufficient condition for (ii) of Theo-
rem 2.2.
(b) detP (1) 6= 0 is a sufficient condition for (iii) of Theorem 2.2.
(c) detP (z) 6= 0 for all z on the unit circle is a sufficient condition for (i) and (iii)
of Theorem 2.2.

With the notations of Theorem 2.2, denote

Q̃(z) := Q(z)U∗
 Ids 0s,d−s

0d−s,s 0d−s,d−s

 , (2.52)

so that M(z) = P−1(z)Q̃(z). It is natural to ask if conditions (i) and (iii) of Theo-
rem 2.2 can be replaced by a removability condition on the singularities on the unit
circle of (detP (z))−1 det(Q̃(z)) if d = m. The following corollary shows that this
condition is indeed necessary, but it is not sufficient as pointed out in Remark 2.12.

Corollary 2.11. Under the assumptions of Theorem 2.1, with Q̃(z) as defined in
(2.52), a necessary condition for a strictly stationary solution of the ARMA(p, q)
equation (2.1) to exist is that the function z 7→ | detP (z)|−2det(Q̃(z)Q̃(z)∗) has only
removable singularities on the unit circle. If additionally d = m, then a necessary
condition for a strictly stationary solution to exist is that the matrix rational function
z 7→ (detP (z))−1 det(Q̃(z)) has only removable singularities on the unit circle.

Proof. The second assertion is immediate from Theorem 2.2, and the first assertion
follows from the fact that if M(z) as defined in Theorem 2.2 has only removable
singularities on the unit circle, then so does M(z)M(z)∗ and hence det(M(z)M(z)∗).
�
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Remark 2.12. In the case d = m and E log+ ‖Z0‖ < ∞, the condition that the
matrix rational function z 7→ (detP (z))−1det Q̃(z) has only removable singularities
on the unit circle is not sufficient for the existence of a strictly stationary solu-
tion of (2.3). For example, let p = q = 1, m = d = 2 and Ψ1 = Θ0 = Id2,

Θ1 =
−1 0

1 −1

, (Zt)t∈Z be i.i.d. standard normally distributed and U = Id2. Then

detP (z) = det Q̃(z) = (1 − z)2, but it does not hold that Ψ1Θ0 + Θ1 = 0, so that
condition (iii) of Theorem 2.1 is violated and no strictly stationary solution can
exist.

Next, we shall discuss condition (i) of Theorem 2.2 in more detail. Recall (e.g.
Kailath [12]) that a Cm×m matrix polynomial R(z) is a left-divisor of P (z), if there
is a matrix polynomial P1(z) such that P (z) = R(z)P1(z). The matrix polynomials
P (z) and Q̃(z) are left-coprime, if every common left-divisor R(z) of P (z) and Q̃(z)
is unimodular, i.e. the determinant of R(z) is constant in z. In that case, the matrix
rational function P−1(z)Q̃(z) is also called irreducible. With Q̃ as defined in (2.52),
it is then easy to see that condition (i) of Theorem 2.2 is equivalent to

(i’) There exist Cm×m-valued matrix polynomials P1(z) and R(z) and a Cm×d-
valued matrix polynomial Q1(z) such that P (z) = R(z)P1(z), Q̃(z) = R(z)Q1(z)
for all z ∈ C and detP1(z) 6= 0 for all z on the unit circle.

That (i’) implies (i) is obvious, and that (i) implies (i’) follows by taking R(z) as the
greatest common left-divisor (cf. [12], p. 377) of P (z) and Q̃(z). The thus remaining
right-factors P1(z) and Q1(z) are then left-coprime, and since the matrix rational
function M(z) = P−1(z)Q̃(z) = P−1

1 (z)Q1(z) has no poles on the unit circle, it
follows from page 447 in Kailath [12] that detP1(z) 6= 0 for all z on the unit circle,
which establishes (i’). As an immediated consequence, we have:

Remark 2.13. With the notation of the Theorem 2.2 and (2.52), assume addi-
tionally that P (z) and Q̃(z) are left-coprime. Then condition (i) of Theorem 2.2 is
equivalent to detP (z) 6= 0 for all z on the unit circle.

Next we show how a slight extension of Theorem 4.1 of Bougerol and Picard [2],
which characterized the existence of a strictly stationary non-anticipative solution
of the ARMA(p, q) equation (2.1), can be deduced from Theorem 2.2. By a non-
anticipative strictly stationary solution we mean a strictly stationary solution Y =
(Yt)t∈Z such that for every t ∈ Z, Yt is independent of the sigma algebra generated
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by (Zs)s>t, and by a causal strictly stationary solution we mean a strictly stationary
solution Y = (Yt)t∈Z such that for every t ∈ Z, Yt is measurable with respect to the
sigma algebra generated by (Zs)s≤t. Clearly, since (Zt)t∈Z is assumed to be i.i.d.,
every causal solution is also non-anticipative. The equivalence of (i) and (iii) in the
theorem below was already obtained by Bougerol and Picard [2] under the additional
assumption that E log+ ‖Z0‖ <∞.

Theorem 2.14. In addition to the assumptions and notations of Theorem 2.2, as-
sume that the matrix polynomials P (z) and Q̃(z) are left-coprime, with Q̃(z) as
defined in (2.52). Then the following are equivalent:

(i) There exists a non-anticipative strictly stationary solution of (2.1).
(ii) There exists a causal strictly stationary solution of (2.1).
(iii) detP (z) 6= 0 for all z ∈ C such that |z| ≤ 1 and if M(z) = ∑∞

j=0Mjz
j denotes

the Taylor expansion of M(z) = P−1(z)Q̃(z), then

E log+ ‖MjUZ0‖ <∞ ∀ j ∈ {mp+ q − p+ 1, . . . ,mp+ q}. (2.53)

Proof. The implication “(iii) ⇒ (ii)” is immediate from Theorem 2.2 and equa-
tion (2.18), and “(ii) ⇒ (i)” is obvious since (Zt)t∈Z is i.i.d. Let us show that “(i)
⇒ (iii)”: since a strictly stationary solution exists, the function M(z) has only re-
movable singularities on the unit circle by Theorem 2.2. Since P (z) and Q̃(z) are
left-coprime, this implies by Remark 2.13 that detP (z) 6= 0 for all z ∈ C such that
|z| = 1. In particular, by Theorem 2.2, the strictly stationary solution is unique and
given by (2.18). By assumption, this solution must then be non-anticipative, so that
we conclude that the distribution of MjUZt−j must be degenerate to a constant
for all j ∈ {−1,−2, . . .}. But since UZ0 = (wT0 , uT )T and Mj = (M ′

j, 0m,d−s) with
certain matrices M ′

j ∈ Cm,s, it follows for j ≤ −1 that MjUZ0 = M ′
jw0, so that

M ′
j = 0 since no non-trivial linear combination of the components of w0 is constant

a.s. It follows that Mj = 0 for j ≤ −1, i.e. M(z) has only removable singularities for
|z| ≤ 1. Since P (z) and Q̃(z) are assumed to be left-coprime, it follows from page
447 in Kailath [12] that detP (z) 6= 0 for all |z| ≤ 1. Equation (2.53) is an immediate
consequence of Theorem 2.2. �

