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ABSTRACT. Expressions for (absolute) moments of generalized hyperbolic and normal inverse

Gaussian (NIG) laws are given in terms of moments of the corresponding symmetric laws. For the

(absolute) moments centred at the location parameter l explicit expressions as series containing

Bessel functions are provided. Furthermore, the derivatives of the logarithms of absolute l-centred

moments with respect to the logarithm of time are calculated explicitly for NIG Lévy processes.

Computer implementation of the formulae obtained is briefly discussed. Finally, some further

insight into the apparent scaling behaviour of NIG Lévy processes is gained.
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1. Introduction

The generalized hyperbolic (GH) distribution was introduced in Barndorff-Nielsen (1977) in

connection to a study of the grain-size distribution of wind-blown sand. Since then it has been

used in many different areas. Before outlining the contents of the present paper, we now give a

brief overview of various applications of the GH laws and the associated Lévy processes.

The original paper by Barndorff-Nielsen (1977) was focused on the special case of the

hyperbolic law. That law and its applicability have been further discussed, inter alia, in

Barndorff-Nielsen et al. (1983, 1985) (particle size distributions of sand), Barndorff-Nielsen &

Christiansen (1988), Hartmann & Bowman (1993), Sutherland & Lee (1994) and references

therein (coastal sediments), Xu et al. (1993) and their list of references (fluid sprays). In

Barndorff-Nielsen (1982) the appearance of the three-dimensional hyperbolic law in relativ-

istic statistical physics was pointed out. Other areas, where hyperbolic distributions have been

employed, include biology (e.g. Blæsild, 1981) and primary magnetization of lava flows (cf.

Kristjansson & McDougall, 1982). Furthermore, in Barndorff-Nielsen et al. (1989) the

hyperbolic distribution is employed to model wind shear data of landing aircrafts parsimo-

niously. See also Barndorff-Nielsen (1979) for applications in turbulence.

Moreover, Barndorff-Nielsen et al. (2004) recently demonstrated (following an indication in

Barndorff-Nielsen, 1998a) that the normal inverse Gaussian (NIG) law, another important

special case of the GH law, is capable of describing velocity data from turbulence experiments

with high accuracy. Eriksson et al. (2004) employ the NIG distribution to approximate other

(unknown) probability distributions.

In recent years many authors have successfully fitted generalized hyperbolic distributions and

in particular NIG laws to returns in financial time series; see Eberlein & Keller (1995), Prause

(1997, 1999), Barndorff-Nielsen (1997), Barndorff-Nielsen & Shephard (2001a,b) and references
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therein, Schoutens (2003), Barndorff-Nielsen & Shephard (2005). Benth & Šaltyt _e-Benth (2005)

have recently put forth a model for Norwegian temperature data driven by a GH Lévy process.

This has, in particular, led to modelling the time dynamics of financial markets by stochastic

processes using generalized hyperbolic or normal inverse Gaussian laws and associated Lévy

processes as building blocks (e.g. Rydberg, 1997, 1999; Bibby & Sørensen, 1997; Barndorff-

Nielsen, 1998b, 2001; Prause, 1999; Raible, 2000; Barndorff-Nielsen & Shephard, 2001a, 2005

and references therein; Eberlein, 2001; Schoutens, 2003; Cont & Tankov, 2004; Rasmus et al.

2004; Emmer & Klüppelberg, 2004; Mencia & Sentana, 2004).

One of the reasons, why the GH distribution is used in such a variety of situations, is that it

is not only flexible enough to fit many different data sets well, but also is rather tractable

analytically, and many important properties (density, characteristic function, cumulant

transform, Lévy measure, etc.) are known. Some of these properties are recalled in section 2.

Yet, until now, no details on absolute moments of arbitrary order r > 0 are known, except for

r ¼ 1. Thus we derive, in section 3, formulae for the (absolute) moments of arbitrary order

r > 0 of the generalized hyperbolic distribution in terms of moments of the corresponding

symmetric GH law. For l-centred (absolute) moments, i.e. moments centred at the location

parameter l, we are able to give explicit formulae using Bessel functions. From these general

formulae we will then, as special cases, obtain formulae for the absolute moments of the NIG

law and NIG Lévy process. We especially focus on the NIG case because of its wide appli-

cability and tractability. In particular, the NIG Lévy process has a marginal NIG distribution

at all times, an appealing feature not shared by the general GH Lévy process.

Due to Kolmogorov’s famous laws for homogeneous and isotropic turbulence (see, for

instance, Frisch, 1995) scaling is an important issue when considering turbulence data and

models. Ongoing research indicates that the time transformation carried out in Barndorff-

Nielsen et al. (2004) leads to a process with NIG marginals and very strong apparent scaling.

The question of the possible relevance of scaling in finance was raised by Mandelbrot (1963)

and has since been discussed by a number of authors, see, in particular, Müller et al. (1990),

Guillaume et al. (1997) and Mandelbrot (1997). More recently the question was taken up by

Barndorff-Nielsen&Prause (2001), who showed that anNIGLévy processmay exhibit moment

behaviour which is very close to scaling. However, they solely studied the first absolute moment

and obtained analytic results only in the case of a symmetric NIG Lévy process. As part of this

paper we generalize their findings to the skewed case and higher order moments.

Based on the explicit general formulae for l-centred moments of the NIG law, resp. NIG

Lévy process, we are able to deduce analytic results for the approximate scaling of an NIG

Lévy process, namely explicit expressions for the derivative of the logarithm of the l-centred
absolute moments of the NIG Lévy process with respect to the logarithm of time.

In the final sections we discuss the numerical implementation of the formulae obtained and

give numerical examples for the apparent scaling present in NIG Lévy processes.

Our results show that, in particular, the occurrence of empirical scaling laws is not bound to

necessitate the use of self-similar or even multifractal processes for modelling, as this type of

behaviour is already exhibited by such simple a model as an NIG Lévy process, when looking

at the relevant time horizons. For a survey of the theory and (approximate) occurrence of self-

similarity and scaling, see Embrechts & Maejima (2002).

2. Generalized hyperbolic and inverse Gaussian distributions

In this paper, we consider the class of one-dimensional GH distributions and the subclass

of NIG distributions in particular. The GH law was, as already noted, introduced in Barn-

dorff-Nielsen (1977) and its properties were further studied in Barndorff-Nielsen (1978a),
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Barndorff-Nielsen & Blæsild (1981) and Blæsild & Jensen (1981). Some recent results, in

particular regarding the multivariate GH laws, can be found in Prause (1999), Eberlein (2001),

Eberlein & Hammerstein (2004) and Mencia & Sentana (2004).

