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Abstract

Processes of finite variation, which take values in the positive semidefinite matrices and
are representable as the sum of an integral with respect to time and one with respect to an
extended Poisson random measure, are considered. For such processes we derive conditions
for the square root (and the r-th power with 0 < r < 1) to be of finite variation and obtain
integral representations of the square root. Our discussion is based on a variant of the Itô
formula for finite variation processes.

Moreover, Ornstein-Uhlenbeck type processes taking values in the positive semidefinite
matrices are introduced and their probabilistic properties are studied.
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1 Introduction

The theory of self-decomposability, as developed by Lévy, Urbanik, Sato, Jurek and Mason,
and others, has turned out to be of substantial interest for stochastic modelling in finance,
turbulence and other fields. See, for instance, Barndorff-Nielsen (1998a), Barndorff-Nielsen
& Shephard (2001) and Barndorff-Nielsen & Schmiegel (2004), where (positive) Lévy driven
processes of Ornstein - Uhlenbeck type have a key role.

The focus of the present paper is on stochastic differential equation representations of
square roots of positive definite matrix processes of Lévy or Ornstein - Uhlenbeck type.
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Such representations are, in particular, of interest in connection with the general theory of
multipower variation, cf. Barndorff-Nielsen, Graversen, Jacod, Podolskij & Shephard (2006)
and Barndorff-Nielsen, Graversen, Jacod & Shephard (2006).

In the present literature matrix-valued stochastic processes are not commonly used to
model multivariate phenomena (see, for instance, the short discussion on multivariate stoch-
astic volatility models at the end of Section 4). Our introduction of positive-definite Ornstein-
Uhlenbeck processes and the discussion of the representations of square (and other) roots
shows that matrix-valued models of considerable generality can be defined in a natural way
and univariate results can very often be generalized by using notions and results from matrix
analysis. Furthermore, several results of general interest regarding matrix-valued processes
(semimartingales) and matrix analysis are obtained, as we proceed.

This paper is organized as follows. Section 2 establishes some notation, and in Section 3 we
present a convenient version of Itô’s formula for processes of finite variation. In Section 4 we
introduce positive definite processes of Ornstein - Uhlenbeck type (OU processes), using the
concept of matrix subordinators discussed by Barndorff-Nielsen & Pérez-Abreu (2006). The
question of establishing tractable stochastic differential equations for roots of positive definite
matrix processes is then addressed in Section 5, and in Section 6 the results are applied to
the case of OU processes.

2 Notation

Throughout this paper we write R+ for the positive real numbers including zero and we
denote the set of real m × n matrices by Mm,n(R). If m = n we simply write Mn(R) and
denote the group of invertible n × n matrices by GLn(R), the linear subspace of symmetric
matrices by Sn(R), the (closed) positive semidefinite cone by S+

n (R) and the open (in Sn)
positive definite cone by S++

n (R). In stands for the n × n identity matrix and σ(A) for the
spectrum (the set of all eigenvalues) of a matrix A ∈ Mn(R). The natural ordering on the
symmetric n × n matrices will be denoted by ≤, i.e. for A,B ∈ Sn(R) we have that A ≤ B,
if and only if B − A ∈ S+

n . The tensor (Kronecker) product of two matrices A,B is written
as A⊗B. vec denotes the well-known vectorisation operator that maps the n×n matrices to
Rn2

by stacking the columns of the matrices below one another. Finally, A∗ is the adjoint of
a matrix A ∈ Mn(R).

For a matrix A we denote by Aij the element in the i-th row and j-th column and this
notation is extended to processes in a natural way.

Regarding all random variables and processes we assume that they are defined on a given
appropriate filtered probability space (Ω,F , P, (Ft)) satisfying the usual hypotheses. With
random functions we usually do not state the dependence on ω ∈ Ω explicitly.

Furthermore, we employ an intuitive notation with respect to the integration with matrix-
valued integrators. Let At ∈ Mm,n, Lt ∈ Mn,r and Bt ∈ Mr,s be three processes then we denote
by

∫
AtdLtBt the matrix C in Mm,s(R) which has ij-th element Cij =

∑n
k=1

∑r
l=1

∫
aikbljdLkl.

