
The multivariate supOU stochastic volatility
model

Ole Eiler Barndorff-Nielsen∗ Robert Stelzer†

Using positive semidefinite supOU (superposition of Ornstein-Uhlenbeck type) pro-
cesses to describe the volatility, we introduce a multivariate stochastic volatility model
for financial data which is capable of modelling long range dependence effects.

The finiteness of moments and the second order structure of the volatility, the log re-
turns, as well as their “squares” are discussed in detail. Moreover, we give several ex-
amples in which long memory effects occur and study how the model as well as the
simple Ornstein-Uhlenbeck type stochastic volatility model behave under linear trans-
formations. In particular, the models are shown to be preserved under invertible linear
transformations. Finally, we discuss how (sup)OU stochastic volatility models can be
combined with a factor modelling approach.
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1 Introduction

The well-known Ornstein-Uhlenbeck type stochastic volatility (OU type SV) model introduced in
Barndorff-Nielsen and Shephard (2001) has recently been extended to a multivariate set-up in Pig-
orsch and Stelzer (2009a) using positive semidefinite OU type processes introduced in Barndorff-
Nielsen and Stelzer (2007).

In many financial and econometric applications it is important to have adequate models for the joint
evolution of the prices of several financial assets. Examples are portfolio optimisation, risk assess-
ment at a portfolio level or pricing of multi-asset derivatives (see Pigorsch and Stelzer (2009a) for
a more detailed discussion of the relevance of multivariate asset price models in continuous time).
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Whereas the OU type model is capable of reproducing most of the so-called stylized facts (stochastic
volatility exhibiting jumps, volatility clustering, heavy tails, dependence of the log-returns with zero-
autocorrelation, . . . ) which are usually present in observed financial return series (cf. Cont and Tankov
(2004) or Guillaume, Dacorogna, Davé, Müller, Olsen and Pictet (1997)), it is not capable of produ-
cing long memory in the volatility or log-returns. In the univariate case one uses superpositions of
Ornstein-Uhlenbeck type (supOU) processes (see Barndorff-Nielsen (2001)) to allow for possible long
range dependence effects. Using the theory of multivariate supOU processes developed in Barndorff-
Nielsen and Stelzer (2009) we introduce and analyse in this paper a multivariate supOU SV model
where the volatility or instantaneous covariance matrix (which has to be a positive semidefinite matrix
process in a multivariate setting) is modelled via a positive semidefinite supOU process.

In the univariate case positive stationary OU type processes are given by

σ2
t =

∫ t

−∞
e−a(t−s)dLs

where a > 0 and L is a Lévy process with non-decreasing paths, i.e. a subordinator, which has a finite
logarithmic moment. SupOU processes are intuitively obtained by summing up independent OU type
processes with different parameters and independent driving Lévy processes which are identically
distributed. This can be extended to integrating up OU type processes with all possible parameters
a > 0. Formally, this is carried out by using a Lévy basis (or infinitely divisible independently scattered
random measure Λ) on R×R+\{0} and one obtains

σ2
t =

∫ ∞

0

∫ t

−∞
e−a(t−s)Λ(da,ds).

Due to the construction, the paths of σ2
t exhibit jumps. This is a major difference to fractionally

integrated Lévy-driven OU type processes which are continuous and provide another possibility to
obtain long range dependence within an OU framework. For a comprehensive overview over the use
of supOU type processes to model the stochastic volatility in a financial context we refer to Barndorff-
Nielsen and Shephard (2010).

In the multivariate stochastic volatility model of Pigorsch and Stelzer (2009a) the d-dimensional
vector of logarithmic stock price processes is given as

Xt =
∫ t

0
(µ +Σsβ )ds+

∫ t

0
Σ1/2

s dWs

where µ,β ∈ Rd and the volatility process Σ is given as a stationary positive semidefinite OU type
process, i.e.

Σt =
∫ t

−∞
eA(t−s)dLseA∗(t−s)

with L being a matrix subordinator (i.e. a Lévy process in the positive semidefinite matrices, see
Barndorff-Nielsen and Pérez-Abreu (2008)) and A a d×d matrix with all eigenvalues having strictly
negative real part. Note that for notational convenience and to avoid ambiguities we denote the in-
stantaneous covariance matrix by Σ, not its square. Moreover, we call Σ also the volatility process, as
this appears most natural in a multivariate setting.

We extend this model by specifying Σ as a positive semidefinite supOU process and furthermore
we allow for a leverage effect, a more general drift and the use of more general decompositions of Σ
than only the positive semidefinite square root.
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The remainder of this paper is structured as follows. Section 2 summarises the notation, gives a
precise definition of the OU type stochastic volatility model, provides some background information
on Lévy bases and integration with respect to them and summarises the known properties of positive
semidefinite supOU processes. Based on this we introduce a multivariate supOU stochastic volatility
model in Section 3, derive its second order structure and finally consider examples exhibiting long
memory properties. Thereafter, we study the effects of linear transformations and marginalisations for
both OU type and supOU stochastic volatility models in Section 4 and finally, address the question
how our models can be combined with factor modelling approaches in Section 5.

2 Background and preliminaries

2.1 Notation

We denote the set of real m× n matrices by Mm,n(R). If m = n, we simply write Mn(R) and denote
the group of invertible n× n matrices by GLn(R), the linear subspace of symmetric matrices by Sn,
the (closed) positive semidefinite cone by S+

n and the open positive definite cone by S++
n (likewise

S−−n are the strictly negative definite matrices, R−− the strictly negative real numbers, etc.). In stands
for the n×n identity matrix. The tensor (Kronecker) product of two matrices A,B is written as A⊗B.
vec denotes the well-known vectorisation operator that maps the n×n matrices to Rn2

by stacking the
columns of the matrices below one another. For more information regarding the tensor product and
vec operator we refer to Horn and Johnson (1991, Chapter 4). The spectrum of a matrix is denoted by
σ(·). Finally, A∗ is the transpose (adjoint) of a matrix A ∈ Mm,n(R) and Ai j stands for the entry of A
in the ith row and jth column.

Norms of vectors or matrices are denoted by ‖ · ‖. If the norm is not further specified, then it is
understood that we take the Euclidean norm or its induced operator norm, respectively. However, due
to the equivalence of all norms none of our results really depends on the choice of norms.

For a complex number z we denote by ℜ(z) its real part and by ℑ(z) its imaginary part. Moreover,
the indicator function of a set A is written 1A.

A mapping f : V →W is said to be V -W -measurable, if it is measurable when the σ -algebra V
is used on the domain V and the σ -algebra W is used on the range W . The Borel σ -algebras are
denoted by B(·) and λ typically stands for the Lebesgue measure which in vector or matrix spaces is
understood to be defined as the product of the coordinatewise Lebesgue measures.

Throughout we assume that all random variables and processes are defined on a given appropriate
filtered probability space (Ω,F ,P,F) satisfying the usual hypotheses (i.e. complete and right continu-
ous filtration).

Furthermore, we employ an intuitive notation with respect to the (stochastic) integration with
matrix-valued integrators referring to any of the standard texts (e.g. Protter (2004)) for a compre-
hensive treatment of the theory of stochastic integration. Let (At)t∈R+ in Mm,n(R), (Bt)t∈R+ in Mr,s(R)
be càdlàg and adapted processes and (Lt)t∈R+ in Mn,r(R) be a semimartingale. Then we denote by∫ t

0 As−dLsBs− the matrix Ct in Mm,s(R) which has i j-th element Ci j,t = ∑n
k=1 ∑r

l=1
∫ t

0 Aik,s−Bl j,s−dLkl,s.
Equivalently such an integral can be understood in the sense of Métivier and Pellaumail (1980) by
identifying it with the integral

∫ t
0 As−dLs with At being for each fixed t the linear operator Mn,r(R)→

Mm,s(R), X 7→ AtXBt . Analogous notation is used in the context of integrals with respect to random
measures.