We denote the (one-dimensional) generalized hyperbolic distribution by GH (m, a, b, l, d)
and characterize it via its probability density given by:

pðx; m; a; b; l; dÞ ¼ �cm�a1=2�mffiffiffiffiffiffi
2p

p
dKmð�cÞ

1þ ðx� lÞ2

d2

 !m=2�1=4

� Km�1=2 �a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðx� lÞ2

d2

s0
@

1
Aebðx�lÞ ð1Þ

for x 2 R and where the parameters satisfy m 2 R, 0 � |b| < a, l 2 R, d 2 R>0, and

c :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q
; �a :¼ da; �b :¼ db; �c :¼ dc. Here a can be interpreted as a shape, b as a

skewness, l as a location and d as a scaling parameter; finally, m characterizes subclasses and

primarily influences the tail behaviour.

Furthermore, Km(Æ) denotes the modified Bessel function of the third kind and order m 2 R.

For a comprehensive discussion of Bessel functions of complex arguments see Watson (1952).

Jørgensen (1982) contains an appendix listing important properties of Bessel functions of the

third kind and related functions. Most of these properties can also be found in standard

reference books like Gradshteyn & Ryzhik (1965) or Bronstein et al. (2000). For the following

we need to know that Km is defined on the positive half plane D ¼ fz 2 C : R(z) > 0g of the

complex numbers and is holomorphic on D. From Watson (1952, p. 182) or Jørgensen (1982,

p. 170) we have the representation

KmðzÞ ¼
1

2

Z 1

0

ym�1 e�
1
2 zðyþy�1Þ dy; ð2Þ

which shows the strict positivity of Km on R>0. The substitution x :¼ y�1 immediately gives

K�m ¼ Km. Furthermore, Km(z) is obviously monotonically decreasing in z on R>0. From the

alternative representation

KmðzÞ ¼
Z 1

0

e�z coshðtÞ coshðmtÞ dt ð3Þ

(cf. Watson, 1952, p. 181) one reads off that, for fixed z 2 R>0, Km(z) is strictly increasing in m
for m 2 R�0.

There are several popular subclasses contained within the GH laws. For m ¼ 1 the hyper-

bolic and for m ¼ �1/2 the normal inverse Gaussian distributions are obtained. The normal,

exponential, Laplace, Variance-Gamma and Student-t distributions are among many others

limiting cases of the GH distribution (cf. Eberlein & Hammerstein, 2004 for a comprehensive

analysis).

Alternatively one often uses

q :¼ b
a
¼

�b
�a
; n :¼ ð1þ �cÞ�1=2 and v :¼ qn

to parameterize the GH law, as these quantities are invariant under location-scale changes and

v, resp. n, can be interpreted as a skewness, resp. kurtosis, measure. Moreover, the parameter

restrictions imply 0 < |v| < n < 1. For fixed m this gives rise to the use of shape triangles as a

graphical tool to study generalized hyperbolic distributions (see e.g. Barndorff-Nielsen et al.,

1983, 1985; Barndorff-Nielsen & Christiansen, 1988; Rydberg, 1997; Prause, 1999).
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A very useful representation in law of the generalized hyperbolic distribution can be given

using the generalized inverse Gaussian distribution. The generalized inverse Gaussian distri-

bution GIG(m, d, c) with parameters m 2 R, c, d 2 R�0 and c þ d > 0 is the distribution on

R>0 which has probability density function

pðx; m; d; cÞ ¼ ðc=dÞm

2KmðdcÞ
xm�1 exp � 1

2
ðd2x�1 þ c2xÞ

� �

¼ �cm

2Kmð�cÞ
d�2mxm�1 exp � 1

2
ðd2x�1 þ �c2d�2xÞ

� �
: ð4Þ

For more information on the GIG law we refer to Jørgensen (1982) and for an interpretation

in terms of hitting times to Barndorff-Nielsen et al. (1978). The following normal variance–

mean mixture representation of the generalized hyperbolic law holds.

Lemma 1

Let X � GH(m, a, b, l, d), V � GIG(m, d, c) with c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q
and e � N(0, 1), where V and

e are independent, then:

X ¼D lþ bV þ
ffiffiffiffi
V

p
e:

(For a general overview over normal variance–mean mixtures see Barndorff-Nielsen et al.,

1982.)

Furthermore, the cumulant function of the generalized hyperbolic law X �
GH(m, a, b, l, d) is given by

Kðh z X Þ ¼ m
2
log

c

a2 � ðbþ hÞ2

 !
þ log

Km d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � ðbþ hÞ2

q� �

Km d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q� �
0
BB@

1
CCAþ hl: ð5Þ

Obviously K(h � X) is defined for all h 2 R with |b þ h| < a. From this fact and Barndorff-

Nielsen (1978b, Corollary 7.1) we immediately obtain:

Lemma 2

Assume X � GH(m, a, b, l, d). Then X 2 Lp for all p > 0, i.e. E(|X|p) exists for all p > 0.

One immediately calculates the expected value and variance of a GH-distributed random

variate X to be

EðX Þ ¼ lþ b
dKmþ1ð�cÞ
cKmð�cÞ

;

VarðX Þ ¼ d2
Kmþ1ð�cÞ
�cKmð�cÞ

þ b2

c2
Kmþ2ð�cÞ
Kmð�cÞ

� Kmþ1ð�cÞ
Kmð�cÞ

� �2
 ! !

:

Higher order cumulants can also be calculated, but the expressions become more and more

complicated.

In the GH law the existence of moments of all orders is combined with semi-heavy tails

pðx; m; a; b; 0; dÞ � Cjxjm�1 exp ð�aþ bÞxð Þ as x ! �1 ð6Þ

for some constant C.
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In Fig. 1 the densities of NIG distributions fitted to turbulent velocity increments (from

data set I of Barndorff-Nielsen et al., 2004; with a detailed description of the data) at different

lags are plotted on a logarithmic scale together with histograms of the original data. The

graphs were obtained using the programme �hyp� (Blæsild & Sørensen, 1992). They exemplify

the rich variety of distributional shapes one can already get from the NIG law. Letting m vary
offers the possibility to get even more different shapes (see e.g. Eberlein & Özkan, 2003 for

some hyperbolic fits). Note especially the marked differences in the centre of the distributions

and the difference in how the asymptote given by (6) is approached. For a lag of 9000 the

shape is already very close to the quadratic one of the Gaussian law.

Moreover, the GH law is infinitely divisible (in fact, self-decomposable) and leads thus to an

associated Lévy process. Yet, the GH distribution is not closed under convolution, but the

NIG distribution has this property, so that all marginal distributions of a Lévy process

associated with an NIG distribution belong to the NIG class.