It may be possible to extend Theorem 2.14 to situations without assuming that P (z)
and Q̃(z) are left-coprime, but we did not investigate this question.
The last result is on the interplay of the existence of strictly and of weakly stationary
solutions of (2.1) when the noise is i.i.d. with finite second moments:
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Theorem 2.15. Let m, d, p ∈ N, q ∈ N0, and let (Zt)t∈Z be an i.i.d. sequence of
Cd-valued random vectors with finite second moment. Let Ψ1, . . . ,Ψp ∈ Cm×m and
Θ0, . . . ,Θq ∈ Cm×d. Then the ARMA(p, q) equation (2.1) admits a strictly stationary
solution if and only if it admits a weakly stationary solution, and in that case, the
solution given by (2.20) is both a strictly stationary and weakly stationary solution
of (2.1).

Proof. It follows from Theorem 2.3 that if a weakly stationary solution exists, then
one choice of such a solution is given by (2.20), which is clearly also strictly station-
ary. On the other hand, if a strictly stationary solution exists, then by Theorem 2.2,
one such solution is given by (2.18), which is clearly weakly stationary. �

Finally, we remark that most of the results presented in this chapter can be applied
also to the case when (Zt)t∈Z is an i.i.d. sequence of Cd×d′ random matrices and
(Yt)t∈Z is Cm×d′-valued. This can be seen by stacking the columns of Zt into a Cdd′-
variate random vector Z ′t, those of Yt into a Cmd′-variate random vector Y ′t , and
considering the matrices

Ψ′k :=


Ψk

. . .
Ψk

 ∈ Cmd′×md′ and Θ′k :=


Θk

. . .
Θk

 ∈ Cmd′×dd′ .
The question of existence of a strictly stationary solution of (2.1) with matrix-
valued Zt and Yt is then equivalent to the existence of a strictly stationary solution
of Y ′t −

∑p
k=1 Ψ′kY ′t−k = ∑q

k=0 Θ′kZ ′t−k.





3 Strictly stationary solutions of
ARMA equations with fractional
noise and ARIMA processes

Based on [18]: Vollenbröker, B. (2011):
Strictly stationary solutions of ARMA equations with fractional noise.
Journal of Time Series Analysis, to appear.

Abstract. We obtain necessary and sufficient conditions for the existence of strictly
stationary solutions of ARIMA equations with independent and identically dis-
tributed noise. No a priori assumptions are made on the driving noise sequence. We
interpret ARIMA equations as ARMA equations with fractional noise, and charac-
terize for which i.i.d. noise sequences the series defining fractional noise converges
almost surely.

3.1 Introduction

Let (Zt)t∈Z be a real-valued noise sequence of random variables defined on some
probability space (Ω,F ,P) and define polynomials

Φ(z) := 1−
p∑

k=1
ϕkz

k, and Θ(z) := 1 +
q∑

k=1
θkz

k, z ∈ C, (3.1)

with p, q ∈ N0, ϕ1, ..., ϕp, θ1, ..., θq ∈ C, ϕp 6= 0 and θq 6= 0, where ϕ0 := θ0 := 1.
For any D ∈ R \ {1, 2, ...} and B the backwards shift operator, define the difference
operator ∇D = (1−B)D by means of the binomial expansion,

∇D = (1−B)D =
∞∑
j=0

(−1)j
(
D

j

)
Bj.

49
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For (Zt)t∈Z weak white noise, i.e. uncorrelated and with zero mean and finite second
moment, Granger and Joyeux [10] and Hosking [11] introduced weak ARIMA(p,D,q)
processes as weakly stationary solutions of the equation

Φ(B)∇DYt = Θ(B)Zt, t ∈ Z. (3.2)

It is shown in [11] that a sufficient condition for a weak ARIMA process to exist is
D < 1

2 and Φ(z) having no zeros on the unit circle. Furthermore, they found out
that a sufficient condition for a solution of (3.2) to be invertible is D > −1

2 and
Θ(z) having no zeros on the unit circle.
A couple of years later, Kokoszka and Taqqu [14] and Kokoszka [15] developed the
theory of infinite variance stable fractional ARIMA(p,D,q) time series defined by
the equation

Φ(B)Yt = [Θ(B)∇−D]Zt, t ∈ Z, (3.3)

where the noise sequence (Zt)t∈Z is i.i.d. symmetric α-stable (in [14]) or belongs to
the domain of attraction of an α-stable law (in [15]), respectively, with 0 < α < 2
and fractional D such that the right hand side of (3.3) converges. Among other
results, they obtained a unique strictly stationary solution of (3.3) with this specific
noise in terms of the Laurent series of Θ(z)(1 − z)−D/Φ(z), provided Φ(z) 6= 0 for
all |z| ≤ 1, and Φ(z) and Θ(z) having no roots in common.
In this chapter, we study a slightly different approach by interpreting Equation (3.3)
as an ARMA(p,q) equation with fractional noise ∇−DZt, i.e.

Φ(B)Yt = Θ(B)[∇−DZt], t ∈ Z, (3.4)

whereD ∈ R\{−1,−2, ...}, and (Zt)t∈Z is an i.i.d. sequence of real random variables,
not necessarily with finite variance. Here, the fractional noise has a representation
∇−DZt = ∑∞

j=0 ψjZt−j with coefficients

ψj = (−1)j
(
−D
j

)
=

∏
0<k≤j

k − 1 +D

k
= Γ(j +D)

Γ(j + 1)Γ(D) , j = 0, 1, 2, ... (3.5)

Note that an application of Stirling’s formula, according to which Γ(x) ∼
√

2πe−x+1

(x− 1)x−1/2 as x→∞, yields

ψj ∼
jD−1

Γ(D) as j →∞, (3.6)
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and this implies that there are constants 0 < C1 ≤ C2 such that

C1j
D−1 ≤ |ψj| ≤ C2j

D−1, j ∈ N. (3.7)

Now, we call a complex-valued process Y := (Yt)t∈Z defined on the same prob-
ability space (Ω,F ,P) a strict ARIMA(p,D,q) process (or more precisely a strict
ARMA(p,q) process with fractional noise) if the series ∇−DZt = ∑∞

j=0 ψjZt−j con-
verges almost surely and Y is a strictly stationary solution of (3.4). Our aim is to
give necessary and sufficient conditions for such a process to exist when the noise
sequence (Zt)t∈Z is i.i.d. Such conditions are given in Theorem 3.5, where also an
explicit solution to (3.4), given its existence, is derived and the question of unique-
ness of this solution is solved. In contrast to the results in [14] and [15], we make
no a priori assumptions on the roots of Φ and Θ, and allow for more general noise
distributions.
As the definition of a strict ARIMA(p,D,q) process requires the series ∇−DZt =∑∞
j=0 ψjZt−j to converge almost surely, questions of convergence of this series need

to be addressed before being able to give equivalent conditions for the existence of
a strict ARIMA(p,D,q) process. These questions are solved in Section 3.2, where
Theorem 3.1 gives a necessary and sufficient condition for ∑∞j=0 ψjZt−j to converge
almost surely in terms of moment conditions on Z0.
Throughout this chapter we restrict ourselves to the casesD ∈ (−∞, 0)\{−1,−2, ...}
and 0 < D < 1