Finally, integrals of the form
∫

A
∫

B f (x,y)m(dx,dy) are understood to be over the set A in x and over
B in y.
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2.2 The multivariate OU type stochastic volatility model

Now, we first give a precise definition of the simple OU type stochastic volatility model. Let L(Sd ,Rd)
denote the set of all linear operators from Sd to Rd . For details on matrix subordinators, i.e. Lévy
processes in the positive semidefinite matrices, we refer to Barndorff-Nielsen and Pérez-Abreu (2008).

Definition 2.1. Let W be a d-dimensional standard Brownian motion, a be a predictable Rd-valued
process, L be a d× d matrix subordinator with E(max(ln(‖L1‖),0)) < ∞ independent of W, and let
A ∈Md(R) be such that σ(A)⊂ (−∞,0)+ iR and finally ψ ∈ L(Sd ,Rd). Assume that X = (Xt)t∈R+ is
given by

dXt = atdt + r(Σt−)dWt +ψ(dLt), X0 = 0, (2.1)

for some continuous function r : S+
d → Md(R) such that x = r(x)r(x)∗∀x ∈ S+

d and where Σ is the
unique stationary solution to

dΣt = (AΣt−+Σt−A∗)dt +dLt , (2.2)

i.e. Σ is a positive semidefinite OU type process. Then we say that X follows a multivariate OU type
stochastic volatility (SV) model with leverage, abbreviated SVOU(a,r,ψ,A,L).

If ψ = 0, i.e. there is no leverage effect present, we say X follows a multivariate OU type SV model.

Possible choices for r are the positive semidefinite square root and the Cholesky factorisation, for
instance. Note that (2.2) can easily be solved explicitely, which gives

Σt =
∫ t

−∞
eA(t−s)dLseA∗(t−s), t ∈ R+. (2.3)

Moreover, the definition of a multivariate Ornstein-Uhlenbeck type stochastic volatility model given
above slightly generalises the one of Pigorsch and Stelzer (2009a) by allowing for a leverage effect
and a general drift and by considering general “square-root-like factorisations” r instead of only the
positive semi-definite square root.

The following result shows that using different factorisations r of Σ does not make too big a differ-
ence.

Proposition 2.2. Assume X (1) is SVOU(a,r,ψ,A,L) and X (2) is SVOU(a, r̃,ψ,A,L) and that (a,L) is
independent of W. Then X (1) and X (2) are equal in distribution.

Proof. For the sake of notational simplicity we only prove the case without leverage. The proof of the
leverage case is then obvious, since W and (a,L) are independent. It suffices to show that X (1)|(a,L)
and X (2)|(a,L) are equal in finite dimensional distributions. Therefore observing that

X (1)
t |(a,L) D= N

(∫ t

0
asds,

∫ t

0
Σsds

)
D= X (2)

t |(a,L) ∀t ∈ R+

(
X (1)

t

X (1)
u

)∣∣∣∣∣(a,L) D= N
((∫ t

0 asds∫ u
0 asds

)
,

( ∫ t
0 Σsds

∫ t∧u
0 Σsds∫ t∧u

0 Σsds
∫ u

0 Σsds

))
D=

(
X (2)

t

X (2)
u

)∣∣∣∣∣(a,L) ∀t,u ∈ R+

and likewise for all higher dimensional marginals concludes the proof.

Remark 2.3. The independence of W and (a,L) holds, for instance, if a is adapted to the filtration
generated by L.
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2.3 Lévy bases and integration

In this preliminary section we give an introduction to Sd-valued Lévy bases and the relevant integra-
tion theory needed in the following (see Rajput and Rosinski (1989) and Pedersen (2003) for more
details).

To see the relation between Lévy bases and processes easier, recall that a univariate Lévy process
can be understood as a signed random measure on the real numbers. If L = (Lt)t∈R is a Lévy process,
this measure is simply determined by L((a,b]) = L(b)−L(a) for all a,b ∈ R,a < b.

Define now M−
d := {X ∈Md(R) : σ(X)⊂ (−∞,0)+ iR} and Bb

(
M−

d ×R
)

to be the bounded Borel
sets of M−

d ×R.

Definition 2.4. A family Λ = {Λ(B) : B ∈Bb
(
M−

d ×R
)} of Sd-valued random variables is called an

Sd-valued Lévy basis on M−
d ×R if:

(a) the distribution of Λ(B) is infinitely divisible for all B ∈Bb
(
M−

d ×R
)
,

(b) for any n ∈ N and pairwise disjoint sets B1, . . . ,Bn ∈ Bb
(
M−

d ×R
)

the random variables
Λ(B1), . . . ,Λ(Bn) are independent and

(c) for any pairwise disjoint sets Bi ∈Bb
(
M−

d ×R
)

with i ∈N satisfying
⋃

n∈NBn ∈Bb
(
M−

d ×R
)

the series ∑∞
n=1 Λ(Bn) converges almost surely and Λ(

⋃
n∈NBn) = ∑∞

n=1 Λ(Bn).

In some literature Lévy bases are also often called infinitely divisible independently scattered ran-
dom measures (abbreviated i.d.i.s.r.m.) instead.

In the present paper we consider only special Sd-valued Lévy bases having characteristic function
of the form

E (exp(itr(uΛ(B)))) = exp(ϕ(u)Π(B)) (2.4)

for all u ∈ Sd and B ∈Bb
(
M−

d (R)×R)
, where Π = π×λ is the product of a probability measure π

on M−
d (R) and the Lebesgue measure λ on R and

ϕ(u) = itr(uγ0)+
∫

Sd

(
eitr(ux)−1

)
ν(dx) (2.5)

is the cumulant transform of an infinitely divisible distribution on Sd with Lévy-Khintchine triplet
(γ0,0,ν) (taken with respect to the truncation function constantly equal to zero), i.e. γ0 ∈ Sd and ν
is a Lévy measure – a Borel measure on Sd with ν({0}) = 0 and

∫
Sd

(‖x‖∧1)ν(dx) < ∞. The triplet
(γ0,ν,π) determines the distribution of the Lévy basis completely and is henceforth referred to as the
“generating triplet”.

The Lévy process L defined by

Lt = Λ(M−
d × (0, t]) and L−t = Λ(M−

d × (−t,0)) for t ∈ R+

has characteristic triplet (γ0,0,ν) and is called “the underlying Lévy process”.
A Lévy basis has a Lévy-Itô decomposition, which is of the following special form for the Sd-valued

Lévy bases we consider. For the necessary background on the integration with respect to Poisson
random measures we refer to Jacod and Shiryaev (2003, Section 2.1) and Kallenberg (2002, Lemma
12.13).

Theorem 2.5 (Lévy-Itô decomposition). Let Λ be an Sd-valued Lévy basis on M−
d ×Rwith generating

triplet (γ0,ν ,π). Then there exists a modification Λ̃ of Λ which is also a Lévy basis with generating

5



triplet (γ0,ν ,π) such that there exists a Poisson random measure µ on (Sd ×M−
d ×R,B(Sd ×M−

d ×
R)) with intensity measure ν×π×λ satisfying

Λ̃(B) = γ0(π×λ )(B)+
∫

Rd

∫

B
xµ(dx,dA,ds) (2.6)

for all B ∈Bb(M−
d ×R). Moreover, the integral with respect to µ exists as a Lebesgue integral for all

ω ∈Ω.

Here an Sd-valued Lévy basis Λ̃ on M−
d ×R is called a modification of a Lévy basis Λ if Λ̃(B) =

Λ(B) a.s. for all B ∈Bb(M−
d ×R).

In the following we assume without loss of generality that all Sd-valued Lévy bases are such that
they have the special Lévy-Itô decomposition (2.6).