The above facts and the analytical tractability due to the existence of explicit expressions for

the density, the cumulant function and related functions makes using the GH law appealing in

many different areas, as already pointed out in the Introduction.

3. Moments and absolute moments of GH laws

In this section, we give expressions for different (absolute) moments of arbitrary GH distri-

butions in terms of moments of corresponding symmetric GH distributions. Based upon this
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Fig. 1. Log-density (solid line) of NIG distribution fitted to velocity increments at lags 12 (upper left), 500

(upper right) and 9000 (lower centre) and log-histogram (only top end points are given (�)).
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we obtain explicit expressions for l-centred (absolute) moments of GH distributions,

employing the variance–mean mixture representation.

Theorem 1

Let X � GH(m, a, b, l, d), Y � GH(m, a, 0, l, d), then for every r > 0 and n 2 N:

ðiÞ EðXnÞ ¼ �c
�a

� �m Kmð�aÞ
Kmð�cÞ

X1
k¼0

bk

k!
EðY nðY � lÞkÞ

ðiiÞ EðjX jrÞ ¼ �c
�a

� �m Kmð�aÞ
Kmð�cÞ

X1
k¼0

bk

k!
EðjY jrðY � lÞkÞ

ðiiiÞ EððX � lÞnÞ ¼ �c
�a

� �m Kmð�aÞ
Kmð�cÞ

X1
k¼0

b2kþm

ð2k þ mÞ!EððY � lÞ2kþmþnÞ

ðivÞ EðjX � ljrÞ ¼ �c
�a

� �m Kmð�aÞ
Kmð�cÞ

X1
k¼0

b2k

ð2kÞ!EðjY � lj2kþrÞ;

where m :¼ n mod 2. All moments above are finite.

Note that from the cumulant function we have E(Y) ¼ l and EðX Þ ¼ lþ
bdKmþ1ð�cÞ=ðcKmð�cÞÞ, as stated before. Hence, we have that E((Y � l)r) are central moments,

whereas E((X � l)r) are in general just l-centred moments. Note also that sgn E((X � l)n ¼
sgn b for all odd n.

Proof. We will only prove (ii), as the proofs of the other formulae proceed along the same

lines, except that to obtain (iii) and (iv) one notes in the final step that odd central moments of

Y vanish, as the distribution of Y is symmetric around l.
The series representation of the exponential function gives

EðjX jrÞ ¼
Z
R

�cm�a1=2�mffiffiffiffiffiffi
2p

p
dKmð�cÞ

1þ ðx� lÞ2

d2

 !m=2�1=4

� Km�1=2 �a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðx� lÞ2

d2

s0
@

1
Aebðx�lÞjxjr dx

¼
Z
R

X1
k¼0

�cm�a1=2�mffiffiffiffiffiffi
2p

p
dKmð�cÞ

1þ ðx� lÞ2

d2

 !m=2�1=4

� Km�1=2 �a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðx� lÞ2

d2

s0
@

1
A bk

k!
ðx� lÞk jxjr dx:

The integrals exist (cf. lemma 2) and the same is true with b changed to �b. This implies that

the integrals

Z 1

l

�cm�a1=2�mffiffiffiffiffiffi
2p

p
dKmð�cÞ

1þ ðx� lÞ2

d2

 !m=2�1=4

Km�1=2 �a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðx� lÞ2

d2

s0
@

1
Aejbðx�lÞjjxjr dx

and

Z l

�1

�cm�a1=2�mffiffiffiffiffiffi
2p

p
dKmð�cÞ

1þ ðx� lÞ2

d2

 !m=2�1=4

Km�1=2 �a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðx� lÞ2

d2

s0
@

1
Aejbðx�lÞjjxjr dx

and hence the integral
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Z
R

�cm�a1=2�mffiffiffiffiffiffi
2p

p
dKmð�cÞ

1þ ðx� lÞ2

d2

 !m=2�1=4

Km�1=2 �a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðx� lÞ2

d2

s0
@

1
Aejbðx�lÞjjxjr dx

exist. Using the last one as majorant, Lebesgue’s convergence theorem gives

EðjX jrÞ ¼
X1
k¼0

Z
R

�cm�a1=2�mffiffiffiffiffiffi
2p

p
dKmð�cÞ

1þ ðx� lÞ2

d2

 !m=2�1=4

� Km�1=2 �a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðx� lÞ2

d2

s0
@

1
A bk

k!
ðx� lÞk jxjr dx

¼
X1
k¼0

bk

k!
�c
�a

� �m Kmð�aÞ
Kmð�cÞ

Z
R

�am�a1=2�mffiffiffiffiffiffi
2p

p
dKmð�aÞ

1þ ðx� lÞ2

d2

 !m=2�1=4

� Km�1=2 �a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðx� lÞ2

d2

s0
@

1
Aðx� lÞk jxjr dx:

From this we immediately conclude

EðjX jrÞ ¼ �c
�a

� �m Kmð�aÞ
Kmð�cÞ

X1
k¼0

bk

k!
E jY jrðY � lÞk
� �

:

Corollary 1

Let X � GH(m, a, b, l, d), V � GIG(m, d, a) and e � N(0, 1) with V and e independent, then

for every r > 0 and n 2 N:

ðiÞ EððX � lÞnÞ ¼ �c
�a

� �m Kmð�aÞ
Kmð�cÞ

X1
k¼0

b2kþm

ð2k þ mÞ!E V kþðmþnÞ=2
� �

E �2kþmþn
� �

ðiiÞ EðjX � ljrÞ ¼ �c
�a

� �m Kmð�aÞ
Kmð�cÞ

X1
k¼0

b2k

ð2kÞ!E V kþr=2
� �

E j�j2kþr
� �

;

where m :¼ n mod 2.

Proof. Combine theorem 1 with lemma 1.

Note that we obtain the (absolute) moments of X provided l ¼ 0 and the (absolute) central

moments if b ¼ 0. For b ¼ 0 the above series are in fact just a single term or vanish com-

pletely.

Using the explicit expressions for the moments of GIG and normal laws, given in appendix

A, it is now straightforward to obtain more explicit expressions for the l-centred (absolute)

moments of GH laws.