Moreover, we always denote by
∫ b
a with a ∈ R ∪ {−∞}, b ∈ R the integral over the half-open

interval (a, b] for notational convenience. If b = ∞ the integral is understood to be over (a, b).
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3 Itô formulae for finite variation processes in open sets

In this section we provide a univariate and a multivariate version of the Itô formula from
stochastic analysis, which is especially suitable for the purposes of this paper. Actually, our
version is a consequence of standard results, but not given in the usual references.

As we are analysing stochastic processes in general open subsets C of Rd,Md(R) or Sd(R),
we need an appropriate assumption that the process stays within C and does not hit the
boundary, since this causes problems in general. To describe “good” behaviour we thus intro-
duce “local boundedness within C”. If C is the whole space it is the same as “local bounded-
ness”.

Definition 3.1. Let (V, ‖·‖V ) be either Rd,Md(R) or Sd(R) with d ∈ N and equipped with the
norm ‖ · ‖V , let a ∈ V and let (Xt)t∈R+ be a V -valued stochastic process. We say that Xt is
locally bounded away from a if there exists a sequence of stopping times (Tn)n∈N increasing
to infinity almost surely and a real sequence (dn)n∈N with dn > 0 for all n ∈ N such that
‖Xt − a‖V ≥ dn for all 0 ≤ t < Tn.

Likewise, we say for some open set C ⊂ V that the process Xt is locally bounded within
C if there exists a sequence of stopping times (Tn)n∈N increasing to infinity almost surely and
a sequence of compact convex subsets Dn ⊂ C with Dn ⊂ Dn+1 ∀n ∈ N such that Xt ∈ Dn

for all 0 ≤ t < Tn.

Obviously, if a process is locally bounded away from some a or is locally bounded within
some C in one norm, then the same holds for all other norms. We will see in the following
that these definitions play a central role for our Itô formulae and that they hold for many
processes.

Proposition 3.2 (Univariate Itô formula for processes of finite variation). Let (Xt)t∈R+ be a
cadlag process of finite variation (thus a semimartingale) with associated jump measure µX on
(R+ × R\{0},B (R+ × R\{0})) (see e.g. Jacod & Shiryaev (2003, Proposition II.1.16)) and
let f : C → R be continuously differentiable, where C is some open interval C = (a, b) with
a, b ∈ R ∪ {±∞}, a < b. Assume that (Xt)t∈R+ is locally bounded within C. Then the process
Xt as well as its left limit process Xt− take values in C at all times t ∈ R+, the integral∫ t
0

∫
R\{0}(f(Xs− + x)− f(Xs−))µX(ds, dx) exists a.s. for all t ∈ R and

f(Xt) = f(X0) +
∫ t

0
f ′(Xs−)dXc

s +
∫ t

0

∫

R\{0}
(f(Xs− + x)− f(Xs−))µX(ds, dx),

where Xc
t = Xt −

∫ t
0

∫
R\{0} xµX(ds, dx) is the continuous part of X.

(Strictly speaking f(Xs− + x) is not defined for all x ∈ R, as f is only defined on C. But
our assumptions assure that µX is concentrated on those x for which Xs−+x ∈ C. Therefore
we can simply continue f arbitrarily outside of C.)

Proof: As Xt is locally bounded within C, the process Xt cannot get arbitrarily close to
the boundary of C in finite time and hence Xt and Xt− are in C at all times t ∈ R+.

Obviously,
∫ t
0

∫
R\{0}(f(Xs−+x)−f(Xs−))µX(ds, dx) =

∑
0<s≤t ∆f(Xs). That Xt is locally

bounded within C implies the existence of compact intervals Dn ⊂ C such that Xt ∈ Dn for
all t ∈ [0, Tn) for some sequence (Tn)n∈N of stopping times increasing to infinity a.s. However,
f ′ is bounded on Dn, say by cn, and the mean value theorem gives us that ∆f(Xs) =
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f(Xs)−f(Xs−) = f ′(ζs)(Xs−Xs−) = f ′(ζs)∆Xs with ζs ∈ Dn. Therefore,
∫ t
0

∫
R\{0} |f(Xs−+

x) − f(Xs−)|µX(ds, dx) =
∑

0<s≤t |∆f(Xs)| ≤ cn
∑

0<s≤t |∆Xs| for all t ∈ [0, Tn), which is
finite due to the finite variation of Xt. Thus the almost sure existence of the integral is shown.