As the underlying Lévy process has finite variation, we can always do ω-wise Lebesgue integration
with respect to a Lévy basis. Below L(Sd) denotes the set of all linear operators from Sd to Sd , which
we identify with a linear subspace of Md2(R).

Proposition 2.6. Let Λ be an Sd-valued Lévy basis with characteristic triplet (γ0,ν ,π). Furthermore,
let f : M−

d ×R→ L(Sd) be a B
(
M−

d ×R
)−B (L(Sd))−measurable function satisfying

∫

M−
d

∫

R
‖ f (A,s)‖dsπ(dA) < ∞, (2.7)

∫

M−
d

∫

R

∫

Sd

(1∧‖ f (A,s)x‖)ν(dx)dsπ(dA) < ∞. (2.8)

Then
∫

M−
d

∫

R
f (A,s)Λ(dA,ds) =

∫

M−
d

∫

R
f (A,s)γ0dsπ(dA)+

∫

Sd

∫

M−
d

∫

R
f (A,s)xµ(dx,dA,ds) (2.9)

exists and the right hand side is a Lebesgue integral for every ω ∈Ω
Moreover, the distribution of

∫
M−

d

∫
R f (A,s)Λ(dA,ds) is infinitely divisible with characteristic func-

tion

E
(

exp
(

itr
(

u
∫

M−
d

∫

R
f (A,s)Λ(dA,ds)

)))
= exp

(
itr(uγint,0)+

∫

Sd

(
eitr(ux)−1

)
νint(dx)

)
, u∈ Sd ,

where

γint,0 =
∫

M−
d

∫

R
f (A,s)γ0dsπ(dA), (2.10)

νint(B) =
∫

M−
d

∫

R

∫

Sd

1B( f (A,s)x)ν(dx)dsπ(dA) for all Borel sets B⊆ Sd . (2.11)

Proof. Follows from the Lévy-Itô decomposition and the usual integration theory with respect to
Poisson random measures (see Kallenberg (2002, Lemma 12.13)).

2.4 Positive semidefinite supOU processes

Based on the previous section, we recall now the definition (Equation 2.15 below) of positive semi-
definite supOU processes from Barndorff-Nielsen and Stelzer (2009) and summarise results relevant
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later on. Intuitively “superposition” means that we are “adding up” independent positive semidef-
inite OU type processes as given in (2.3) with all possible mean reversion parameters A in the set
M−

d := {A ∈Md(R) : max(ℜ(σ(A))) < 0}.
Just as one has to restrict the driving Lévy process to matrix subordinators in the OU type pro-

cesses to get a positive semidefinite OU type process, one needs to impose a comparable condition
on the Lévy basis below. Note that for a d×d matrix-valued Lévy-basis Λ we denote by vec(Λ) the
Rd2

-valued Lévy basis given by vec(Λ)(B) = vec(Λ(B)) for all Borel sets B. Moreover, observe that
tr(XY ∗) (with X ,Y ∈ Md(R) and tr denoting the usual trace functional) defines a scalar product on
Md(R) and that the vec operator is a Hilbert space isometry between Md(R) equipped with this scalar
product and Rd2

with the usual Euclidean scalar product. For proofs of the results in this section we
refer to Barndorff-Nielsen and Stelzer (2009).

Theorem 2.7. Let Λ be an Sd-valued Lévy basis on M−
d ×R with generating triplet (γ0,ν ,π) where

ν is a Lévy measure on Sd satisfying ν(Sd\S+
d ) = 0 and

∫

‖x‖>1
ln(‖x‖)ν(dx) < ∞. (2.12)

Moreover, assume there exist measurable functions ρ : M−
d →R+\{0} and κ : M−

d → [1,∞) such that:

‖eAs‖ ≤ κ(A)e−ρ(A)s∀s ∈ R+, π−almost surely, (2.13)

and

∫

M−
d

κ(A)2

ρ(A)
π(dA) < ∞. (2.14)

Then the process (Σt)t∈R given by

Σt =
∫

M−
d

∫ t

−∞
eA(t−s)Λ(dA,ds)eA∗(t−s) (2.15)

=
∫

M−
d

∫ t

−∞
eA(t−s)γ0eA∗(t−s)dsπ(dA)+

∫

Sd

∫

M−
d

∫ t

−∞
eA(t−s)xeA∗(t−s)µ(dx,dA,ds)

is well-defined as a Lebesgue integral for all t ∈R and ω ∈Ω and Σ is stationary with Σt ∈ S+
d for all

t ∈ R.
Moreover,

vec(Σt) =
∫

M−
d

∫ t

−∞
e(A⊗Id+Id⊗A)(t−s)vec(Λ)(dA,ds) (2.16)

and the distribution of Σt is infinitely divisible with characteristic function

E (exp(itr(uΣt))) = exp
(

itr(uγΣ,0)+
∫

Sd

(
eitr(ux)−1

)
νΣ(dx)

)
, u ∈ Sd ,

where

γΣ,0 =
∫

M−
d

∫ ∞

0
eAsγ0eA∗sdsπ(dA), (2.17)

νΣ(B) =
∫

M−
d

∫ ∞

0

∫

S+
d

1B(eAsxeA∗s)ν(dx)dsπ(dA) for all Borel sets B⊆ Sd. (2.18)
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Remark 2.8. Observe that κ(A) can be replaced by 1 and ρ(A) by −max(ℜ(σ(A))) in (2.14) (and
also in (2.19) and (2.20) below), provided π is concentrated on the normal matrices or finitely many
diagonalisable rays (i.e. there are k ∈ N and diagonalisable A1, . . . ,Ak ∈M−

d such that π({αAi : i ∈
{1, . . . ,k},α ∈ (0,∞)}) = 1).

Next we recall the existence of moments and the second order structure.

Proposition 2.9. Let Σ be a stationary S+
d -valued supOU process driven by a Lévy basis Λ satisfying

the conditions of Theorem 2.7.
(i) If ∫

‖x‖>1
‖x‖rν(dx) < ∞ (2.19)

for r ∈ (0,1], then Σ has a finite r-th moment, i.e. E(‖Σt‖r) < ∞.
(ii) If r ∈ (1,∞) and

∫

‖x‖>1
‖x‖rν(dx) < ∞,

∫

M−
d

κ(A)2r

ρ(A)
π(dA) < ∞, (2.20)

then Σ has a finite r-th moment, i.e. E(‖Σt‖r) < ∞.
(iii) If the conditions given in (ii) are satisfied for r = 2, then the second order structure of Σ is

given by:

E(Σ0) =−
∫

M−
d

A(A)−1
(

γ0 +
∫

Sd

xν(dx)
)

π(dA),

var(vec(Σ0)) =−
∫

M−
d

(A (A))−1
(∫

Sd

vec(x)vec(x)∗ν(dx)
)

π(dA),

cov(vec(Σh),vec(Σ0)) =−
∫

M−
d

e(A⊗Id+Id⊗A)h(A (A))−1
(∫

Sd

vec(x)vec(x)∗ν(dx)
)

π(dA) for h ∈ N

with A(A) : Md(R) → Md(R), X 7→ AX + XA∗ and A (A) : Md2(R) → Md2(R),X 7→ (A⊗ Id + Id ⊗
A)X +X(A∗⊗ Id + Id ⊗A∗).

Moreover, it holds that
lim
h→∞

cov(vec(Σh),vec(Σ0)) = 0 (2.21)

Most important is the following result which, in particular, ensures that integrals like
∫ t

0 Σ1/2
s dWs,

occurring in the definition of the multivariate supOU stochastic volatility models in the next section,
do indeed exist. Using (i) below they are defined in the L2-sense of Øksendal (1998) provided Σ has a
finite first moment, which is the case if

∫
‖x‖>1 ‖x‖ν(dx) < ∞, and in the general case given in (iii) in the

sense of the stochastic integration with respect to semimartingales (see Protter (2004), for instance).
Below G is the σ -algebra generated by the Lévy basis Λ, i.e. by the set of random variables {Λ(B) :

B ∈B(M−
d ×R)}.