Theorem 2

Let X � GH(m, a, b, l, d), then for every r > 0 and n 2 N:

ðiÞ EððX � lÞnÞ ¼ 2
n
2d e�cmd2 n

2d ebmffiffiffi
p

p
Kmð�cÞ�amþ

n
2d e
X1
k¼0

2k�b2kC k þ n
2

� 	
þ 1

2

� �
�akð2k þ mÞ! Kmþkþ n

2d eð�aÞ

ðiiÞ EðjX � ljrÞ ¼ 2
r
2�cmdrffiffiffi

p
p

Kmð�cÞ�amþ
r
2

X1
k¼0

2k�b2kC k þ r
2 þ 1

2

� �
�akð2kÞ! Kmþkþr

2
ð�aÞ;

where m :¼ n mod 2.
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Proof. Combine corollary 1 with lemmas 4 and 5 noting that (n þ m) mod 2 ¼ 0 and

(m þ n)/2 ¼ (n mod 2 þ n)/2 ¼ dn/2e.
The absolute convergence of the series on the right-hand sides is obviously implied by the

finiteness of E((X � l)n), resp. E(|X � l|r), and the positivity of all terms involved. Yet, one

can also immediately give an analytic argument, which adds further insight into the conver-

gence behaviour and is useful when one implements the above formulae on a computer (see

section 6). Let

ak :¼
2k�b2kC k þ r

2 þ 1
2

� �
�akð2kÞ! Kmþkþr

2
ð�aÞ:

From KmðzÞ �
ffiffiffiffiffiffiffiffiffiffiffiffi
ðp=2Þ

p
2mmm�1=2 e�mz�m for m ! 1 (Ismail, 1977; Jørgensen, 1982, p. 171) we

obtain

akþ1

ak
�

4�b2 k þ r
2 þ 1

2

� �
k þ mþ r

2

� �
1þ 1

kþmþr
2

� �kþmþrþ1
2

�a2eð2k þ 2Þð2k þ 1Þ !k!1 �b
�a

� �2

< 1 ð7Þ

and thus the quotient criterion from standard analysis implies absolute convergence. Lemma

6, which we give in appendix B2, and its proof add some further insight into the behaviour of

the series.

As a side result of theorem 2 we also obtain two identities for modified Bessel functions of

the third kind.

Corollary 2

Let x, y, z 2 R>0 s.t. z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

p
and m 2 R then

ðiÞ KmðzÞ ¼
zm

xm
X1
k¼0

1

2k � k!
y2k

xk
KmþkðxÞ

ðiiÞ zKmðzÞ þ y2Kmþ1ðzÞ ¼
zmþ1

xm
X1
k¼0

2k þ 1

2k � k!
y2k

xk
KmþkðxÞ:

Proof. Combine theorem 2 with

EðX Þ ¼ d�b
�c
Kmþ1ð�cÞ
Kmð�cÞ

and EðX 2Þ ¼ d2
Kmþ1ð�cÞ
�cKmð�cÞ

þ
�b2

�c2
Kmþ2ð�cÞ
Kmð�cÞ

� �

for X � GH(m, a, b, 0, d) and use Cðn þ 1=2Þ ¼ ð2nÞ!
ffiffiffi
p

p
=ð22n � n!Þ. Finally identify x, y, z, m

with �a; �b; �c; m þ 1.

4. Moments of NIG laws

We now turn to the normal inverse Gaussian subclass of the generalized hyperbolic law. For

an overview see especially Barndorff-Nielsen (1998b). Recall that the NIG(a, b, l, d) law with

0 � |b| < a, l 2 R and d 2 R>0 is the special case of the GH(m, a, b, l, d) law given by m ¼
� 1/2, as already mentioned when summarizing the properties of the GH law previously.

Hence, our above calculations for (l-centred) moments immediately lead to the following.

Corollary 3

Let X � NIG(a, b, l, d), Y � NIG(a, 0, l, d), then for every r > 0 and n 2 N:
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ðiÞ EðXnÞ ¼ e�c��a
X1
k¼0

bk

k!
EðY nðY � lÞkÞ

ðiiÞ EðjX jrÞ ¼ e�c��a
X1
k¼0

bk

k!
EðjY jrðY � lÞkÞ

ðiiiÞ EððX � lÞnÞ ¼ 2
n
2d eþ1

2d2
n
2d ebm

p�a
n
2d e�1

2

e�c
X1
k¼0

2k�b2kC k þ n
2

� 	
þ 1

2

� �
�akð2k þ mÞ! Kkþ n

2d e�1
2
ð�aÞ

ðivÞ EðjX � ljrÞ ¼ 2
rþ1
2 dr

p�a
r�1
2

e�c
X1
k¼0

2k�b2kC k þ rþ1
2

� �
�akð2kÞ! Kkþr�1

2
ð�aÞ;

where m :¼ n mod 2. All moments above are finite.

Proof. Follows immediately from theorems 1 and 2 using K1=2ðzÞ ¼ K�1=2ðzÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffi
ðp=2Þ

p
z�1=2 e�z (see e.g. Jørgensen, 1982, p. 170).

Formulae (iii) and (iv) for r equal to an even natural number can be given more explicitly

using

Knþ1
2
ðzÞ ¼ K1

2
ðzÞ 1þ

Xn
i¼1

ðnþ iÞ!
i!ðn� iÞ! 2

�iz�i

 !
ð8Þ

for all n 2 N (see e.g. Jørgensen, 1982, p. 170). But in order to avoid making the above

formulae even more complex, we omit this.

5. Moments of NIG Lévy processes and their time-wise behaviour

Based on the above results our aim now is to generalize the findings of Barndorff-Nielsen &

Prause (2001) regarding the time-wise approximate scaling behaviour of NIG Lévy processes.

5.1. Moments of NIG Lévy processes

Let Z(t), t 2 R>0, be the NIG(a, b, l, d) Lévy process, i.e. the Lévy process for which

Z(1) � NIG(a, b, l, d). Owing to the closedness under convolution of the NIG law, the

marginal distribution of the NIG Lévy process at an arbitrary time t 2 R>0 is given by

NIG(a, b, tl, td). For more background on NIG Lévy processes see in particular Barn-

dorff-Nielsen (1998b). From our previous results we can immediately infer the following:

Corollary 4

Let Z(t), t 2 R>0, be an NIG(a, b, l, d) Lévy process, then for every r > 0 and n 2 N:

ðiÞ EððZðtÞ � ltÞnÞ ¼ 2
n
2d eþ1

2d2
n
2d ebm

p�a
n
2d e�1

2

et�c
X1
k¼0

2k�b2kC k þ n
2

� 	
þ 1

2

� �
�akð2k þ mÞ! tkþ

n
2d eþ1

2

� Kkþ n
2d e�1

2
ðt�aÞ

ðiiÞ EðjZðtÞ � ltjrÞ ¼ 2
rþ1
2 dr

p�a
r�1
2

et�c
X1
k¼0

2k�b2kC k þ rþ1
2

� �
�akð2kÞ! tkþðrþ1Þ=2Kkþr�1

2
ðt�aÞ

where m :¼ n mod 2.