The standard Itô formula (see Bichteler (2002, Theorem 3.9.1 together with Proposition
3.10.10) for an appropriate version) gives

f(Xt) = f(X0) +
∫ t

0
f ′(Xs−)dXs +

∫ t

0

∫

R\{0}
(f(Xs− + x)− f(Xs−)− f ′(Xs−)x)µX(ds, dx),

on observing that, since Xt is a finite variation process, we can move from a twice continuously
differentiable f to an only once continuously differentiable one, as in Protter (2004, Theorem
II.31). Noting further that

∫ t
0 f ′(Xs−)dXs =

∫ t
0 f ′(Xs−)dXc

s +
∫ t
0

∫
R\{0} f ′(Xs−)xµX(ds, dx)

and that the integral
∫ t
0

∫
R\{0}(f(Xs− + x)− f(Xs−))µX(ds, dx) exists, we obtain:

f(Xt) = f(X0) +
∫ t

0
f ′(Xs−)dXc

s +
∫ t

0

∫

R\{0}
(f(Xs− + x)− f(Xs−))µX(ds, dx). 2

Remark 3.3. a) The assumption that Xt remains locally bounded within C ensures that
f ′(Xt) is locally bounded. This reflects the boundedness of the derivative needed in the proof
of Protter (2004, Theorem I.54), which is a special case of the above result.

b) It is straightforward to see that Xt is locally bounded within C = (a, b) if and only if
Xt is in C at all times and locally bounded away from both a and b, where for a = −∞ or
b = ∞ this has to be understood as meaning locally bounded. Recall in this context that any
finite variation process is locally bounded.

In the multivariate version we use the notion of (total) differentials, sometimes also called
Fréchet differentials (see Rudin (1976, Chapter 9), or Bhatia (1997, Section X.4) for an over-
view focusing on the matrix case), rather than partial derivatives for notational convenience.
Recall, however, that a function is continuously differentiable if and only if all partial derivat-
ives exist and are continuous, and that the derivative, which is a linear operator, simply has
the partial derivatives as entries. The derivative of a function f at a point x is denoted by
Df(x). In particular, we have the following multivariate version of Proposition 3.2. We state
it only for processes in Rd, but it should be obvious that Rd can be replaced by Md(R) or
Sd(R).

Proposition 3.4 (Multivariate Itô formula for processes of finite variation). Let (Xt)t∈R+ be
a cadlag Rd-valued process of finite variation (thus a semimartingale) with associated jump
measure µX on

(
R+ × Rd\{0},B (

R+ × Rd\{0})) and let f : C → Rm be continuously differ-
entiable, where C ⊆ Rd is an open set. Assume that the process (Xt)t∈R+ is locally bounded
within C. Then the process Xt as well as its left limit process Xt− take values in C at all
times t ∈ R+, the integral

∫ t
0

∫
Rd\{0}(f(Xs−+ x)− f(Xs−))µX(ds, dx) exists a.s. for all t ∈ R

and

f(Xt) = f(X0) +
∫ t

0
Df(Xs−)dXc

s +
∫ t

0

∫

Rd\{0}
(f(Xs− + x)− f(Xs−))µX(ds, dx),

where Xc
t = Xt −

∫ t
0

∫
Rd\{0} xµX(ds, dx) is the continuous part of X.

Proof: The proof is a mere multivariate rephrasing of the one for Proposition 3.2 us-
ing an appropriate general multidimensional version of Itô’s formula (e.g. Bichteler (2002,
Proposition 3.10.10), Métivier (1982, Theorem 27.2) or Protter (2004, Theorem 7.33)) and
standard results from multivariate calculus. 2
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4 Positive semidefinite matrix processes of OU type

In this section we briefly review one-dimensional processes of Ornstein-Uhlenbeck (OU) type
(cf. Applebaum (2004), Cont & Tankov (2004) or Barndorff-Nielsen & Shephard (2001, 2007)
among many others) and then introduce Ornstein-Uhlenbeck processes taking values in the
positive semidefinite matrices. For the necessary background on Lévy processes see Protter
(2004, Section I.4) or Sato (1999).