2 . This is because for D ≥ 1
2 , the series ∑∞j=0 ψjZt−j can only converge

for Zt ≡ 0, t ∈ Z, because in this case the series ∑∞j=0 ψ
2
j does not converge due to

the asymptotic behaviour (3.6) of the coefficients ψj. But the convergence of this
series is necessary for ∑∞j=0 ψjZt−j to converge (see Chow and Teicher [6], Theorem
5.1.4), i.e. fractional noise ∇−DZt cannot exist for D ≥ 1

2 unless Zt ≡ 0. In the
case D ∈ {0,−1,−2, ...}, Equation (3.4) reduces to an ARMA equation with i.i.d.
noise sequence and the question of existence and uniqueness of strictly stationary
solutions to this equation is addressed in Brockwell and Lindner [4] (cf. Theorem
1.4 in this thesis).

3.2 Fractional noise

In this section we characterize for which i.i.d. noise sequences (Zt)t∈Z the series
∇−DZt = ∑∞

j=0 ψjZt−j defining fractional noise converges almost surely. Observe
that almost sure convergence of this sum is equivalent to its convergence in distri-
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bution, being a sum of independent random variables (see Kallenberg [13], Theorem
4.18).

Theorem 3.1. Let (Zt)t∈Z be an i.i.d. sequence of real random variables and ψj

defined as in (3.5). Then for D ∈ (−∞, 0) \ {−1,−2, ...}, ∑∞j=0 ψjZt−j converges
almost surely if and only if E|Z0|1/(1−D) <∞. For D ∈ (0, 1

2),
∑∞
j=0 ψjZt−j converges

almost surely if and only if E|Z0|1/(1−D) <∞ and EZ0 = 0.

Proof. (a) Let D ∈ (−∞, 0) \ {−1,−2, ...}. To show the sufficiency of the condition
let E|Z0|1/(1−D) < ∞. We apply Kolmogorov’s three series criterion (see Kallen-
berg [13], Theorem 4.18). According to this criterion, ∑∞j=0 ψjZt−j converges almost
surely if and only if the following conditions hold: ∑∞j=1P(|ψjZt−j| > 1) < ∞,∑∞
j=1E(ψjZt−j1{|ψjZt−j |≤1}) converges, and ∑∞j=1V(ψjZt−j1{|ψjZt−j |≤1}) <∞.

To show the convergence of the first series, observe that
∞∑
j=1
P(|ψjZt−j| > 1) =

∞∑
j=1
P(|Z0| > |ψ−1

j |)

≤
∞∑
j=1
P(|Z0| > C−1

2 j1−D)

=
∞∑
j=1
P(|Z0|1/(1−D) > C

1/(D−1)
2 j) <∞,

the second inequality following from (3.7) and the last inequality from the condition
E|Z0|1/(1−D) <∞.
To show the convergence of the second series, observe that

∞∑
j=1
E
∣∣∣ψjZt−j1{|ψjZt−j |≤1}

∣∣∣ ≤ E

|Z0|
∞∑
j=1

ψj1{|ψj |≤|Z0|−1}


≤ E

|Z0|
∞∑
j=1

C2j
D−11{C1jD−1≤|Z0|−1}


= C2E

|Z0|
∞∑

j=d(C1|Z0|)1/(1−D)e
jD−1

 . (3.8)

From the integral criterion for convergence we know that there is a constant C3 ∈
(0,∞) such that for C1|v| > 2

∞∑
j=d(C1|v|)1/(1−D)e

jD−1 ≤
∫ ∞
d(C1|v|)1/(1−D)e−1

yD−1dy ≤ C3(C1|v|)D/(1−D), (3.9)
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and (3.9) obviously also holds true for C1|v| ≤ 2 by choosing C3 large enough. Thus
it follows that

∞∑
j=1
E
∣∣∣ψjZt−j1{|ψjZt−j |≤1}

∣∣∣ ≤ C2C3E
(
|Z0|(C1|Z0|)D/(1−D)

)
= C

D/(1−D)
1 C2C3E|Z0|1/(1−D) <∞.

To show the convergence of the third series, observe that it follows analogue to (3.8)
that

∞∑
j=1
V
(
ψjZt−j1{|ψjZt−j |≤1}

)
≤ E

Z2
0

∞∑
j=1

ψ2
j1{|ψj |≤|Z0|−1}


≤ C2

2 · E

Z2
0

∞∑
j=d(C1|Z0|)1/(1−D)e

j2D−2

 , (3.10)

and then analogue to Equation (3.9) it follows with the integral criterion for con-
vergence that there is a constant C3 ∈ (0,∞) such that

∞∑
j=1
V
(
ψjZt−j1{|ψjZt−j |≤1}

)
≤ C2

2 · E
(
Z2

0C3(C1|Z0|)(2D−1)/(1−D)
)

= C
(2D−1)/(1−D)
1 C2

2C3 ·E
(
|Z0|1/(1−D)

)
<∞.(3.11)

Altogether now, the three series criterion of Kolmogorov yields the claimed almost
sure convergence of ∑∞j=0 ψjZt−j.
For the necessity of the condition suppose that ∑∞j=0 ψjZt−j converges a.s. Applying
Equation (3.7), it follows that

∞∑
j=1
P(|Z0|1/(1−D) > C

1/(D−1)
1 j) ≤

∞∑
j=1
P(|Z0| > |ψ−1

j |)

=
∞∑
j=1
P(|ψjZt−j| > 1) <∞, (3.12)

so that E|Z0|1/(1−D) < ∞ as claimed. Here we applied the Borel-Cantelli lemma in
the last inequality.
(b) Let D ∈ (0, 1

2). For the sufficiency let E|Z0|1/(1−D) < ∞ and EZ0 = 0. Denote
Sn := ∑n

j=1 ψjZt−j. Since EZ0 = 0 and since (Zt)t∈Z is i.i.d., (Sn)n∈N is a martingale
with respect to its natural filtration.
By Theorem 1 of Manstavičius [17], there exists a constant c such that

E |Sn| ≤ c

 n∑
j=1

∫
{|u|<1}

u2 dPψjZ̃0
(u)
1/2

+ c
n∑
j=1

∫
{|u|≥1}

|u| dPψjZ̃0
(u),
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where (Z̃t)t∈Z is the corresponding symmetrized version of (Zt)t∈Z.
In the following technical Lemma 3.2 below we show that these both summands are
uniformly bounded in n, so that we get supn∈NE|Sn| <∞. Hence (Sn)n∈N is an L1-
bounded martingale and so it converges a.s. (see e.g. Kallenberg [13], Theorem 7.18).