Theorem 2.10. Let Σ be the positive semidefinite supOU process of Theorem 2.7. Then:
(i) Σt(ω) is B(R)×G -B(Sd) measurable as a function of t ∈ R and ω ∈ Ω and adapted to the

filtration (Gt)t∈R generated by Λ, i.e. Gt is the σ -algebra generated by the set of random variables
{Λ(B) : B ∈B(M−

d × (−∞, t])}.
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(ii) If ∫

M−
d

κ(A)2π(dA) < ∞, (2.22)

the paths of Σ are locally uniformly bounded in t for every ω ∈Ω.
(iii) Provided that

∫

M−
d

(‖A‖∨1)κ(A)2

ρ(A)
π(dA) < ∞ (2.23)

and
∫

M−
d

‖A‖κ(A)2π(dA) < ∞ (2.24)

it holds that
Σt = Σ0 +

∫ t

0
Zudu+Lt (2.25)

where L is the underlying matrix subordinator and

Zu =
∫

M−
d

∫ u

−∞

(
AeA(u−s)Λ(dA,ds)eA∗(u−s) + eA(u−s)Λ(dA,ds)eA∗(u−s)A∗

)
(2.26)

for all u ∈ R, with the integral existing ω-wise.
Moreover, the paths of Σ are càdlàg and of finite variation on compacts.

Remark 2.11. (i) Of course, our given filtration F = (Ft)t∈R is such that Gt ⊂Ft for all t ∈ R and
hence the measurability properties in (i) are also true with Ft in place of Gt

(ii) Intuitively (2.24) means that π does not place too much mass on the elements of M−
d with high

norm and thus very fast exponential decay rates.
If π is concentrated on the normal matrices or finitely many diagonalisable rays (as in Remark 2.8),

then (2.23) and (2.24) become

−
∫

M−
d

(‖A‖∨1)
maxℜ(σ(A))

π(dA) < ∞ and
∫

M−
d

‖A‖π(dA) < ∞. (2.27)

In particular, the second condition simply means that π has a finite first moment.
If π is concentrated on S−−d , then we have ‖A‖=−min(σ(A)) and (2.23) becomes

∫

S−d

(min(σ(A))∧−1)
max(σ(A))

π(dA) < ∞, (2.28)

which can be seen as a condition on the spread between the different exponential decay rates as
measured by the eigenvalues.

3 The supOU stochastic volatility model

3.1 Definition

Now we can define a stochastic volatility model based on positive semidefinite supOU processes.

9



Definition 3.1. Let W be a d-dimensional standard Brownian motion, a be a predictable Rd-valued
process, Λ be an S+

d -valued Lévy basis on M−
d ×R with generating triplet (γ0,ν ,π), independent of

W and satisfying the conditions of Theorem 2.7. Let, moreover L be the underlying Lévy process of Λ
and finally ψ ∈ L(Sd,Rd). Assume that X = (Xt)t∈R+ is given by

dXt = atdt + r(Σt−)dWt +ψ(dLt), X0 = 0, (3.1)

for some continuous function r : S+
d →Md(R) such that x = r(x)r(x)∗ and where

Σt =
∫

M−
d

∫ t

−∞
eA(t−s)Λ(dA,ds)eA∗(t−s)∀ t ∈ R+.

Then we say that X follows a multivariate supOU type stochastic volatility (SV) model with lever-
age, abbreviated SVsupOU(a,r,ψ,γ0,ν ,π).

If ψ = 0, i.e. there is no leverage effect present, we say X follows a multivariate supOU type SV
model.

Obviously, an SVOU(a,r,ψ,A,L) model is an SVsupOU(a,r,ψ,γ0,L,νL,δA) model with (γ0,L,0,νL)
being the Lévy-Khintchine triplet of L and δA denoting the Dirac delta distribution with unit mass at
A.

The following is obtained along the same lines as Proposition 2.2.

Proposition 3.2. Assume X (1) is SVsupOU(a,r,ψ,γ0,ν ,π) and X (2) is SVsupOU(a, r̃,ψ,γ0,ν ,π) and
that (a,Λ) is independent of W. Then X (1) and X (2) are equal in distribution.

Remark 3.3. The independence of W and (a,Λ) holds, for instance, if a is adapted to the filtration
(Gt)t∈R generated by Λ, i.e. Gt is the σ -algebra generated by the set of random variables {Λ(B) : B⊆
B(M−

d × (−∞, t])} for t ∈ R.

Since in distribution the choice of r does not matter, our supOU stochastic volatility model falls into
the general class of stochastic volatility models analysed in Pigorsch and Stelzer (2009a) regarding
distributional properties like moments.

3.2 Second order properties

When thinking about X as the log-price process of d financial assets, it is clear that one typically will
observe neither X continuously nor the volatility process Σ, but only X at a discrete set of times. In
the following we assume that we observe X at an equally spaced time grid with given grid size ∆ > 0.
Then one is typically interested in the log-returns Y over the grid intervals as well as the integrated
volatility V over them. (For more background we refer to Pigorsch and Stelzer (2009a).) Thus we
assume given an SVsupOU(0,r,0,γ0,ν ,π) model with the volatility process Σ having finite second
moments.

Note that we restrict ourselves to the non-leverage case and a = 0. The reason is that we want to
calculate the second order properties as explicitly as possible which can only be done under these
restrictions. If at is an affine function of Σt , some explicit results can still be obtained, see Pigorsch
and Stelzer (2009a).

The subsequent log returns over time intervals of length ∆ ∈ R++ are denoted by Y = (Yn)n∈N. In
many financial applications the time intervals, i.e. [(n− 1)∆,n∆] with n ∈ N, will represent trading
days, for example. The logarithmic price increments and the integrated volatilities are defined by

Yn := Xn∆−X(n−1)∆ =
∫ n∆

(n−1)∆
r(Σt)dWt , Vn :=

∫ n∆

(n−1)∆
Σtdt, n ∈ N.
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It is clear that Yn |Vn ∼ Nd (0,Vn).
As the twice integrated autocovariance function of the stationary volatility process Σ will be of

particular importance, we define

r++(t) :=
∫ t

0

∫ u

0
cov(Σh,Σ0)dhdu

=−
∫ t

0

∫ u

0

∫

M−
d

e(A⊗Id+Id⊗A)h(A (A))−1
(∫

Sd
vec(x)vec(x)∗ν(dx)

)
π(dA)dhdu. (3.2)

Using Fubini and
∫ t

0

∫ u

0
e(A⊗Id+Id⊗A)hdhdu = (A⊗Id +Id⊗A)−2e(A⊗Id+Id⊗A)t−(A⊗Id +Id⊗A)−2−(A⊗Id +Id⊗A)−1t

one can immediately integrate with respect to u and h.