In univariate financial modelling, it has become popular in recent years to specify the
variance σ2

t as an Ornstein-Uhlenbeck process (see in particular the works of Barndorff-Nielsen
and Shephard). We assume given a Lévy process (Lt)t∈R+ and consider the SDE

dσ2
t = −λσ2

t dt + dLt (4.1)

with some λ ∈ R. The solution can be shown to be

σ2
t = e−λtσ2

0 +
∫ t

0
e−λ(t−s)dLs (4.2)

and is referred to as an OU process. Note that for univariate OU type processes one often
applies a time transformation on the Lévy process and then has dLλs instead of dLs above,
but this is not possible in the multivariate case below. Provided the Lévy process Lt is a
subordinator (a.s. non-decreasing Lévy process), the solution σ2

t is positive and thus can be
used as a variance process. After extending the Lévy process to one, (Lt)t∈R, living on the
whole real line in the usual way, one can show that (4.1) has a unique stationary solution
given by

σ2
t =

∫ t

−∞
e−λ(t−s)dLs

provided λ > 0 and the Lévy process has a finite logarithmic moment, i.e. E(log+(Lt)) < ∞.
There is a vast literature concerning the extension of OU processes to Rd-valued pro-

cesses (for instance, Sato & Yamazato (1984), Chojnowska-Michalik (1987) or Jurek & Ma-
son (1993)). By identifying Md(R) with Rd2

one immediately obtains matrix valued pro-
cesses. So for a given Lévy process (Lt)t∈R with values in Md(R) and a linear operator
A : Md(R) → Md(R) we call some solution to the SDE

dXt = AXtdt + dLt (4.3)

a (matrix-valued) process of Ornstein-Uhlenbeck type.
As in the univariate case one can show that for some given initial value X0 the solution

is unique and given by

Xt = eAtX0 +
∫ t

0
eA(t−s)dLs. (4.4)

Provided E(log+ ‖Lt‖) < ∞ and σ(A) ∈ (−∞, 0) + iR, there exists a unique stationary
solution given by

Xt =
∫ t

−∞
eA(t−s)dLs.

In order to obtain positive semidefinite Ornstein-Uhlenbeck processes we need to consider
matrix subordinators as driving Lévy processes. An Md(R)-valued Lévy process Lt is called
“matrix subordinator”, if L(t) − L(s) ∈ S+

d a.s. for all t ≥ s, see Barndorff-Nielsen & Pérez-
Abreu (2002, 2006), Rocha-Arteaga (2006) and the references therein for further details.
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Proposition 4.1. Let Lt be a matrix subordinator, assume that the linear operator A satisfies
exp(At)(S+

d ) ⊆ S+
d for all t ∈ R+ and let X0 ∈ S+

d . Then the Ornstein-Uhlenbeck process
(Xt)t∈R+ with initial value X0 satisfying (4.3) takes only values in S+

d .
If E(log+ ‖Lt‖) < ∞ and σ(A) ∈ (−∞, 0) + iR, then the unique stationary solution

(Xt)t∈R to (4.3) takes values in S+
d only.

Proof: The first term eAtX0 in (4.4) is obviously positive semidefinite for all t ∈ R+ due
to the assumption on A. Approximating the integral

∫ t
0 eA(t−s)dLs by sums in the usual way,

shows that also the second term is positive semidefinite, since all approximating sums are in
S+

d due to the assumption on A and the S+
d -increasingness of a Lévy subordinator.

The very same argument implies the positive semidefiniteness of the unique stationary
solution. 2

An important question arises now, namely, which linear operators A can one actually
take to obtain both a unique stationary solution and ensure positive semidefiniteness. The
condition exp(At)(S+

d ) ⊆ S+
d means that for all t ∈ R+ the exponential operator exp(At) has

to preserve positive definiteness. So one seems to need to know first which linear operators on
Md(R) preserve positive definiteness. This problem has been studied for a long time in linear
algebra in connection with the general topic “Linear Preserver Problems” (see, for instance,
the overview articles Pierce, Lim, Loewy, Li, Tsing, McDonald & Beasley (1992) and Li &
Pierce (2001)). We have the following:

Proposition 4.2. Let A : Sd(R) → Sd(R) be a linear operator. Then A(S+
d ) = S+

d , if and
only if there exists a matrix B ∈ GLd(R) such that A can be represented as X 7→ BXB∗.