For the necessity of the condition suppose that ∑∞j=0 ψjZt−j converges almost surely.
Similarly to above in part (a), it follows that E|Z0|1/(1−D) <∞. Denote Wt := Zt−
EZ0. Then E|Wt|1/(1−D) <∞ and EWt = 0. From the sufficiency part it follows that∑∞
j=0 ψjWt−j converges almost surely and hence∑∞j=0 ψjEZ0 = ∑∞

j=0 ψj(Zt−j−Wt−j)
converges a.s. But this implies EZ0 = 0, since ∑∞j=0 ψj does not converge due to (3.6)
and D ∈ (0, 1

2). �

Lemma 3.2. With the notations and assumptions of the previous Theorem 3.1, let
E|Z0|1/(1−D) <∞, and assume Z0 to be symmetric. Then

∞∑
j=1

∫
{|u|<1}

u2dPψjZ0(u) <∞, (3.13)

and for 0 < p < 1
1−D

∞∑
j=1

∫
{|u|≥1}

|u|pdPψjZ0(u) <∞. (3.14)

Proof. To establish the finiteness of (3.13), observe that analogue to Equations
(3.10) and (3.11) in the proof of Theorem 3.1, we can find a constant C3 ∈ (0,∞)
such that

∞∑
j=1

∫
{|u|<1}

u2dPψjZ0(u) ≤
∞∑
j=1

∫
{|v|<|ψj |−1}

v2ψ2
jdPZ0(v)

≤ C
(2D−1)/(1−D)
1 C2

2C3

∫ ∞
−∞
|v|1/(1−D)dPZ0(v) <∞,

the last inequality following from E|Z0|1/(1−D) <∞.
Now, let 0 < p < 1

1−D . Then
∞∑
j=1

∫
{|u|≥1}

|u|pdPψjZ0(u) =
∞∑
j=1

∫
{|v|≥|ψ−1

j |}
|v|p|ψj|pdPZ0(v)

≤ Cp
2

∞∑
j=1

∫
{|v|≥C−1

2 j1−D}
|v|p(jD−1)pdPZ0(v)

≤ Cp
2

∫ ∞
−∞
|v|p

∑
j∈N:

j≤(C2|v|)1/(1−D)

jp(D−1)dPZ0(v).
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Again it follows with the integral criterion for convergence analogue to (3.9) that
there is a constant C4 ∈ (0,∞) such that

∑
j∈N:

j≤(C2|v|)1/(1−D)

jp(D−1) ≤ C4
(
(C2|v|)1/(1−D)

)p(D−1)+1
for every v ∈ R.

So it follows that
∞∑
j=1

∫
{|u|≥1}

|u|pdPψjZ0(u) ≤ C
1/(1−D)
2 C4

∫ ∞
−∞
|v|1/(1−D)dPZ0(v) <∞,

the last inequality following from E|Z0|1/(1−D) < ∞. This shows (3.14) and hence
the claim. �

Remark 3.3. Note that the proof of Theorem 3.1 does not rely on the special repre-
sentation of the ψj as the coefficients of the binomial series, but rather only on their
asymptotic behaviour. So the assertion of the theorem is true for any real sequence
(ψj)j∈Z with ψj ∼ CjD−1 as j →∞, C 6= 0.

Since E|Z0|1/(1−D) is necessary for ∇−DZt = ∑∞
j=0 ψjZt−j to converge almost surely,

it is natural to ask if ∇−DZt does also have finite 1/(1 − D)-moment. The next
proposition clearifies this question.

Proposition 3.4. Let (Zt)t∈Z be an i.i.d. sequence of random variables and Vt :=
∇−DZt = (1−B)−DZt for D ∈ (−∞, 1

2)\{0,−1,−2, ...}, t ∈ Z, such that the series
defining Vt converges almost surely. Then E|Vt|1/(1−D)−ε <∞ for all ε ∈ (0, 1/(1−
D)). Moreover, E|Vt|1/(1−D) <∞ if and only if E(|Z0|1/(1−D) log+ |Z0|) <∞.

Proof. Recall that Vt = ∇−DZt = ∑∞
j=0 ψjZt−j, where

ψj = Γ(j +D)
Γ(j + 1)Γ(D) ∼

jD−1

Γ(D) as j →∞.

By Theorem 3.1 we know that E|Z0|1/(1−D) <∞ for D ∈ (−∞, 1
2) \ {0,−1,−2, ...}.

Let ε ∈ (0, 1/(1−D)). Applying Fatou’s lemma, it follows that

E|Vt − Zt|1/(1−D)−ε ≤ lim inf
m→∞

E

∣∣∣∣∣∣
m∑
j=1

ψjZt−j

∣∣∣∣∣∣
1/(1−D)−ε

Via symmetrizing, we may assume without loss of generality that Z0 is symmetric.
Then by Theorems 1 and 2 of Manstavičius [17], there exists a constant cε = cε(D)



56 3 ARMA equations with fractional noise and ARIMA processes

such that

E

∣∣∣∣∣∣
m∑
j=1

ψjZt−j

∣∣∣∣∣∣
1/(1−D)−ε

≤ cε

 m∑
j=1

∫
{|u|<1}

u2dPψjZ0(u)
(1/(1−D)−ε)/2

+cε
m∑
j=1

∫
{|u|≥1}

|u|1/(1−D)−εdPψjZ0(u).

Hence, for showing that E|Vt|1/(1−D)−ε <∞, it is sufficient to observe that

∞∑
j=1

∫
{|u|<1}

u2dPψjZ0(u) <∞

and
∞∑
j=1

∫
{|u|≥1}

|u|1/(1−D)−εdPψjZ0(u) <∞,

which follows immediately with Lemma 3.2.
For the sufficiency of the asserted equivalence let E(|Z0|1/(1−D) log+ |Z0|) <∞. The
assertion then follows analogue to above when observing that there is a constant
C3 ∈ (0,∞) such that

∞∑
j=1

∫
{|u|≥1}

|u|1/(1−D)dPψjZ0(u)

=
∞∑
j=1

∫
{|v|≥|ψ−1

j |}
|v|1/(1−D)|ψj|1/(1−D)dPZ0(v)

≤ C
1/(1−D)
2

∞∑
j=1

∫
{|v|≥C−1

2 j1−D}
|v|1/(1−D)(jD−1)1/(1−D)dPZ0(v)

= C
1/(1−D)
2

∫ ∞
−∞
|v|1/(1−D) ∑

j∈N:
j≤(C2|v|)1/(1−D)

j−1dPZ0(v)

≤ C
1/(1−D)
2 C3

∫ ∞
−∞
|v|1/(1−D) log+(C2|v|+ 1)dPZ0(v) <∞.