Theorem 3.4. Let X ,Σ follow an SVsupOU(0,r,0,γ0,ν,π) model with the volatility process Σ having
finite second moments. Then (Vn)n∈N is stationary and square-integrable with

E(V1) =−∆
∫

M−
d

A(A)−1
(

γ0 +
∫

Sd

xν(dx)
)

π(dA), (3.3)

var(vec(V1)) = r++(∆)+ r++(∆)∗, (3.4)

cov(vec(Vh+1),vec(V1)) = r++(h∆+∆)−2r++(h∆)+ r++(h∆−∆) (3.5)

=−
∫

M−
d

g(A,h)(A (A))−1
(∫

Sd

vec(x)vec(x)∗ν(dx)
)

π(dA), h ∈ N,

with g(A,h) = (A⊗ Id + Id⊗A)−2
(
e(A⊗Id+Id⊗A)(h∆+∆)−2e(A⊗Id+Id⊗A)h∆ + e(A⊗Id+Id⊗A)(h∆−∆)

)
. It holds

that limh→∞ cov(vec(Vh+1),vec(V1)) = 0.
Likewise the log-price increments (Yn)n∈N as well as their “squares” (YnY ∗n )n∈N are stationary and

square-integrable with

E(Y1) = 0, var(Y1) = E(V1), cov(Yh+1,Y1) = 0∀h ∈ N, (3.6)

E(Y1Y ∗1 ) = E(V1), (3.7)

var(vec(Y1Y ∗1 )) = (Id2 +Q+PQ)
(
r++(∆)+ r++(∆)∗

)
+(Id2 +P)(E(V1)⊗E(V1)) (3.8)

cov
(
vec(Yh+1Y ∗h+1), vec(Y1Y ∗1 )) = cov(vec(Vh+1),vec(V1)) for h ∈ N (3.9)

where

P : Md2(R)→Md2(R), (PX)i,(p−1)d+q = Xi,(q−1)d+p for all i = {1,2, . . . ,d2}, p,q = {1,2, . . .d}
Q : Md2(R)→Md2(R), (QX)(k−1)d+l,(p−1)d+q = X(k−1)d+p,(l−1)d+q for all k, l, p,q = {1,2, . . .d}

are linear operators. Obviously, P−1 = P, Q−1 = Q and P is representable as X 7→ XP with P ∈
Md2(R) being a permutation matrix. Moreover, Q(vec(X)vec(Z)∗) = X⊗Z for all X ,Z ∈ Sd .

Proof. Follows from Pigorsch and Stelzer (2009a, Theorems 3.2, 3.3), Proposition 2.9 and straight-
forward calculations. That limh→∞ cov(vec(Vh+1),vec(V1)) = 0 is implied by limh→∞ cov(vec(Σh),
vec(Σ0)) = 0 and the identity

cov(vec(Vh+1),vec(V1)) =
∫ (h+1)∆

h∆

∫ ∆

0
cov(vec(Σs−u),vec(Σ0))duds, (3.10)

see Pigorsch and Stelzer (2009a, Proof of Theorem 3.2).
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The relevance of these results is that they provide the basis for (general) method of moments based
estimation of the model as in Pigorsch and Stelzer (2009a) for the multivariate SVOU model and
Barndorff-Nielsen and Shephard (2010) for the univariate SVsupOU model.

3.2.1 Long memory

Before presenting examples of SVsupOU models which exhibit long memory in the log returns (poly-
nomially decaying autocovariance function of the squared returns), we show that in the exponential
and polynomially decaying case, the asymptotic behaviour of the autocovariance function of the in-
tegrated volatility (and thus the squared returns) is of the same type as the one of the volatility process
(not strictly, though, in the exponential case). The result below is stated for the one-dimensional case,
but it immediately extends to the eigenvalues of the matrices dependent on h involved in the gen-
eral case, as will be illustrated in the examples. Likewise, the result can be applied to the individual
components of the autocovariance matrix in a multivariate model.

Proposition 3.5. Assume given an SVsupOU(0,r,0,γ0,ν ,π) model in dimension d = 1.
(i) If cov(vec(Σh),vec(Σ0))∼Ch−α for h→ ∞ with α > 0 and C ∈ R\{0}, then

cov(vec(Vh+1),vec(V1))∼C∆2−αh−α for h→ ∞. (3.11)

(ii) If cov(vec(Σh),vec(Σ0))∼Ce−αh with α > 0 and C ∈ R\{0}, then

liminf
h→∞

∣∣∣∣
cov(vec(Vh+1),vec(V1))

C∆2e−α(h∆+∆)

∣∣∣∣≥ 1, limsup
h→∞

∣∣∣∣
cov(vec(Vh+1),vec(V1))

C∆2e−α(h∆−∆)

∣∣∣∣≤ 1.

Proof. (i): Without loss of generality we assume C > 0. For any ε > 0 there is an h∗ ∈ R+ such that
(1− ε)Ch−α ≤ cov(vec(Σh),vec(Σ0))≤ (1+ ε)Ch−α . Using (3.10) we obtain for all h≥ (h∗/∆)+1

cov(vec(Vh+1),vec(V1))≤ (1+ ε)C
∫ (h+1)∆

h∆

∫ ∆

0
(s−u)−αduds≤ (1+ ε)C∆2(h∆−∆)−α .

Hence,

limsup
h→∞

cov(vec(Vh+1),vec(V1))
C∆2−αh−α ≤ 1+ ε

and likewise one has

liminf
h→∞

cov(vec(Vh+1),vec(V1))
C∆2−αh−α ≥ 1− ε.

Since ε was arbitrary, this gives (3.11).
(ii): The proof is similar to that of (i) and therefore left out.

Remark 3.6. As the proof shows, Proposition 3.5 is valid not only for SVsupOU models, but for the
general stochastic volatility model as defined in Pigorsch and Stelzer (2009a).

This implies that if the spot volatility has long memory (in the sense that it decays like h−α with
α ∈ (0,1)), then the integrated volatility increments V and the “squared returns” YY ∗ have also long
memory.

Unlike in the univariate case, so far no detailed theory for long memory exists for multivariate
stochastic processes/observations. Below, we speak of long memory whenever at least one of the
components of the autocovariance functions decays asymptotically like h−α for some α ∈ (0,1) and
with the lag h going to infinity. Clearly, this is a case when one may adequately speak of long memory.

Now we consider several examples of SVsupOU(0,r,0,γ0,ν ,π) models.
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Example 3.1. Let π be given as the distribution of RB with a diagonalisable B ∈ M−
d and R being

a real Γ(α,β )-distributed random variable with α > 1,β ∈ R+\{0}. Like in Barndorff-Nielsen and
Stelzer (2009, Example 3.1) one shows that the positive semidefinite OU type process Σ exists, is
stationary and has finite second moments.

Using spectral matrix calculus, one obtains for the autocovariance function at positive lags h:

cov(vec(Σh),vec(Σ0)) =− β α

α−1
(β Id2 − (B⊗ Id + Id ⊗B)h)1−α B−1

(∫

Sd
vec(x)vec(x)∗ν(dx)

)

with B : Md2(R)→Md2(R),X 7→ (B⊗ Id + Id⊗B)X +X(B∗⊗ Id + Id⊗B∗) and thus we have a poly-
nomially decaying autocovariance function. For α ∈ (1,2) we obviously get long memory. To see
this easily, it should be noted that, if λ is an eigenvalue of B⊗ Id + Id ⊗B, then (β −λh)1−α is an
eigenvalue of (β Id2 − (B⊗ Id + Id ⊗B)h)1−α . Hence, the eigenvalues of this matrix decay polynomi-
ally, which implies that the elements of (β Id2 − (B⊗ Id + Id ⊗B)h)1−α and in turn the elements of
cov(vec(Σh),vec(Σ0)) decay polynomially at rate 1−α unless they are constantly zero in h.

To calculate the autocovariance function of V and YY ∗ one could use the equation (3.5). How-
ever, when one tries to explicitly calculate the integral over M−

d using spectral calculus (similar to
Barndorff-Nielsen and Stelzer (2009, Example 3.1)) one can only do this (without using additional
analytic tricks) for α > 3. Instead, we note that by (3.10) we have

cov(vec(Vh+1),vec(V1)) = cov(vec(Yh+1Y ∗h+1),vec(Y1Y ∗1 ))

=− β α

α−1

∫ (h+1)∆

h∆

∫ ∆

0
(β Id2 − (B⊗ Id + Id ⊗B)(s−u))1−α dudsB−1

(∫

Sd
vec(x)vec(x)∗ν(dx)

)
.