Proof: This was initially proved in Schneider (1965). A more general proof in a Hilbert
space context may be found in Li, Rodman & Semrl (2003). 2

Remark 4.3. No explicit characterization of the linear operators mapping S+
d into S+

d , i.e.
A(S+

d ) ⊆ S+
d , is known for general dimension d.

Naturally, all linear maps on Sd can be extended to mappings on Md. From this linear
algebraic result we obtain the following result, introducing the linear operators preserving
positive semidefiniteness which we shall employ.

Proposition 4.4. Assume the operator A : Md(R) → Md(R) is representable as X 7→
AX + XA∗ for some A ∈ Md(R). Then eAt has the representation X 7→ eAtXeA∗t and
eAt(S+

d ) = S+
d for all t ∈ R.

Proof: eAtX = eAtXeA∗t for all X ∈ Md(R) follows from Horn & Johnson (1991, pp.
255 and 440) and eAt(S+

d ) = S+
d for all t ∈ R is then implied by Proposition 4.2, since eB is

invertible for any matrix B ∈ Md(R). 2

Note the close relation of this kind of operators to Kronecker sums and the so-called
“Lyapunov equation” (see Horn & Johnson (1991, Ch. 4)). For a linear operator A of the
type specified in Proposition 4.4 formula (4.3) becomes

dXt = (AXt + XtA
∗)dt + dLt (4.5)

and the solution is

Xt = eAtX0e
A∗t +

∫ t

0
eA(t−s)dLse

A∗(t−s). (4.6)
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Confer also Horn & Johnson (1991, p. 440) for a related deterministic differential equation.
Using the vec transformation and Horn & Johnson (1991, Theorem 4.4.5) we see that

σ(A) = σ(A) + σ(A), where the addition of two sets A,B ⊆ R is defined by A + B = {a + b :
a ∈ A, b ∈ B}. Thus

Theorem 4.5. Let (Lt)t∈R be a matrix subordinator with E(log+ ‖Lt‖) < ∞ and A ∈ Md(R)
such that σ(A) ⊂ (−∞, 0)+iR. Then the stochastic differential equation of Ornstein-Uhlenbeck
type

dXt = (AXt + XtA
∗)dt + dLt

has a unique stationary solution

Xt =
∫ t

−∞
eA(t−s)dLse

A∗(t−s)

or, in vectorial representation,

vec(Xt) =
∫ t

−∞
e(Id⊗A+A⊗Id)(t−s)dvec(Ls).

Moreover, Xt ∈ S+
d for all t ∈ R.

Recall from Barndorff-Nielsen & Pérez-Abreu (2006) that any matrix subordinator (Lt)t∈R
has paths of finite variation and can be represented as

Lt = γt +
∫ t

0

∫

S+d \{0}
xµ(ds, dx) (4.7)

where γ ∈ S+
d is a deterministic drift and µ(ds, dx) an extended Poisson random measure

on R+ × S+
d (regarding the definitions of random measures and the integration theory with

respect to them we refer to Jacod & Shiryaev (2003, Section II.1)). Observe in particular
that the integral exists without compensating. Moreover, the expectation of µ factorises, i.e.
E(µ(ds, dx)) = Leb(ds)ν(dx), Leb denoting the Lebesgue measure and ν the Lévy measure
of Lt. The above equation (4.7) can be restated in a differential manner as

dLt = γdt +
∫

S+d \{0}
xµ(dt, dx). (4.8)

The obvious extension of this to a Lévy process (Lt)t∈R having been started in the infinite
past gives another representation of the above stationary OU process.