In appendix B2 it is shown that the moments above are analytic functions of time (lemma 6).

This fact is later needed to calculate derivatives of log moments.
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5.2. Scaling and apparent scaling

Before we now turn to discussing the scaling properties of an NIG Lévy process, let us

briefly state what scaling precisely means. Let X(t) be some stochastic process. We say

some moment of X obeys a scaling law, if the logarithm of this moment is an affine

function of log time, i.e. for the rth absolute moment, ln E(|X(t)|r) ¼ sr ln t þ cr for some

constants sr, cr 2 R. Here sr is called the scaling coefficient. If all (absolute) moments of X,

or at least those one is interested in, follow a scaling law, we say that the process itself

obeys one. For example, in the case of Brownian motion X(t) with drift l we know from

X ðtÞ � lt¼D
ffiffi
t

p
ðX ð1Þ � lÞ that ln E(|X(t) � lt|r) ¼ (r/2) ln t þ constant for all r > 0, i.e.

all absolute moments exhibit scaling. More generally all self-similar processes, e.g. the

strictly a-stable Lévy processes (cf. Samorodnitsky & Taqqu, 1994, Chapter 7; Sato, 1999,

Chapter 3), obey a scaling law. When looking only at small changes in time the local

scaling behaviour is determined by d ln E(|X(t)|r)/d ln t (in the case of the rth absolute

moment). In the presence of scaling the latter derivative is constant and equals the value of

the scaling coefficient. Provided some log moment of a process X(t) exhibits a very close to

affine dependence on log time over some time horizon of interest, we speak of approximate

or apparent scaling. This is equivalent to the local scaling varying only little over the time

spans considered. When working with real empirical data, it is often not possible to

distinguish between apparent and strict scaling due to the randomness of the available

observations. Hence, it is of interest, from a statistical point of view, whether some given

theoretical process shows approximate scaling.

5.3. The time-wise behaviour of l-centred moments

Let us now examine the scaling behaviour exhibited by the NIG(a, b, l, d) Lévy process Z(t).

For the following discussion of the time dependence of E(|Z(t) � lt|r) we will abbreviate the

time-independent terms:

cðrÞ :¼ 2
rþ1
2 dr

p�a
r�1
2

ð9Þ

akðrÞ :¼
2k�b2kC k þ rþ1

2

� �
�akð2kÞ! : ð10Þ

If we define

wðtÞ :¼ expðt�cÞ
X1
k¼0

akðrÞtkþðrþ1Þ=2Kkþðr�1Þ=2ðt�aÞ ð11Þ

and

/ðtÞ :¼ lnwðetÞ; ð12Þ

we have from corollary 4 that

EðjZðtÞ � ltjrÞ ¼ cðrÞ � wðtÞ ð13Þ

and

lnEðjZðtÞ � ltjrÞ ¼ ln cðrÞ þ /ðln tÞ: ð14Þ
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Thus:

d lnEðjZðtÞ � ltjrÞ
d ln t

¼ /0ðln tÞ: ð15Þ

Lemma 3

Let / : R>0 ! R be defined by (12), then

/0ðtÞ ¼ 1þ �c et � �a et

P1
k¼0

akðrÞ etkKkþðr�3Þ=2ðet�aÞ

P1
k¼0

akðrÞ etkKkþðr�1Þ=2ðet�aÞ
: ð16Þ

Proof. Using

K 0
mðzÞ ¼ �Km�1ðzÞ � mz�1KmðzÞ ð17Þ

(see e.g. Jørgensen, 1982, p. 170 or Bronstein et al., 2000, p. 528), we obtain for w(t) as defined
in equation (11):

w0ðtÞ ¼ expðt�cÞ �c
X1
k¼0

akðrÞtkþðrþ1Þ=2Kkþðr�1Þ=2ðt�aÞ þ
X1
k¼0

akðrÞ k þ r þ 1

2

� � 

� tkþðr�1Þ=2Kkþðr�1Þ=2ðt�aÞ �
X1
k¼0

akðrÞtkþðrþ1Þ=2�a

� Kkþðr�3Þ=2ðt�aÞ þ k þ r � 1

2

� �
ðt�aÞ�1Kkþr�1

2
ðt�aÞ

� ��

¼ �cwðtÞ þ t�1wðtÞ � �a e�ct
X1
k¼0

akðrÞtkþðrþ1Þ=2Kkþðr�3Þ=2ðt�aÞ:

That we may interchange differentiation and summation above is an immediate consequence

of lemma 6 and Weierstraß�s theorem for sequences of holomorphic functions (see appendix

B1). Hence, we get from (12)

/0ðtÞ ¼ etw0ðetÞ
wðetÞ ¼ 1þ �c et � �a et

P1
k¼0

akðrÞ etðkþðrþ1Þ=2ÞKkþðr�3Þ=2ðet�aÞ

P1
k¼0

akðrÞ etðkþðrþ1Þ=2ÞKkþðr�1Þ=2ðet�aÞ
:

Now we can formulate our main result on the scaling behaviour of NIG Lévy processes.

Theorem 3

Let Z(t), t 2 R>0, be an NIG(a, b, l, d) Lévy process, then

d lnEðjZðtÞ � ltjrÞ
d ln t

¼ 1þ �ct � �at

P1
k¼0 akðrÞtkKkþðr�3Þ=2ð�atÞP1
k¼0 akðrÞtkKkþðr�1Þ=2ð�atÞ

for every r > 0.

Proof. The result follows by combining lemma 3 and (15).

When comparing the above results with Barndorff-Nielsen & Prause (2001) note that they

looked at the derivatives with respect to lnð�atÞ, whereas we look at the derivative with respect
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to ln t. The difference is related to the fact that Barndorff-Nielsen & Prause (2001) only

consider the case b ¼ 0. In the general case the parameters �a and �b of the marginals at time t

are both scaled with t. Hence, it is most natural and convenient to consider the change of the

log moments versus the change of log time directly.

The expression for the local scaling behaviour derived in theorem 3 is in general not con-

stant in time, hence, the absolute l-centred moments of an NIG Lévy process do not obey a

strict scaling law. Later we shall see from numerical examples that apparent scaling is com-

mon. If we look at the symmetric NIG Lévy process, i.e. b ¼ 0, the above formula becomes

d lnEðjZðtÞ � ltjrÞ
d ln t

¼ 1þ �at � �at
Kðr�3Þ=2ð�atÞ
Kðr�1Þ=2ð�atÞ

: ð18Þ

From this one deducts using Km ¼ K�m that the second l-centred moment obeys a scaling law

with slope 1, which is the same as for Brownian motion.