For the necessity let E|Vt|1/(1−D) < ∞. We show that E(|Z0|1/(1−D) log+ |Z0|) < ∞
and do this indirectly by assuming that this moment is not finite. Observe that it
follows from Theorems 1 and 2 in [17] that there is a universal constant c(D) such
that

E|X|1/(1−D) ≤ c(D) · E|X + Y |1/(1−D),
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whenever X, Y are symmetric and independent and E|X+Y |1/(1−D) <∞. Applying
this to ∇−DZt = Z0 +∑m

j=1 ψjZ−j +∑∞
j=m+1 ψjZ−j, we get that

sup
m∈N

E

∣∣∣∣∣∣
m∑
j=1

ψjZt−j

∣∣∣∣∣∣
1/(1−D)

<∞. (3.15)

Now, for all m ∈ N, t ≥ 0, let

At,m :=
 m∑
j=1

∫
{|u|<t}

u2dPψjZ0(u)
1/(2−2D)

, Bt,m :=
m∑
j=1

∫
{|u|≥t}

|u|1/(1−D)dPψjZ0(u).

Then it follows with (3.15) and again Theorems 1 and 2 in [17] that

sup
m∈N

inf
t≥0

(At,m +Bt,m) <∞.

Thus there is a constant C <∞ and a sequence (tm)m∈N with tm ≥ 0 such that

Atm,m +Btm,m ≤ C for all m ∈ N. (3.16)

Then we shall see that

tm →∞ as m→∞. (3.17)

Otherwise we could find a subsequence (tmk)k∈N and T > 0 such that tmk ≤ T for
all k ∈ N, and thus

Btmk ,mk
=

mk∑
j=1

∫
{|u|≥tmk}

|u|1/(1−D)dPψjZ0(u)

≥
mk∑
j=1

∫
{|u|≥T}

|u|1/(1−D)dPψjZ0(u) for all k ∈ N.

So it follows that there are constants C4, C5 ∈ (0,∞) such that

sup
k∈N

Btmk ,mk
≥

∞∑
j=1

∫
{|u|≥T}

|u|1/(1−D)dPψjZ0(u)

=
∞∑
j=1

∫
{|v|≥|ψj |−1T}

|v|1/(1−D)|ψj|1/(1−D)dPZ0(v)

≥ C
1/(1−D)
1

∞∑
j=1

∫
{|v|≥C−1

1 j1−DT}
|v|1/(1−D)j−1dPZ0(v)

= C
1/(1−D)
1

∫ ∞
−∞
|v|1/(1−D) ∑

j∈N:
j≤(C1|v|T−1)1/(1−D)

j−1dPZ0(v)

≥ C
1/(1−D)
1 C4

∫ ∞
−∞
|v|1/(1−D) log+(C1|v|T−1)dPZ0(v)

≥ C
1/(1−D)
1 C5

∫ ∞
−∞
|v|1/(1−D) log+ |v|dPZ0(v).
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So, by the assumption that E(|Z0|1/(1−D) log+ |Z0|) is not finite, it then follows that
supk∈NBtmk ,mk

is not finite, which is a contradiction to (3.16) because Atm,m ≥ 0
for all m ∈ N. Thus indeed (3.17) holds.
Finally, this gives

sup
m∈N

Atm,m = sup
m∈N

 m∑
j=1

∫
{|u|<tm}

u2dPψjZ0(u)
1/(2−2D)

≥ sup
m∈N

(∫
{|u|<tm}

u2dPψ1Z0(u)
)1/(2−2D)

=
(∫ ∞
−∞

u2dPψ1Z0(u)
)1/(2−2D)

,

but since 1/(1 −D) < 2 and E(|Z0|1/(1−D) log+ |Z0|) is not finite, this is not finite,
which is a contradiction to (3.16). Thus it follows that E(|Z0|1/(1−D) log+ |Z0|) <∞
as asserted. �

3.3 Strict ARMA processes with fractional noise

After having resolved the question of convergence of ∇−DZt, we are able to state a
complete characterization of the existence and uniqueness of strict ARIMA(p,D,q)
processes. Keep in mind that the definition of such processes requires the series
∇−DZt = ∑∞

j=0 ψjZt−j, with (ψj)j=0,1,2,... as in (3.5), to converge almost surely.

Theorem 3.5. Let (Zt)t∈Z be a nondeterministic i.i.d. sequence of real random vari-
ables and let Φ and Θ be defined as in (3.1).
If D ∈ (0, 1

2), the ARIMA equation

Φ(B)Yt = Θ(B)[∇−DZt], t ∈ Z, (3.18)

admits a strictly stationary solution (Yt)t∈Z if and only if all singularities of Θ(z)/Φ(z)
on the unit circle are removable, E|Z0|1/(1−D) <∞ and EZ0 = 0.
If D ∈ [−1

2 , 0), the ARIMA equation (3.18) admits a strictly stationary solution
(Yt)t∈Z if and only if all singularities of Θ(z)/Φ(z) on the unit circle are removable
and E|Z0|1/(1−D) <∞.
If D ∈ (−∞,−1

2)\{−1,−2, ...}, let Φ(1) 6= 0. Then the ARIMA equation (3.18) ad-
mits a strictly stationary solution (Yt)t∈Z if and only if all singularities of Θ(z)/Φ(z)
on the unit circle are removable and E|Z0|1/(1−D) <∞.
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In all three cases, a strictly stationary solution of (3.18) is given by

Yt =
∞∑

j=−∞
ξj
(
∇−DZt−j

)
, t ∈ Z, (3.19)

where
∞∑

j=−∞
ξjz

j = Θ(z)
Φ(z) , 1− c < |z| < 1 + c for some c ∈ (0, 1),

is the Laurent expansion of Θ(z)/Φ(z) around zero. The sum in (3.19) converges
absolutely almost surely, in the sense that ∑∞j=−∞ |ξj||∇−DZt−j| <∞ a.s. If Φ(z) 6= 0
for all |z| = 1, then (3.19) is the unique strictly stationary solution of (3.18).

Before proving Theorem 3.5 we need to establish conditions under which common
factors of Φ(z) and Θ(z) can be cancelled. This is done in the following lemma,
whose proof is in wide parts analogue to the proof of Lemma 1 in Brockwell and
Lindner [4], but which we give here for completeness.

Lemma 3.6. Suppose that Y = (Yt)t∈Z is a strict ARIMA(p,D,q) process satisfying
(3.18). Suppose that λ1 ∈ C is such that Φ(λ1) = Θ(λ1) = 0, and define

Φ1(z) := Φ(z)
1− λ−1

1 z
, Θ1(z) := Θ(z)

1− λ−1
1 z

, z ∈ C.

If |λ1| = 1 suppose further that Z0 is symmetric and that Φ1(λ1) = 0, i.e. the
multiplicity of the zero λ1 of Φ is at least 2. Then Y is an ARIMA(p − 1,D,q − 1)
process with autoregressive polynomial Φ1 and moving average polynomial Θ1, i.e.