Proposition 4.6. The positive semidefinite Ornstein-Uhlenbeck process Xt as given in The-
orem 4.5 can equivalently be represented as

Xt =
∫ t

−∞

∫

S+d \{0}
eA(t−s)xeA∗(t−s)µ(ds, dx) +

∫ t

−∞
eA(t−s)γeA∗(t−s)ds

=
∫ t

−∞

∫

S+d \{0}
eA(t−s)xeA∗(t−s)µ(ds, dx)−B−1γ

where B−1 is the inverse of the linear operator B : Md(R) → Md(R), X 7→ AX + XA∗ which
can be represented as vec−1 ◦ ((Id ⊗A) + (A⊗ Id))−1 ◦ vec.
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Proof: The invertibility of B and the positive semidefiniteness of −B−1γ follow imme-
diately from the standard theory on the Lyapunov equations (Horn & Johnson (1991, Th.
2.2.3, 4.4.7). Now only the second equality remains to be shown, but this is immediate as
−B−1 d

dse
A(t−s)γeA∗(t−s) = eA(t−s)γeA∗(t−s) and lims→−∞ eA(t−s) = 0. 2

The next proposition provides a characterization of the stationary distribution. To this end
observe that tr(XY ) (with X,Y ∈ Md(R) and tr denoting the usual trace functional) defines
a scalar product on Md(R). Moreover, the vec operator is a Hilbert space isometry between
Md(R) equipped with this scalar product and Rd2

with the usual Euclidean scalar product.
This, in particular, implies that the driving Lévy process Lt has characteristic function (cf.
also Barndorff-Nielsen & Pérez-Abreu (2006))

µLt(Z) = exp

(
ittr(γZ) + t

∫

S+d \{0}
(eitr(XZ) − 1)ν(dX)

)
. (4.9)

Proposition 4.7. The stationary distribution of the matrix Ornstein-Uhlenbeck process Xt

is infinitely divisible with characteristic function

µ̂X(Z) = exp

(
itr(γXZ) +

∫

S+d \{0}
(eitr(Y Z) − 1)νX(dY )

)
, (4.10)

where
γX = −B−1γ

with B defined as in Proposition 4.6 and

νX(E) =
∫ ∞

0

∫

S+d \{0}
IE(eAsxeA∗s)ν(dx)ds

for all Borel sets E in S+
d \{0}.

Assume that the driving Lévy process is square-integrable. Then the second order moment
structure is given by

E(Xt) = γX −B−1

∫

S+d \{0}
yν(dy) = −B−1E(L1) (4.11)

V ar(vec(Xt)) =
∫ ∞

0
e(A⊗Id+Id⊗A)tV ar(vec(L1))e(A∗⊗Id+Id⊗A∗)tdt

= −B−1V ar(vec(L1)) (4.12)
Cov(vec(Xt+h), vec(Xt)) = e(A⊗Id+Id⊗A)hV ar(vec(Xt)), (4.13)

where t ∈ R and h ∈ R+ and B : Md2(R) → Md2(R), X 7→ (A⊗ Id + Id⊗A)X + X(A∗⊗ Id +
Id ⊗A∗). The linear operator B can be represented as

vec−1 ◦ ((Id2 ⊗ (A⊗ Id + Id ⊗A)) + ((A⊗ Id + Id ⊗A)⊗ Id2)) ◦ vec.

We used the vec operator above, as this clarifies the order of the elements of the (co)variance
matrix.
Proof: The characteristic function is standard, cf. Barndorff-Nielsen, Pedersen & Sato (2001,
p. 178) for instance. Regarding (4.11) a general result for infinitely divisible distribution im-
plies that E(Xt) = γX +

∫
S+d

yνX(dy). Using the explicit representation for νX and evaluating
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the integral as in the proof of the last proposition immediately establishes (4.11). The proof of
the first equality in (4.12) and of (4.13) is standard, see e.g. Marquardt & Stelzer (2006, Pro-
position 3.13), and the second equality in (4.12) follows by an explicit integration as before.
2

Remark 4.8. In the existing literature for Rd-valued processes only the analogue to the first
equality in (4.12) is stated and an identity is given that becomes −V ar(vec(L1)) = (A⊗ Id +
Id⊗A)V ar(vec(Xt))+V ar(vec(Xt))(A∗⊗Id+Id⊗A∗) in our case. That identity is, of course,
equivalent to our second equality in (4.12), but usually obtained by a very different approach
(cf. Arató (1982), for instance). Our version involving B−1 stresses that the variance can be
calculated by solving a standard linear equation and fits in nicely, as inverse operators of this
type appear in many of our results.