The aggregational Gaussianity of NIG Lévy processes (due to the central limit theorem the

marginal distribution at time t of any Lévy process with finite second moment gets more and

more Gaussian as t increases) becomes visible in the asymptotic scaling of the symmetric case

for large times. For r ¼ 1 it was already noted in Barndorff-Nielsen & Prause (2001) that the

local scaling approaches 1/2 for t ! 1 and hence for large t the first absolute l-centred
moment of the process seems to scale like Brownian motion. Using formula (ii) in corollary 4,

which for b ¼ 0 becomes

EðjZðtÞ � ltjrÞ ¼ 2
rþ1
2 dr

p�a
r�1
2

exp t�að ÞC r þ 1

2

� �
tðrþ1Þ=2Kr�1

2
ðt�aÞ; ð19Þ

and KmðxÞ �
ffiffiffiffiffiffiffiffiffiffiffiffi
ðp=2Þ

p
x�1=2 e�x for x ! 1 (cf. Jørgensen, 1982, p. 171 or Bronstein et al., 2000)

we get that ln E(|Z(t) � lt|r) � (r/2) ln t þ c for t ! 1, where c 2 R is a constant. Note

that, as usual, ‘�� denotes asymptotic equivalence. Hence, E(|Z(t) � lt|r) obeys a scaling law

with slope r/2 for t ! 1, i.e. the symmetric NIG Lévy process approaches the exact scaling

behaviour of Brownian motion. This result can also be easily deduced from (18) using an

asymptotic expansion of K(r�3)/2(z)/K(r�1)/2(z) for z ! þ 1 (see e.g. Jørgensen, 1982, p. 173).

Studying the limiting behaviour of the absolute l-centred moments analytically for b 6¼ 0

seems hardly possible. Yet, numerical studies indicate that a skewed NIG Lévy process does

not scale like Brownian motion for large times in general. For example, when computing

d ln E((Z(t))2)/d ln t of the NIG(100, 30, 0, 0.001) Lévy process for times from 1/2 to 1024 the

values increase monotonically from 1.004 to 6.268. If we are, however, close to the symmetric

case, i.e. if |b|/a is small, then basically the same approximate scaling behaviour is obtained as

in the symmetric case. This can, in particular, be seen in the numerical data presented in

section 7, where for large times the value of d ln E(|Z(t) � lt|r)/d ln t is very close to the

Brownian motion scaling slope of r/2.

To see from (19) what happens in the symmetric case for t ! 0 we employ the fact that

KmðxÞ � CðmÞ2m�1x�m for m > 0; x & 0
� ln x for m ¼ 0; x & 0



ð20Þ

(see e.g. Jørgensen, 1982, p. 171). For r ¼ 1 and t ! 0 we obtain that ln E(|Z(t) � lt|)
becomes ln t þ �a eln t þ lnð� lnðt�aÞÞ þ c with c 2 R being a constant. From this we conclude

that for small values of t the first absolute l-centred moment approximately scales with slope

1, as already noted in Barndorff-Nielsen & Prause (2001). The same asymptotic scaling slope

of one holds for r > 1, since lnEðjZðtÞ � ltjrÞ � ln t þ �a eln t þ cðrÞ for t ! 0. Yet, a
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different result is obtained for 0 < r < 1. In this case one obtains again using (20) and the

identity K�m ¼ Km that lnEðjZðtÞ � ltjrÞ � r ln t þ �a eln t þ cðrÞ and so there is asymptotic

scaling with slope r.

6. Notes on the numerical implementation

We will now briefly discuss some issues related to the implementation of formula (ii) in

corollary 4 and theorem 3 on a computer. Similar results hold for formula (i) of corollary 4.

First note that (ii) in corollary 4 can be reexpressed using (10) as:

EðjZðtÞ � ltjrÞ ¼ 2d2t
�a

� �r=2 ffiffiffiffiffiffiffi
2t�a

p

p
exp t�cð Þ

X1
k¼0

akðrÞtkKkþr�1
2
ðt�aÞ: ð21Þ

The value of the infinite series can only be approximated. Yet, note that the analytic con-

vergence discussion of the series in section 3, especially formula (7), implies asymptotically

geometric convergence of this series, which is the faster, the smaller |b| is relatively to a. We

suggest to compute the individual summands recursively as discussed below, add them up and

stop, when summands become negligible compared to the current value of the approximation.

To calculate the individual summands recursively note that

a0ðrÞ ¼ C
r þ 1

2

� �
ð22Þ

and

akðrÞtk ¼
2�b2ðk þ ðr � 1Þ=2Þ

�að2k � 1Þð2kÞ t � ak�1ðrÞtk�1; ð23Þ

which is obtained using the functional equation C(z þ 1) ¼ zC(z) of the Gamma function, and

that the recursion formula for Bessel functions (Jørgensen, 1982, p. 170) gives

Kkþr�1
2
ðt�aÞ ¼ 2 � k � 1þ r � 1

2

� �
ðt�aÞ�1Kk�1þr�1

2
ðt�aÞ þ Kk�2þr�1

2
ðt�aÞ: ð24Þ

The latter formula implies that we can calculate the values of the Bessel functions needed from

a two-term recursion, for which we only need to calculate K�1þðr�1Þ=2ðt�aÞ and Kðr�1Þ=2ðt�aÞ as
starting values. Hence, the calculation of the value of the series involves, apart from basic

manipulations, only one evaluation of the Gamma function and two of the Bessel functions.

The series in the denominator in theorem 3 is the series just discussed above and the

numerator is of the same type, only the index of the Bessel functions is changed, and can hence

be calculated analogously. Actually, both series can be calculated simultaneously using only

the recursion for ak(r)t
k and the two-term recursion for the Bessel functions described above.

There is, however, one possible problem when using the two-term recursion. If the starting

values are zeros up to numerical precision, then only zeros will be calculated as summands. For

example when using Matlab and the built in function for Km one gets K0(z) ¼ 0 for z > 697.

Hence, one needs to take care of this possible case. Provided the recursion works, the numerical

results obtained are usually almost identical to the numerical results one getswhenusing a built in

Bessel function routine of e.g.Matlab for each summand, but the recursionmay save computing

power. Furthermore, it should now be obvious, how numerical evaluations of the formulae for

l-centred (absolute) moments of GH laws given in theorem 2 can be organized efficiently.