Φ1(B)Yt = Θ1(B)[∇−DZt], t ∈ Z. (3.20)

Proof of the lemma. Define

Wt := Φ1(B)Yt, t ∈ Z.

Then (Wt)t∈Z is strictly stationary, and since Φ(z) = (1− λ−1
1 z)Φ1(z) we have

Wt − λ−1
1 Wt−1 = Θ(B)∇−DZt, t ∈ Z.

But as we know that

Θ(B)∇−DZt = (1− λ−1
1 B)Θ1(B)∇−DZt

= Θ1(B)∇−DZt − λ−1
1 Θ1(B)∇−DZt−1, t ∈ Z,
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we get

Wt − λ−1
1 Wt−1 = Θ1(B)∇−DZt − λ−1

1 Θ1(B)∇−DZt−1, t ∈ Z.

Iterating gives for n ∈ N0

Wt − λ−n1 Wt−n = Θ1(B)∇−DZt − λ−n1 Θ1(B)∇−DZt−n, t ∈ Z. (3.21)

Now if |λ1| > 1, then the strict stationarity of (Wt)t∈Z and an application of Slutsky’s
lemma show that λ−n1 Wt−n converges in probability to 0 as n → ∞. And because
(Zt)t∈Z is i.i.d. and hence (Θ1(B)∇−DZt−n)n∈Z strictly stationary, an application
of Slutsky’s lemma shows that λ−n1 Θ1(B)∇−DZt−n converges in probability to 0 as
n → ∞. So we have Φ1(B)Yt = Wt = Θ1(B)∇−DZt, t ∈ Z, which is (3.20). If
|λ1| < 1, the same argument as in Brockwell and Lindner [4] applies.
Now let |λ1| = 1 and assume Φ1(λ1) = 0 as well as the symmetry of Z0. Define

Φ2(z) := Φ1(z)
1− λ−1

1 z
= Φ(z)

(1− λ−1
1 z)2 , z ∈ C,

and Xt := Φ2(B)Yt, t ∈ Z. Then (Xt)t∈Z is strictly stationary, and

Xt − λ−1
1 Xt−1 = Φ1(B)Yt = Wt. (3.22)

Defining

Ct := Wt −Θ1(B)∇−DZt, t ∈ Z, (3.23)

it follows from (3.21) that

Ct = λ−n1 Ct−n = λ−n1 Wt−n − λ−n1 Θ1(B)∇−DZt−n, n ∈ N0, t ∈ Z.

Summing this over n from 0 to N ≥ 0 and inserting (3.22) gives

(N+1)Ct =
N∑
n=0

λ−n1 (Xt−n − λ−1
1 Xt−n−1)−

N∑
n=0

λ−n1 Θ1(B)∇−DZt−n,

so that for t ∈ Z and N ≥ 0 we get

Ct − (N+1)−1
(
Xt − λ−(N+1)

1 Xt−N−1
)

= −(N+1)−1
N∑
n=0

λ−n1 Θ1(B)∇−DZt−n. (3.24)

But since (Xt)t∈Z is strictly stationary and since |λ1| = 1, we get with the same
argument as above that the left hand-side of (3.24) converges in probability to Ct
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as N → ∞. But now the probability limit as N → ∞ of the right-hand side must
be measurable with respect to the tail-σ-algebra ⋂

M∈N σ{
⋃
k≥M σ(Zt−k)}. So, by

Kolmogorov’s zero-one law the right-hand side of (3.24) is P-trivial. Hence Ct is
independent of itself, so that Ct must be deterministic. Since Z0 is symmetric, so is
the right-hand side of (3.24) and hence also Ct is symmetric, which implies Ct = 0.
Equation (3.23) then shows that Φ1(B)Yt = Wt = Θ1(B)∇−DZt, t ∈ Z, which is
(3.20). �

Proof of Theorem 3.5. The definition of a strictly stationary solution of (3.18)
requires the series Vt := ∇−DZt = ∑∞

j=0 ψjZt−j to converge a.s. By Theorem 3.1,
this is equivalent to E|Z0|1/(1−D) < ∞ in the case D ∈ (−∞, 0) \ {−1,−2, ...} and
to E|Z0|1/(1−D) < ∞ and EZ0 = 0 in the case D ∈ (0, 1

2). Thus it remains to show
the sufficiency and necessity of the condition that Θ(z)/Φ(z) has only removable
singularities on the unit circle, as well as the uniqueness assertion. The sufficiency
of this condition and the uniqueness assertion follow in complete analogy to the
sufficiency and uniqueness proof of Theorem 1 in Brockwell and Lindner [4], since
Vt has finite log-moment by Proposition 3.4. To show that the condition is necessary,
let (Yt)t∈Z be a strictly stationary solution of (3.18). Let λ1 be a zero of Φ on the unit
circle of multiplicity mΦ(λ1) ≥ 1. We assume that the singularity of Θ/Φ at λ1 is not
removable, i.e. mΦ(λ1) > mΘ(λ1), and derive a contradiction. By the same argument
as in Brockwell and Lindner [4], we may assume without loss of generality that Z0

is symmetric, with Z0 6= 0 due to the assumption that Z0 is not deterministic. By
Lemma 3.6 we further may assume without loss of generality that mΘ(λ1) = 0.
Define

Wt := Φ1(B)Yt, t ∈ Z,

with Φ1(z) = Φ(z)/(1− λ−1
1 z). Then we know that

Wt − λ−1
1 Wt−1 = Θ(B)∇−DZt, t ∈ Z,

Iterating gives for n ∈ N0

Wt = λ−n1 Wt−n +
n−1∑
j=0

λ−j1 Θ(B)∇−DZt−j.

Now, we can write

Θ(B)∇−DZt = Θ(B)
∞∑
k=0

ψkZt−k =
∞∑
k=0

 k∧q∑
m=0

θmψk−m

Zt−k. (3.25)
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So it follows with ψ′k := ∑k∧q
m=0 θmψk−m that

Wt − λ−n1 Wt−n

=
n−1∑
j=0

λ−j1

∞∑
k=0

ψ′kZt−k−j

=
∞∑
j=0

j∧(n−1)∑
k=0

λ−k1 ψ′j−kZt−j

=
n−2∑
j=0

λ−j1

 j∑
k=0

ψ′j−kλ
j−k
1

Zt−j +
∞∑

j=n−1
λ−j1

(
n−1∑
k=0

ψ′j−kλ
j−k
1

)
Zt−j

=
n−2∑
j=0

λ−j1

 j∑
k=0

ψ′kλ
k
1

Zt−j +
∞∑

j=n−1
λ−j1

(
n−1∑
k=0

ψ′j−kλ
j−k
1

)
Zt−j

=: Ant +Bn
t . (3.26)

In the following, we shall see that there are constants K, c > 0 such that

P (|Ant | < K) ≥ c for all n ∈ N. (3.27)

This is because of the stationarity of (Wt)t∈Z and because of |λ1| = 1 we can find
constants 0 < ε < 1

4 , K1 > 0 such that

P
(∣∣∣Wt − λ−n1 Wt−n

∣∣∣ < K1
)
≥ 1− ε for all n ∈ N,

and hence, by (3.26)

P (|Ant +Bn
t | < K1) ≥ 1− ε for all n ∈ N.