If λ1, . . . ,λd2 are the eigenvalues of (B⊗ Id + Id ⊗B), then using spectral calculus and Proposition
3.5 the eigenvalues of Γh :=

∫ (h+1)∆
h∆

∫ ∆
0 (β Id2 − (B⊗ Id + Id ⊗B)(s−u))1−α duds are asymptotically

equal to (−λi)1−α∆3−αh1−α for h → ∞, which shows that we again have a polynomial decay (and
long memory for α ∈ (1,2)).

Actually, we can also calculate the integral explicitly via spectral calculus. However, from the res-
ults below it appears to be rather non-trivial to see the asymptotic decay. Setting B = (B⊗ Id + Id⊗B)
we have

Γh =
B−2

(
(β Id2 −B(h∆+∆))3−α −2(β Id2 −Bh∆)3−α +(β Id2 −B(h∆−∆))3−α)

(2−α)(3−α)
, α 6= 2,3

Γh =B−2((β Id2 −B(h∆+∆))Log(β Id2 −B(h∆+∆))
−2(β Id2 −Bh∆)Log(β Id2 −Bh∆)+(β Id2 −B(h∆−∆))Log(β Id2 −B(h∆−∆))

)
, α = 2

Γh =
B−2 (Log(β Id2 −B(h∆+∆))−2Log(β Id2 −Bh∆)+Log(β Id2 −B(h∆−∆)))

(2−α)
, α = 3.

Log denotes the main branch of the complex logarithm. Observe that σ(B) = σ(B)+ σ(B) ensures
that all eigenvalues of β Id2 −Bs are in the right half plane for all s ∈ R+.

At a first sight, the above formulae suggest different decay rates for Γh than a polynomial decay
with rate 1−α . Straightforward calculations give, however, that, for instance, for α 6= 2,3 we have
limh→∞ Γh/h3−α = 0.

The above results can be easily extended to the case where π is concentrated on finitely many
diagonalisable rays or concentrated on the negative definite matrices and specified in terms of a meas-
ure on the unit sphere and a Γ-distributed kernel for the radial part (similar to Barndorff-Nielsen
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and Stelzer (2009, Examples 3.2, 3.3)). However, as in these cases everything can be calculated, by
straightforward combinations of the above Example 3.1 and arguments from Barndorff-Nielsen and
Stelzer (2009, Examples 3.2, 3.3), and as the resulting formulae for the autocovariances are simply
sums or integrals over terms of the form obtained in the above Example 3.1, we refrain from giving
details.

Example 3.2. Let Λ be now an S+
2 -valued Lévy basis with π concentrated on D−−2 , the 2 x 2 diagonal

matrices with strictly negative entries on the diagonal. We identify D−−2 with (R−−)2 and we assume
that π has Lebesgue density

π(da1,da2) =
β α1

1 β α2
2

Γ(α1)Γ(α2)
(−a1)α1−1(−a2)α2−1eβ1a1+β2a21(R−−)2(a1,a2)da1da2

with α1,α2 > 1 and β1,β2 > 0. So the diagonal elements are independent and their absolute values fol-
low Gamma distributions. Using the arguments from Barndorff-Nielsen and Stelzer (2009, Example
3.4), one can show that the positive semidefinite supOU process Σ exists, is stationary and has finite
second moments.

Let us now consider the individual components Σ11,t , Σ22,t and Σ12,t of Σt . Denote by

Pi j : S2 → R,

(
x11 x12
x12 x22

)
7→ xi j,

the projection onto the i j-th coordinate with i, j ∈ {1,2}, i ≤ j, and define R+-valued Lévy bases
Λii on R−−×R via Λii(dai,ds) = Pii(Λ(P−1

ii (dai),ds) and a Lévy measure νii on R via νii(dxii) =
ν(P−1

ii (dxii)). Then Λii has characteristic triplet (γii,νii,πi) with πi having Lebesgue density

πi(dai) =
β αi

i
Γ(αi))

(−ai)αi−ieβiai1(R−−)(ai)dai

and

Σii,t =
∫

R−−

∫ t

−∞
e2ai(t−s)Λii(dai,ds), (3.12)

Σ12,t =
∫

R−−

∫

R−−

∫ t

−∞
e(a1+a2)(t−s)(P12(Λ))(da1,da2,ds). (3.13)

It is now also straightforward to see by substituting 2ai with ãi that Σii is anR+-valued supOU process
of the form

Σii,t =
∫

R−−

∫ t

−∞
eai(t−s)Λ̃ii(dai,ds)

with Λ̃ having characteristic triplet (γii,νii,−Γ(αi,βi/2)). Here, −Γ(α,β ) denotes the probability
distribution of the random variable −X when X has a Γ(α,β )-distribution.

For the autocovariance function of the variance components we thus get

cov(Σii,h,Σii,0) =
(βi/2)αi

2(αi−1)
((βi/2)+h)1−αi

(∫

R
x2

1ν1(dx1)
)

, h ∈ R+.

In particular, we have long memory in the i-th variance component provided αi ∈ (1,2). Using Pro-
position 3.5 and the upcoming results of Section 4.2 which give that Xi is in distribution equal to a
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one-dimensional SVsupOU(0,
√·,0,γ0,ii,νii,−Γ(αi,βi/2))-model, we get for the integrated variances

and squared returns

cov(Vii,h+1,Vii,1) = cov(Y 2
i,h+1,Y

2
i,1)∼

(βi/2)αi∆3−αi
∫
R x2

1ν1(dx1)
2(αi−1)

h1−αi as h→ ∞.

These covariances can also easily be calculated explicitly using the above formulae, but we refrain
from stating them.

The importance of this example is that it allows one to choose νii such that the stationary distribution
of the variance Σii is a certain prescribed selfdecomposable distribution concentrated on R+ (using
Barndorff-Nielsen (2001, Theorem 3.1, Corollary 3.1), Fasen and Klüppelberg (2007, Remark 2.2)
or Pigorsch and Stelzer (2009b, Theorem 4.9)). Then one only needs to combine the margins νii in a
suitable way to a Lévy measure ν on S+

d in order to construct an SVsupOU model where the univariate
margins of the stationary distribution of Σ are the prescribed ones.

Obviously this example has a straightforward extension to general dimension d.

4 Linear transformations and marginalisations

Now we study the effects of linear transformations and marginalisations on multivariate (sup)OU
stochastic volatility models. Note that these models fall into the framework of so-called CGPII-
processes studied in Barndorff-Nielsen and Pedersen (2009). In that paper the question of stability
under linear transformations was also raised and answered positively. However, in our special set-up
we can show more refined results by rather elementary calculations. In particular, we show below that
under invertible linear transformations (sup)OU models are again (sup)OU with different parameters,
but the same Wiener process and the driving Lévy process or Lévy basis being defined ω-wise in
terms of the original one. Moreover, we are able to treat the case with a general drift and leverage
term.

4.1 Ornstein-Uhlenbeck-type stochastic volatility models

We first analyse OU type models (i.e. without superposition) separately in this section, as this em-
phasises the gist of our results.

Theorem 4.1. The classes of multivariate OU type SV models with and without leverage are each
preserved under invertible linear transformations, i.e. if X is SVOU(a,r,ψ,A,L) and B ∈ GLd(R),
then Z = BX is SVOU(ã, r̃, ψ̃, Ã, L̃)) with:

ãt = Bat ∀t ∈ R+, r̃ : S+
d →Md(R), X 7→ Br(B−1XB−∗), ψ̃ ∈ L(Sd ,Rd) : X 7→ Bψ(B−1XB−∗)

Ã = BAB−1, L̃t = BLtB∗∀t ∈ R+.