Moreover, conditions ensuring that the stationary OU type process Xt is almost surely
strictly positive definite can be obtained.

Theorem 4.9. If γ ∈ S++
d or ν(S++

d ) > 0, then the stationary distribution PX of Xt is
concentrated on S++

d , i.e. PX(S++
d ) = 1.

Proof: From Proposition 4.6 and its proof we have Xt ≥ −B−1γ. In the case γ ∈ S++
d

this proves the theorem immediately, as then −B−1γ is strictly positive definite due to Horn
& Johnson (1991, Theorem 2.2.3).

Assume now that ν(S++
d ) > 0. From Proposition 4.6 we know that

X0 ≥
∑

−∞<s≤0

e−As∆(Ls)e−A∗s d=
∑

0≤s<∞
eAs∆(Ls)eA∗s.

Since Z 7→ eAsZeA∗s preserves positive definiteness for all s ∈ R, it is obviously sufficient to
show that (Ls)s∈R+ has at least one jump that is positive definite. Choose now ε > 0 such that
ν(S++

d ∩ {x ∈ S+
d : ‖x‖ ≥ ε}) > 0. Then the process Lε,s :=

∑
0≤s≤t 1{x∈S+d :‖x‖≥ε}(∆Ls)∆Ls

is a Lévy process with Lévy measure νε(·) = ν(· ∩ {x ∈ S+
d : ‖x‖ ≥ ε}), where we denoted

by 1M (·) the indicator function of a set M . Lε is obviously a compound Poisson process and
the probability that a jump of Lε is in S+

d \S++
d is given by q := νε(S+

d \S++
d )/νε(S+

d ) < 1.
As the individual jump sizes and the jump times are independent and (Lε,s)s∈R+ has a.s.
infinitely many jumps in R+, this implies that with probability zero all jumps of (Lε,s)s∈R+

are in S+
d \S++

d . In other words, (Lε,s)s∈R+ and thus (Ls)s∈R+ has a.s. at least one jump in
S++

d . 2

The positive-definite Ornstein-Uhlenbeck processes introduced above can be used as a
multivariate stochastic volatility model in finance, as an extension of the one-dimensional ap-
proach proposed in Barndorff-Nielsen & Shephard (2001). A different kind of generalization
has been discussed by Hubalek & Nicolato (2005) and Lindberg (2005), who have specified
different multivariate stochastic volatility models using factor models, where the individual
factors are univariate positive Ornstein-Uhlenbeck type processes. The d-dimensional volat-
ility model of Hubalek and Nicolato is of the form Σ2

t = AStA
∗ where St is an Ornstein-

Uhlenbeck process in S+
m (actually only on the diagonal matrices) and A ∈ Md,m(R). The

results for the roots of positive definite processes which we obtain in Section 5 are with a
minor obvious adaptation immediately applicable to processes of this type. Another proposal
put forth in Gourieroux, Jasiak & Sufana (2004) specifies a d×d volatility process Vt as a sum
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Vt =
∑K

i=1 xt,ix
∗
t,i with the processes xt,i being i.i.d. Gaussian Ornstein-Uhlenbeck process in

Rd and K ∈ N. These processes are referred to as Wishart autoregressive processes, as the
distribution of Vt is the Wishart distribution (see also Bru (1991)). This specification is not
amenable to the type of SDE representations of the root processes that we shall discuss in
Section 5, under a general set-up, and in Section 6 for positive definite OU processes. Note
also, in this connection, that the Wishart law is not infinitely divisible, hence, in particular,
not self-decomposable (see Lévy (1948)).

In stochastic volatility models the integrated variance process is of particular interest (see
e.g. Barndorff-Nielsen & Shephard (2001) and Barndorff-Nielsen & Shephard (2003)). The
same reasoning as in the univariate case (Barndorff-Nielsen (1998b)) leads to the following
explicit result for the integrated variance of a positive definite Ornstein-Uhlenbeck stochastic
volatility process:

Proposition 4.10. Let Xt be a positive semidefinite Ornstein-Uhlenbeck process with initial
value X0 ∈ S+

d and driven by the Lévy process Lt. Then the integrated Ornstein-Uhlenbeck
process X∗

t is given by

X∗
t :=

∫ t

0
Xtdt = B−1 (Xt −X0 − Lt)

for t ∈ R+, where B is the linear operator defined in Proposition 4.6.