Obviously, it follows that for all n ∈ N

P (|Re (Ant +Bn
t )| < K1) ≥ 1− ε, and P (|Im (Ant +Bn

t )| < K1) ≥ 1− ε. (3.28)

Then for 1
2 < c1 < 1− 2ε the following holds

P (|ReAnt | < K1) ≥ c1, and P (|ImAnt | < K1) ≥ c1 for all n ∈ N. (3.29)

Because otherwise we could find n0, n1 ∈ N such that

P (|ReAn0
t | ≥ K1) ≥ 1− c1, or

P (|ImAn1
t | ≥ K1) ≥ 1− c1
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which means by symmetry of Z0 that

P (ReAn0
t ≥ K1) ≥

1− c1
2 , P (ReAn0

t ≤ −K1) ≥
1− c1

2 , or

P (ImAn1
t ≥ K1) ≥

1− c1
2 , P (ImAn1

t ≤ −K1) ≥
1− c1

2 .

But also by symmetry of Z0 we know that

P (ReBn0
t ≤ 0) ≥ 1

2 , P (ImBn1
t ≤ 0) ≥ 1

2 .

So, because of the independence of An0
t and Bn0

t and because of 1− c1 > 2ε we get

P (ReAn0
t + ReBn0

t ≥ K1) = P (ReAn0
t + ReBn0

t ≤ −K1) ≥
1
4(1− c1) >

ε

2 , or

P (ImAn1
t + ImBn1

t ≥ K1) = P (ImAn1
t + ImBn1

t ≤ −K1) ≥
1
4(1− c1) >

ε

2 ,

which is a contradiction to (3.28), so that (3.29) holds. And then it easily follows
that

P
(
|Ant | <

√
2K1

)
≥ 2c1 − 1 for all n ∈ N,

which is (3.27) with K :=
√

2K1 and c := 2c1 − 1.
By definition of Ant , it follows that |∑n−2

j=0 λ
−j
1

(∑j
k=0 ψ

′
kλ

k
1

)
Zt−j| does not converge

in probability to +∞ as n → ∞. Since ∑n−2
j=0 λ

−j
1

(∑j
k=0 ψ

′
kλ

k
1

)
Z−j is a sum of in-

dependent symmetric terms, this implies that ∑∞j=0 λ
−j
1

(∑j
k=0 ψ

′
kλ

k
1

)
Z−j converges

almost surely (see Kallenberg [13], Theorem 4.17). Now we derive a contradiction in
each of the cases (a) |λ1| = 1, λ1 6= 1; (b) λ1 = 1 and D ∈ [−1

2 ,
1
2) \ {0}.

(a) Obviously, (1 − z)−D is continuous and nonzero on {|z| ≤ 1} \ {z = 1}. So, for
D ∈ (−∞, 0) \ {−1,−2, ...} it is clear that

(1− λ1)−D =
∞∑
j=0

ψjλ
j
1 (3.30)

converges absolutely. For D ∈ (0, 1
2) the convergence of the series on the right-hand

side of (3.30) follows by an application of the Leibniz criterion when keeping in mind
that the coefficients ψj are monotone decreasing, because ψj+1/ψj = (D+j)/(j+1) <
1. So (3.30) holds for D ∈ (0, 1

2) as well.
Thus we know that 0 6= Θ(λ1)(1− λ1)−D = ∑∞

k=0 ψ
′
kλ

k
1, and it follows that∣∣∣∣∣∣

j∑
k=0

ψ′kλ
k
1

∣∣∣∣∣∣ ≥
∣∣∣∣∣Θ(λ1)(1− λ1)−D

2

∣∣∣∣∣ , for j ≥ j0, with j0 sufficiently large.
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From the obtained a.s. convergence of ∑∞j=0 λ
−j
1

(∑j
k=0 ψ

′
kλ

k
1

)
Z−j it follows that for

every r > 0

P

lim sup
j→∞


∣∣∣∣∣∣
j∑

k=0
ψ′kλ

k
1

∣∣∣∣∣∣ · |Z−j| > |Θ(λ1)(1− λ1)−D|
2 · r


 = 0.

Hence P(lim supj→∞{|Z−j| > r}) = 0, so that ∑∞j=0P(|Z−j| > r) <∞ by the Borel-
Cantelli lemma. So it follows that P(|Z0| ≥ r) = 0 for each r > 0, so that Z0 is
almost surely zero, which is impossible since Z0, and hence its symmetrization, was
assumed to be nondeterministic.
(b) Now, let λ1 = 1 and D ∈ [−1

2 ,
1
2) \ {0}. We know that ∑∞j=0

(∑j
k=0 ψ

′
k

)
Z−j

converges almost surely. Then it follows by an application of Theorem 5.1.4 in
Chow/Teicher [6] that

∞∑
j=0

∣∣∣∣∣∣
j∑

k=0
ψ′k

∣∣∣∣∣∣
2

<∞. (3.31)

(Observe that the theorem there is only stated for real coefficients. If θ1, ..., θq are
real, the coefficents ψ′k are as well. And otherwise split in real and imaginary part
and then apply the theorem.)
Now, from Equation (3.25) we know that

Θ(z)(1− z)−D =
∞∑
j=0

ψ′jz
j, |z| < 1,

with ψ′j = ∑j∧q
k=0 θkψj−k. Multiplying both sides of this equation with (1 − z)−1 it

follows that

Θ(z)(1− z)−D−1 =
 ∞∑
j=0

ψ′jz
j

( ∞∑
m=0

zm
)

=
∞∑
j=0

 j∑
k=0

ψ′k

 zj, |z| < 1. (3.32)

But by means of the binomial expansion we also know that (1−z)−D−1 = ∑∞
j=0 πjz

j,
where

πj ∼
jD

Γ(D + 1) as j →∞. (3.33)

And then it follows that

Θ(z)(1− z)−D−1 =
( q∑
k=0

θkz
k

) ∞∑
j=0

πjz
j

 =
∞∑
j=0

π′jz
j, |z| < 1,
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with

π′j :=
j∧q∑
k=0

θkπj−k = πj

1 +
j∧q∑
k=1

θk
πj−k
πj

 .
Because of (3.33) it is clear that

1 +
j∧q∑
k=1

θk
πj−k
πj
→ 1 +

q∑
k=1

θk = Θ(1) 6= 0 as j →∞,

so that π′j ∼ jD

Γ(D+1)Θ(1) as j →∞. But as we know from (3.32) that π′j = ∑j
k=0 ψ

′
k,

j ∈ N, it follows that
∞∑
j=0

∣∣∣∣∣∣
j∑

k=0
ψ′k

∣∣∣∣∣∣
2

=
∞∑
j=0
|π′j|2

is not finite, which is a contradiction to (3.31). �

Remark 3.7. If Φ(1) = 0 and D < −1
2 , it is still necessary for a strictly stationary

solution to exist that all singularities λ on the unit circle with λ 6= 1 are removable
and that E|Z0|1/(1−D) <∞, as follows from the proof of Theorem 3.5. That mΦ(1) ≤
mΘ(1), where mΦ and mΘ denote the multiplicity of the zero 1 of Φ or Θ, respectively,
is however not necessary in that case. For example, let D < −1