Proof. Follows immediately from

dZt = BdXt = Batdt +Ṽt−dWt +Bψ
(
B−1d(BLtB∗)B−∗

)
,

Ṽt := Br(Σt), Σ̃t := ṼtṼ ∗
t = Br(Σt)r(Σt)∗B∗,

dΣ̃t = BdΣtB∗ = (BAB−1Σ̃t−+ Σ̃t−B−∗A∗B∗)dt +d(BLtB∗)

and the fact that the function given by X 7→ Bψ(B−1XB−∗) is in L(Sd ,Rd) and that (BLtB∗)t∈R+ is
again a matrix subordinator. Furthermore, note that Ṽt = Br(B−1Σ̃tB−∗).
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Remark 4.2. (i) The above result means that when one takes a different set of securities to linearly
span the same market one remains within the same class of models. This is clearly a very desirable
property.

(ii) A case of some particular interest for modelling is given by at = µt +β (Σt−) with β ∈ L(Sd ,Rd)
and µ ∈Rd . A straightforward variant of the above proof shows that the class of multivariate OU type
SV models (with leverage) with such a drift term is preserved under invertible linear transformations.
This remains true when µ or β or both are fixed to the value zero.

Next we turn our focus on studying the effects of marginalisation in OU type SV models. Assuming
a = 0 and ψ = 0 for the sake of simplicity, note that the stochastic variance process of the first
component X1, for instance, is given by Σ11, but X1,t =

∫ t
0 ∑d

i=1(Σ
1/2
s )1,idWi,s 6=

∫ t
0(Σ11,s)1/2dW1,s (as

random variables defined on the common probability space). However, this is different when we do
not demand equality of the processes in a strong sense on the same probability space, but only equality
of the distributions.

Proposition 4.3. Assume that X is SVOU(a,r,ψ,A,L) and that (a,L) is independent of W. Then it
holds for the first one-dimensional component X1 that

(X1,t)t∈R+
D=

(∫ t

0
a1,sds+

∫ t

0
(Σ11,s)1/2dW1,s +

∫ t

0
ψ1(dLt)

)

t∈R+
.

with ψ1 := Pψ where P : Rd → R,(x1,x2, . . . ,xp)∗ 7→ x1.

Proof. Due to the independence of W and (a,L), it suffices to show that

(X1,t)t∈R+ |(a,L)
f idi
=

(∫ t

0
a1,sds+

∫ t

0
(Σ11,s)1/2dW1,s

)

t∈R+

∣∣∣∣(a,L)

with
f idi
= denoting equality of all finite dimensional distributions. The latter is immediate from

X1,t |(a,L) =
∫ t

0
a1,sds+

d

∑
i=1

∫ t

0
r(Σs)1,idWi,s

∣∣∣∣∣(a,L) D= N
(∫ t

0
a1,sds,

∫ t

0
Σ11,sds

)

D=
∫ t

0
a1,sds+

∫ t

0
(Σ11,s)1/2dW1,s

∣∣∣∣(a,L) ∀t ∈ R,

(
X1,t

X1,t̃

)∣∣∣∣(a,L) D= N
((∫ t

0 a1,sds∫ t̃
0 a1,sds

)
,
∫ ∞

0

(
Σ11,s1{s≤t} Σ11,s1{s≤min{t,t̃}}

Σ11,s1{s≤min{t,t̃}} Σ11,s1{s≤t̃}

)
ds

)

D=
(∫ t

0 a1,sds+
∫ t

0(Σ11,s)1/2dW1,s∫ t̃
0 a1,sds+

∫ t̃
0(Σ11,s)1/2dW1,s

)∣∣∣∣(a,L) ∀t, t̃ ∈ R+

and likewise for all higher dimensional distributions.

Remark 4.4. (i) Combining Proposition 4.3 with Pigorsch and Stelzer (2009a, Section 3.3) shows
that, if X is SVOU(0,r,0,A,L) with the matrix A being (real) diagonalisable, then the first component
X1 equals in distribution a driftless stochastic volatility model with the volatility process being a
superposition of possibly dependent (real) univariate OU type processes. Likewise, if a is not zero but
at = (µ1 +β1Σ11,t ,µ2 +β2Σ22,t , . . . ,µd +βdΣdd,t)∗, then the first component X1 equals in distribution a
stochastic volatility model with the volatility process Σ11 being a superposition of possibly dependent
(real) univariate OU type processes and the drift being µ1 +β1Σ11.
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(ii) The same effect arises in the Hubalek-Nicolato model (see Hubalek and Nicolato (2009)). The
equality of the marginal processes as supOU BNS models, stated in Section 3.2.2 of that paper, is to
be understood in distribution.

The above results apply, of course, not only to the first but also to all other components. Moreover,
Proposition 4.3 can easily be generalised to the joint behaviour of several components as follows. If
x ∈ Rd , z ∈ Md(R) and I ⊆ {1,2, . . . ,d}, then we define xI := (xi)i∈I ∈ R|I| and zI := (zi j)i, j∈I ∈
M|I|(R).

Proposition 4.5. Assume that X is SVOU(a,r,ψ,A,L) and that (a,L) is independent of W. Then it
holds for any I⊂ {1,2, . . . ,d} that

(XI,t)t∈R+
D=

(∫ t

0
aI,sds+

∫ t

0
(ΣI,s)1/2dWI,s +

∫ t

0
ψI(dLt)

)

t∈R+

with ψI := PIψ where PI : Rd → R|I|,(x1,x2, . . . ,xp)∗ 7→ xI.

Remark 4.6. Theorem 4.1 has an obvious extension to injective linear transformations fromRd →Rm

with m > d which correspond to m×d matrices B of full rank, because these functions as well as the
maps S+

d → S+
m ,X 7→ BXB∗ are invertible on the image sets.

A surjective linear transformation fromRd →Rm with m < d, which corresponds to an m×d matrix
B with full rank, can be written as an invertible linear transformation from Rd to Rd followed by a
projection on the first m coordinates. Thus, a combination of Theorem 4.1 and Proposition 4.5 shows
what happens to our stochastic volatility model under such a transformation.

The only remaining type of linear transformations are those being neither injective nor surjective
(thus corresponding to a matrix having non-full rank r). However, such linear transformations B can
always be represented as B = B2PB1 with B1 : Rd → Rd invertible, P being the projection on the first
r coordinates and B2 : Rr → Rm being injective. Theorem 4.1 and Proposition 4.5 show the effects of
B1 and P. Moreover, if

(XI,t)t∈R+
D=

(∫ t

0
aI,sds+

∫ t

0
(ΣI,s)1/2dWI,s +

∫ t

0
ψI(dLt)

)

t∈R+
.

then

B2(XI,t)t∈R+
D=

(∫ t

0
B2aI,sds+

∫ t

0
B2(ΣI,s)1/2dWI,s +

∫ t

0
B2ψI(dLt)

)

t∈R+
.

Hence, we have characterised how linear transformations act on SVOU models in all cases.

4.2 SupOU stochastic volatility models

Now we turn to the effects of linear transformations on supOU stochastic volatility models. From the
proof given above it is immediate that Proposition 4.3 remains valid for SVsupOU models. The same
is true for Proposition 4.5 and Remark 4.6 (replacing Theorem 4.1 with the following Theorem 4.7).

Hence, it suffices to consider invertible linear transformations.