The Matlab code we used to produce the numerical results in this paper is available from

http://www.ma.tum.de/stat/Papers. It is based upon the above considerations and can be used
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to compute l-centred moments of the NIG distribution/Lévy process and the derivatives of

the log moments with respect to log time.

7. Apparent scaling behaviour of NIG Lévy processes

The aim of this section is to show that NIG Lévy processes may well exhibit a behaviour very

close to strict scaling over a wide range of orders of moments. We exemplify the possible

apparent scaling of absolute l-centred moments of NIG Lévy processes using the parameters

from Barndorff-Nielsen & Prause (2001). They considered the USD/DEM exchange rate from

the whole of 1996, contained in the HFDF96 data set from Olsen & Associates, and fitted an

NIG Lévy process to the log returns by maximum likelihood estimation. The estimates

obtained based on the 3-hr log returns are a ¼ 415.9049, b ¼ 1.512, d ¼ 0.0011 and l ¼
0.000026. For further details on the data, the estimation procedure and the relevance for

finance we refer the interested reader to the paper by Barndorff-Nielsen & Prause. Note

especially that, as is typical for returns of exchange rate series, l is very close to zero and

therefore there is practically no difference between moments and l-centred moments. Figure 2

(left), which depicts the logarithm of the first absolute l-centred moment versus the logarithm

of time in seconds, is therefore optically indistinguishable from the figure in Barndorff-Nielsen

& Prause (2001) showing the first absolute moment calculated via numerical integration. The

estimated regression line of the log moments against log time, fitted by least squares, has slope

0.5863, which is slightly higher than the slope 0.5705 reported in Barndorff-Nielsen & Prause

(2001), and d ln E(|Z(t) � lt|)/d ln t decreases from 0.7853 to 0.5011 over the time interval

depicted, which is 5.625 min to 32 days. This is significantly different from the Brownian

motion case, where it is exactly 1/2 (cf. above). The behaviour of d ln E(|Z(t) � lt|)/d ln t

over the time interval considered indicates that for t ! 1 the slope asymptotically becomes

about 1/2, the exact Gaussian scaling coefficient. This is related to the fact that |b| is relatively
small, as already pointed out earlier in the discussion of the scaling asymptotics.

With our results obtained above it is possible to study the behaviour of moments other than

the first. Figures 2 (right), 3 (left, right) and 4 (left) show the time behaviour of the 0.9th, 1.1th,

0.5th and 1.5th l-centred absolute moments over the same time horizon. All figures exhibit

apparent scaling, which improves with the order of the moment. The fitted regression lines

have slope 0.53535, 0.63536, 0.31322 and 0.81327, respectively, which are all higher than the
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Fig. 2. Approximate scaling law for the first (left) and 0.9th l-centred absolute moment of the NIG Lévy

process fitted to the USD/DEM exchange rate: moments (d) and regression line log moments against log

time.
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corresponding values for Brownian motion, which are 0.45, 0.55, 0.25 and 0.75. The values of

d ln E(|Z(t) � lt|r)/d ln t decrease from 0.7316 to 0.4509, 0.8316 to 0.5512, 0.4499 to 0.2503

and 0.9499 to 0.7515, respectively. So again they seem to converge to some value close to the

Brownian motion scaling slope.

Figure 4 (right) shows that the second l-centred moment seems to exhibit perfect linear

scaling. Yet, there is in fact no strict scaling law holding. The values of the regression coef-

ficient 1.0001 and d ln E(|Z(t) � lt|2)/d ln t are very close to 1 with d ln E(|Z(t) � lt|2)/d ln t

increasing very slowly from 1 to 1.0015. Such a result is to be expected, as |b| is small

(compared with a) and for b ¼ 0 we have that the variance, which is in this case identical to

the second l-centred moment, obeys a strict scaling law with slope 1, as for Brownian motion.

The third l-centred absolute moment still exhibits apparent scaling behaviour with a

regression slope of 1.2966, but the values of d ln E(|Z(t) � lt|3)/d ln t are now increasing from

1.0134 to 1.5007 rather than decreasing and the slope is lower than the scaling coefficient 1.5

for Brownian motion. However, d ln E(|Z(t) � lt|3)/d ln t still seems to converge to some

value close to 3/2 at large times. It generally seems to be the case that d ln E(|Z(t) � lt|r)/
d ln t increases with time for r > 2, whereas it decreases for r < 2. Actually, further calcu-

lations indicate that this change takes place marginally below 2 at about 1.9995. Some more
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Fig. 4. Approximate scaling law for the 1.5th (left) and second l-centred absolute moment: moments (d)

and regression line log moments against log time.
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Fig. 3. Approximate scaling law for the 1.1th (left) and 0.5th l-centred absolute moment: moments (d)

and regression line log moments against log time.
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numerical calculations hint that in the symmetric case ln E(|Z(t) � lt|r) is concave as a

function of ln t for 0 < r � 2 and convex for r � 2.

For very high values of r, i.e. 10 and greater, no apparent linear scaling is observed over the

time horizon considered. Looking at the slopes of the apparent scaling of the l-centred
absolute moments (of orders 0.2–4, for instance, as we have done in further calculations), the

relationship between scaling coefficient and order is apparently not simply linear as, for

example, in the case of an a-stable Lévy process (see Samorodnitsky & Taqqu, 1994, Chapter

7; Sato, 1999, Chapter 3), but a concave one.

Our results obtained above show that NIG Lévy processes may exhibit something close to

scaling. These findings are particularly interesting, as both in finance, especially when dealing

with foreign exchange returns, and turbulence there is on the one hand empirical and for

turbulence also theoretical evidence of scaling laws, and on the other hand models based on

NIG Lévy processes have been put forth in the literature. Compared to Brownian motion the

NIG Lévy process does in general not exhibit exact linear scaling, but approximate scaling

over wide time horizons and for a practically interesting range of (absolute) moments is

demonstrated here.
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Appendix A. Moments of GIG and normal laws

For completeness we provide below the well-known formulae for the moments of the GIG and

normal laws.
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For the GIG law the following result is given in Jørgensen (1982, p. 13), who uses a slightly

different parameterization.

Lemma 4

Let X � GIG(m, d, c) with d, c > 0. Then

EðX rÞ ¼ d
c

� �rKmþrð�cÞ
Kmð�cÞ

for every r > 0.

Proof.