2 , Φ(z) = 1 − z,
Θ(z) = 1, and Zt such that E|Z0|1/(1−(D+1)) = E|Z0|1/(−D) < ∞ and EZ0 = 0 if
D ∈ [−1,−1

2). Then Yt := ∇−(D+1)Zt converges almost surely, as does Vt := ∇−DZt,
and (1−B)Yt = ∇−DZt, so that (Yt)t∈Z is a strictly stationary solution of Φ(B)Yt =
∇−DZt in that case. It seems feasible to obtain a full characterization of when (3.18)
admits a strictly stationary solution in the case when D < −1

2 and 1 is a singularity
of Θ/Φ which is not removable, but we have not investigated this issue.

Corollary 3.8. The solution Yt as defined in Theorem 3.5 has finite (1/(1−D)−ε)-
moment for every ε ∈ (0, 1/(1−D)), and finite 1/(1−D)-moment if E(|Z0|1/(1−D)

log+ |Z0|) <∞.

Proof. Let ε ∈ (0, 1/(1 − D)) and Vt := ∇−DZt. From Proposition 3.4 it follows
that E|V0|r < ∞, with r = 1/(1 − D) − ε in the case E|Z0|1/(1−D) < ∞ but
E|Z0|1/(1−D) log+ |Z0| not finite, and r = 1/(1−D) in the case E|Z0|1/(1−D) log+ |Z0| <
∞. For r ≥ 1 we thus get with the Minkowski inequality

(E|Yt|r)1/r =
E

∣∣∣∣∣∣
∞∑

j=−∞
ξjVt−j

∣∣∣∣∣∣
r1/r

≤
∞∑

j=−∞
(E|ξjVt−j|r)1/r

= (E|V0|r)1/r
∞∑

j=−∞
|ξj| <∞,
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the last inequality following because the ξj are the coefficients of the Laurent ex-
pansion of Θ(z)/Φ(z) around zero, which is convergent in a neighbourhood of the
unit circle.
For 0 < r < 1 we have

E|Yt|r = E

∣∣∣∣∣∣
∞∑

j=−∞
ξjVt−j

∣∣∣∣∣∣
r

≤
∞∑

j=−∞
E|ξjVt−j|r = E|V0|r

∞∑
j=−∞

|ξj|r <∞.

�

Finally, we shall discuss the connection of our results to the results of Kokoszka and
Taqqu [14]. In their paper, they study fractional ARIMA processes defined by the
equations

Φ(B)Yt = R(B)Zt, (3.34)

with

R(z) := Θ(z)(1− z)−D =
∞∑
j=0

j∧q∑
k=0

θkψj−k

 zj =
∞∑
j=0

ψ′jz
j,

and i.i.d. symmetric α-stable noise (Zt)t∈Z. Among other results, they obtain a
unique strictly stationary solution of (3.34) with this specific noise in terms of the
Laurent series of R(z)/Φ(z), provided Φ(z) 6= 0 for all |z| ≤ 1, and Φ(z) and Θ(z)
having no roots in common.
In contrast, we characterized all strictly stationary solutions of the equations

Φ(B)Yt = Θ(B)[∇−DZt], (3.35)

that are, strictly speaking, ARMA equations with fractional noise.
However, it is not immediately clear that these both approaches are equivalent. But
the following theorem puts things right.

Theorem 3.9. Let Θ(1) 6= 0. Then, with the notations of above, ∑∞j=0 ψ
′
jZt−j con-

verges almost surely if and only if ∑∞j=0 ψjZt−j converges almost surely. In this case,
R(B)Zt = Θ(B)[∇−DZt].
Furthermore, (3.34) admits a strictly stationary solution (Yt)t∈Z (in the sense that∑∞
j=0 ψ

′
jZt−j converges almost surely and (Yt) satisfies (3.34) and is strictly station-

ary) if and only if (3.35) admits a strictly stationary solution. Any strictly stationary
solution of (3.34) is a solution of (3.35) and vice versa.
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Proof. Let ∑∞j=0 ψjZt−j converge almost surely. Then it is clear by definition of
R(z) = Θ(z)∑∞j=0 ψjz

j that ∑∞j=0 ψ
′
jZt−j must converge almost surely as well, and

that in this case R(B)Zt = Θ(B)[∇−DZt].
Conversely, let ∑∞j=0 ψ

′
jZt−j converge almost surely. Then

ψ′j =
j∧q∑
k=0

θkψj−k = ψj

1 +
j∧q∑
k=1

θk
ψj−k
ψj

 .
Because of (3.7) it is clear that

1 +
j∧q∑
k=1

θk
ψj−k
ψj
→ 1 +

q∑
k=1

θk = Θ(1) 6= 0 as j →∞,

so that

ψ′j ∼
jD−1

Γ(D)Θ(1) as j →∞.

But then it follows with Theorem 3.1 and Remark 3.3 that E|Z0|1/(1−D) <∞ in the
case D ∈ (−∞, 0)\{−1,−2, ...}, and E|Z0|1/(1−D) <∞ together with EZ0 = 0 in the
case D ∈ (0, 1

2). (Observe that Remark 3.3 is only stated for real coefficients. But as
can be seen from the proof of (3.12), the necessity assertion carries over to complex
coefficients with this asymptotic behaviour without difficulty.) An application of
Theorem 3.1 then yields the almost sure convergence of ∑∞j=0 ψjZt−j.
The assertion regarding the equivalence of the solutions to (3.34) and (3.35) is clear
from R(B)Zt = Θ(B)[∇−DZt]. �

Remark 3.10. The case Θ(1) = 0 is more complicated as the coefficients ψ′j, j ∈ N,
show a different asymptotic behaviour. For example, let Θ(z) = 1− z and Φ(z) = 1.
Then

ψ′j = ψj − ψj−1 = (−1)j
(
−D
j

)
+ (−1)j

(
−D
j − 1

)
= (−1)j

(
−D + 1

j

)
.

Applying Stirling’s formula, we obtain

ψ′j ∼
jD−2

Γ(D − 1) as j →∞.

From Remark 3.3 we then obtain that ∑∞j=0 ψ
′
jZt−j converges almost surely if and

only if E|Z0|1/(2−D) < ∞. Hence, whenever E|Z0|1/(2−D) < ∞, but E|Z0|1/(1−D) is
not finite, ∑∞j=0 ψ

′
jZt−j is a solution of (3.34) (with Θ(z) = 1 − z, Φ(z) = 1), but

(3.35) does not have a strictly stationary solution.
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