Theorem 4.7. The classes of multivariate supOU type SV models with and without leverage are
each preserved under invertible linear transformations, i.e. if X is SVsupOU(a,r,ψ,γ0,ν ,π) and B ∈
GLd(R), then Z = BX is SVsupOU(ã, r̃, ψ̃, γ̃0, ν̃ , π̃) with:

ãt = Bat ∀t ∈ R+, r̃ : S+
d →Md(R), X 7→ Br(B−1XB−∗), ψ̃ ∈ L(Sd ,Rd) : X 7→ Bψ(B−1XB−∗)

γ̃0 = Bγ0B∗, ν̃(dx) = ν(B−1dxB−∗), π̃(dA) = π(B−1dAB).
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Proof. In view of the proof of Theorem 4.1 it suffices to consider BΣtB∗ and BLtB∗. We have

BΣtB∗ =
∫

M−
d

∫ t

−∞
BeA(t−s)Λ(dA,ds)eA∗(t−s)B∗ =

∫

M−
d

∫ t

−∞
eBAB−1(t−s)BΛ(dA,ds)B∗eB−∗A∗B∗(t−s)

=
∫

M−
d

∫ t

−∞
eA(t−s)Λ̃(dA,ds)eA∗(t−s)

where Λ̃(dA,ds) := BΛ(B−1dAB,ds)B∗ is again a Lévy basis satisfying the conditions of Theorem
2.7. Setting f : M−

d ×R→M−
d ×R, (A,s) 7→ (BAB−1,s) we see that for any C ∈Bb(M−

d ×R)

E
(
(exp

(
itr(uΛ̃(C))

))
=E

(
(exp

(
itr(uBΛ( f−1(C))B∗)

))
= E

(
(exp

(
ϕ(B∗uB)(π×λ )( f−1(C))

))

=E ((exp(ϕ̃(u)(π̃×λ )(C)))

with π̃(dA) = π(B−1dAB) and ϕ̃(u) = itr(uγ̃0)+
∫
Sd

(
eitr(ux)−1

)
ν̃(dx) where γ̃0 = Bγ0B∗ and ν̃(dx) =

ν(B−1dxB−∗).
Observing that BLtB∗ = BΛ(M−

d × (0, t])B∗ = Λ̃(M−
d × (0, t]) =: L̃t now concludes the proof.

Observe that the analogue of Remark 4.2 is also still valid.

5 Positive semidefinite OU type processes and factor modelling

In high-dimensions one typically reduces the complexity of models by introducing a small number of
factors supposed to explain the dependencies between the individual assets. Typically, these factors
are of a macroeconomic type or are representing the state of a branch of industry etc. Such factor
modelling approaches can be included into positive semidefinite OU type models in several ways.
Below we briefly outline two of them, noting that they have straightforward generalisations to the
supOU case.

5.1 Factor modelling in the matrix subordinator

One possible approach is to specify the matrix subordinator L (or likewise the positive semidefinite
Lévy basis in the supOU case) by using a factor approach. For instance, assume that L(1) is a d× d
diagonal matrix subordinator with independent components and L(2) is a k× k matrix subordinator
independent of L(1). Specifying the driving matrix subordinator L of an SVOU model as

L = L(1) +FL(2)F∗

with F ∈ Md,k(R) clearly introduces a factor structure into the shocks of the volatility process. In
this model L(1) can be understood to resemble the shocks which are due to news affecting only one
company, noting that by independence its components never jump together. Likewise L(2) can be
interpreted as the shocks in macroeconomic and/or industry related variables, i.e. it resembles news
affecting many/all companies at the same time. The matrix F can be understood as the factor loadings
matrix of the individual companies with respect to the common factors in L(2). It should be noted
that we have made basically no restrictions on L(2) so one can have a very sophisticated dependence
structure for the common factors as well as orthogonal factors.

Provided the parameter A is chosen to be diagonal, the stochastic correlations

ρi j,t =
Σi j,t√

Σii,tΣ j j,t
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remain constant as long as there is no jump in L. However, jumps in both L(1),L(2) affect the correla-
tions.

5.2 Factor modelling in the positive semidefinite OU type process

Another possible approach is the use of a positive semidefinite Ornstein-Uhlenbeck process as the
stochastic factor volatility process. In this case one would choose ΣF to be an l× l positive semidefinite
Ornstein-Uhlenbeck process and the stochastic volatility process Σ is defined by

Σ = FΣFF∗ (5.1)

with F ∈Md,l(R) being the factor loadings matrix.
An interesting special case of this specification arises by considering l = d + k with k ∈ N and by

specifying Σ in such a way that

ΣF =




Σ11 0 · · · 0 0

0 Σ22
. . .

...
...

...
. . . . . . 0

...
0 · · · 0 Σdd 0
0 · · · · · · 0 ΣF,k




with the Sk-valued OU type process ΣF,k ∈ and the univariate positive OU type processes Σii for
i = 1, . . . ,d all being independent.

Provided F = (Id, F̃) the elements Σii can be interpreted as the idiosyncratic factors of the stochastic
volatility of the stocks, whereas ΣF,k resembles the common factors.

If ΣF,k is again diagonal and the components are independent, this model becomes the one of
Hubalek and Nicolato (2009).

5.3 An Example

To illustrate the possibilities of factor modelling in connection with OU type processes further, we
now consider a simple two dimensional example noting that extensions to higher dimensions are
straightforward. Let L(c),L(1),L(2) be three independent univariate subordinators and G ∈ S+

d . Then
we define the driving Lévy process L as

Lt = GL(c)
t +

(
L(1)

t 0
0 L(2)

t

)
.

Hence, we have a simple set-up of the form considered in Section 5.1. The common factor is given
by L(c) and when it jumps there are jumps in the variances and the covariance, which are totally
dependent, as the relation between the jump sizes is always given by G. L(1),L(2) are the idiosyncratic
shocks to the individual variances. Whenever they have a jump, only the respective variance jumps.

For a general mean reversion matrix A, a jump in any of the Lévy processes L(1),L(2) may affect all
components of the OU type process Σ in a continuous manner after the jump has occurred. So the easy
factor interpretation works in general only for instantaneous changes, whereas the overall dependence
structure may be considerably more complex, as it is also heavily influenced by A. Moreover, it should
be noted that a jump in the idiosyncratic factor does not change the stochastic covariance Σ12, but it
reduces necessarily the absolute value of the stochastic correlation Σ12/

√
Σ11Σ22.
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Assume now that A =
(

a1 0
0 a2

)
is diagonal with a1,a2 < 0. Then a jump in L(1) or L(2) does not

effect the other variance or the covariance component of Σ at all. Actually, we have in the stationary
case

Σii,t = Gii

∫ t

−∞
e2ai(t−s)dL(c)

s +
∫ t

−∞
e2ai(t−s)dL(i)

s , i = 1,2

Σ12,t = G12

∫ t

−∞
e(a1+a2)(t−s)dL(c)

s .

Within some restrictions on can now, like in Example 3.2, use Barndorff-Nielsen (2001, Theorem
3.1, Corollary 3.1), Fasen and Klüppelberg (2007, Remark 2.2) or Pigorsch and Stelzer (2009b, The-
orem 4.9) to choose the driving Lévy processes L(c),L(1),L(2) such that the components of Σ have
prescribed selfdecomposable distributions. To do so, one will typically have to restrict oneself to one
family of selfdecomposable distributions which is highly tractable and where especially the effects
of scalings and convolution are well understood. Examples of such families include (subclasses of)
the Gamma and inverse Gaussian distribution. A particular example is the following. Let a1 = a2 and

G =
(

1 1
1 1

)
and assume we want to have that

Σ12,t ∼ Γ(α12,β ), (5.2)

Σ11,t ∼ Γ(α12 +α11,β ), (5.3)

Σ22,t ∼ Γ(α12 +α22,β ), (5.4)

with α11,α22,α12,β > 0. Then one simply uses Barndorff-Nielsen (2001, Theorem 3.1, Corollary 3.1)
(or one of the variants cited above) to determine L(c) such that (5.2) holds and L(1),L(2) such that

∫ t

−∞
e2ai(t−s)dL(i)

s ∼ Γ(αii,β )

holds. Note that this can also be understood as factor modelling on the level of stationary distributions.
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