EðX rÞ ¼
Z 1

0

�cm

2Kmð�cÞ
d�2mxmþr�1 exp � 1

2
�c ð�cd�2xÞ�1 þ �cd�2x
� �� �

dx ¼y:¼�cd�2x

¼ �c�rd2r

Kmð�cÞ
1

2

Z 1

0

ymþr�1 exp � 1

2
�cðy�1 þ yÞ

� �
dy ¼ d

c

� �r Kmþrð�cÞ
Kmð�cÞ

;

where in the last step we employed the integral representation (2) of Kmþr stated earlier when

introducing the modified Bessel function of the third kind.

The absolute moments of the normal distribution N(0, 1) are well known and given in many

standard texts on probability theory, viz. the following lemma.

Lemma 5

Let X � N(0, 1) and r > 0 then

EðjX jrÞ ¼
2r=2C rþ1

2

� �
ffiffiffi
p

p :

Proof.

EðjX jrÞ ¼ ð2pÞ�1=2

Z
R

jxjr e�x2
2 dx ¼ 2

p

� �1=2Z 1

0

xr e�
x2
2 dx ¼t:¼

x2
2

¼ 2r=2ffiffiffi
p

p
Z 1

0

t
rþ1
2 �1 e�t dt ¼ 2r=2ffiffiffi

p
p C

r þ 1

2

� �
:

Appendix B. Analyticity of the moments of an NIG Lévy process as a function of time

In this appendix we show that the l-centred (absolute) moments of an NIG Lévy process Zt,

given in corollary 4, are analytic functions of time. To this end we employ some complex

function theory, so we start with a brief review of the needed result, viz. Weierstraß�s con-

vergence theorem.

B1. Convergence of sequences of holomorphic functions

Recall that a function f : D ! C, D 	 C, is called holomorphic, if it is complex differentiable

on D, i.e.

lim
h2C;h!0

f ðzþ hÞ � f ðzÞ
h

exists for all z 2 D (confer textbooks on complex function theory, e.g. Remmert, 1991 or

Freitag & Busam, 2000, for a thorough discussion of holomorphicity and related concepts).
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Holomorphic functions have many useful properties that real differentiable functions lack in

general and thus it is often preferable to use holomorphic functions when possible. One of the

nice implications of holomorphicity is that any once complex differentiable function is

automatically infinitely often complex differentiable and another is that locally uniform

convergence commutes with differentiation.

Theorem 4 (Weierstraß�s convergence theorem)

Let fn : D ! C, n 2 N, be a sequence of holomorphic functions, defined on an open subset

D 	 C, which converges locally uniform to a function f : D ! C. Then f is holomorphic on

D and for every k 2 N the sequence of kth derivatives f ðkÞ
n converges locally uniform to f (k) on D.

For a proof and related results see one of the books mentioned above. The crucial

difference to the real differentiable case is that complex differentiation has an integral

representation.

B2. Holomorphicity of some series

The following lemma gives in particular that the l-centred (absolute) moments of an NIG

Lévy process Zt (cf. corollary 4) are analytic functions of time.

Lemma 6

Let �a > 0, j�bj < �a, 1 < � < a2=jbj2, m 2 R, r > 0, n 2 N,m ¼ nmod 2,D ¼ fz 2 C : R(z) > 0,

|z| < �R(z)g,

f : D ! C; z 7!
X1
k¼0

2k�b2kC k þ r
2 þ 1

2

� �
�akð2kÞ! zkþðrþ1Þ=2Kmþkþr

2
ðz�aÞ

and

g : D ! C; z 7!
X1
k¼0

2k�b2kC k þ n
2

� 	
þ 1

2

� �
�akð2k þ mÞ! zkþ

n
2d eþ1

2Kmþkþ n
2d eðz�aÞ:

Then both series are locally uniformly convergent and f, g are holomorphic on D.

Note that m is �1/2 in the series of corollary 4.

Proof. It is sufficient to show the locally uniform convergence, since this implies the holo-

morphicity via Weierstraß�s convergence theorem (see appendix B1). Furthermore it is obvious

that the result for g follows from the one for f.

Let us now prove the uniform convergence of the series f ðzÞ ¼
P1

k¼0 fkðzÞ on

D \ fz 2 C : a < R(z) < bg for arbitrary 0 < a < b < 1, where

fkðzÞ ¼
2k�b2kC k þ r

2 þ 1
2

� �
�akð2kÞ! zkþðrþ1Þ=2Kmþkþr

2
ðz�aÞ:

An immediate consequence of the integral representation for Km given in (2) is

|Km(z)| � Km(R(z)) for z 2 D and thus
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jfkðzÞj ¼
2k�b2kC k þ r

2 þ 1
2

� �
�akð2kÞ! zkþðrþ1Þ=2Kmþkþr

2
ðz�aÞ

�����
�����

�
2k j�bj2kC k þ r

2 þ 1
2

� �
�akð2kÞ! ð�<ðzÞÞkþðrþ1Þ=2Kmþkþr

2
ð<ðzÞ�aÞ

�
x:¼<ðzÞ 2k j�bj2kC k þ r

2 þ 1
2

� �
�akð2kÞ! ð�xÞkþðrþ1Þ=2Kmþr

2þkðx�aÞ

for all k 2 N0. Note that we defined x 2 (a, b) to be the real part of z. Using equation (17) we

obtain

d
dx

xkþmþr
2Kmþr

2þkðx�aÞ ¼ ��axkþmþr
2Kmþr

2þk�1ðx�aÞ < 0:

This implies for x 2 (a, b):

xkþðrþ1Þ=2Kmþr
2þkðx�aÞ � dakþðrþ1Þ=2Kmþr

2þkða�aÞ

where d :¼ am�1/2 maxfa�mþ1/2, b�mþ1/2g. Applying this inequality to the above expression, we

get for all k 2 N0

jfkðzÞj�
2kdj�bj2kC k þ r

2 þ 1
2

� �
�akð2kÞ! ð�aÞkþðrþ1Þ=2Kmþr

2þkða�aÞ:

From the finiteness of the r/2th absolute moment of the GHðm; a�a; aj�bj
ffiffi
�

p
; 0; 1Þ law and

theorem 2 follows that

X1
k¼0

2kdj�bj2kC k þ r
2 þ 1

2

� �
�akð2kÞ! ð�aÞkþðrþ1Þ=2Kmþr

2þkða�aÞ

¼ dð�aÞ
rþ1
2

X1
k¼0

2kðj�bja
ffiffi
�

p
Þ2kC k þ r

2 þ 1
2

� �
ða�aÞkð2kÞ!

Kmþr
2þkða�aÞ

converges absolutely. Hence, the uniform convergence of
P1

k¼0 jfkðzÞj on

D \ fz 2 C : a < R(z) < bg is established.
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