5 Roots of positive semidefinite processes

In this section we obtain stochastic representations of general roots of processes in R+ and
later on of the square root of stochastic processes taking values in S+

d . Recall that every
positive semidefinite matrix A has a unique positive semidefinite square root A1/2 defined by
functional calculus (see, for instance, Horn & Johnson (1990) and Horn & Johnson (1991) for
a comprehensive introduction).

The interest in such representations comes, in particular, from the theoretical works on
the properties of multipower variation; see Barndorff-Nielsen, Graversen, Jacod, Podolskij
& Shephard (2006), for instance. In that paper the limit theorems are obtained under an
hypothesis that the square root of the covariance matrix process is a semimartingale of a
special type. Moreover, in many cases the additional assumption is needed that it takes values
in the strictly positive definite matrices, as this ensures that the covariance matrix process
is of the same type (and vice versa). However, as there are no formulas given relating the
characteristics of the covariance matrix process with those of its square root, we shall derive
the relations explicitly and discuss whether the invertibility assumption is indeed always
necessary. Under the invertibility assumption Itô’s lemma is the key tool, but as we see later
on we can move away from this prerequisite. On the other hand we restrict ourselves to the
study of processes of finite variation. The reasons are that the processes we intend to apply
our results to are naturally of finite variation and that in the infinite variation case it seems
impossible to obtain results for processes that may reach the boundary ∂S+

d = S+
d \S++

d . As a
consequence all our “stochastic” integrals coming up can actually be computed pathwise as
Lebesgue-Stieltjes integrals.

In the following we start by analysing univariate processes, where we study general r-th
powers and then move on to multivariate processes.
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5.1 The univariate case

Now we shall first present the univariate case, as it involves no advanced matrix analysis,
but allows one to understand the behaviour of root processes. Due to the applications we
have in mind, we state the following results for finite variation processes, whose discontinuous
part is of the special form

∫ t
0

∫
R+\{0} g(s−, x)µ(ds, dx) with some extended Poisson random

measure µ on R+\{0} (in the sense of Jacod & Shiryaev (2003, Definition 1.20)). Moreover,
g(s, x) = g(ω, s, x) : Ω×R+×R+\{0} → R+\{0} is a (random) function that is Fs×B(R+)
measurable in (ω, x) and cadlag in s. For such a process the jump measure is µX(ds, dx) =
µ(ds, g−1(s−, ·)(dx)), where g−1(s−, ·) is to be understood as taking the preimage of the set
dx with respect to the map R+\{0} → R+\{0}, x 7→ g(s−, x). We frequently refer to the
dependence on ω ∈ Ω in the following, but keep suppressing it in the notation.

Theorem 5.1. Let (Xt)t∈R+ be a given adapted cadlag process which takes values in R+\{0},
is locally bounded away from zero and can be represented as

dXt = ctdt +
∫

R+\{0}
g(t−, x)µ(dt, dx)

where ct is a predictable and locally bounded process, µ an extended Poisson random measure
on R+×R+\{0} and g(s, x) is Fs×B(R+\{0}) measurable in (ω, x) and cadlag in s. Moreover,
g(s, x) takes only non-negative values.

Then for any 0 < r < 1 the unique positive process Yt = Xr
t is representable as

Y0 = Xr
0

dYt = atdt +
∫

R+\{0}
w(t−, x)µ(dt, dx),

where the drift
at := rXr−1

t− ct

is predictable and locally bounded and where

w(s, x) := (Xs + g(s, x))r − (Xs)r

is Fs×B(R+) measurable in (ω, x) and cadlag in s. Moreover, w(s, x) takes only non-negative
values.

Proof: Remark 3.3 implies the local boundedness of Xt within R+ and restating Pro-
position 3.2 in a differential manner gives

dXr
t = rXr−1

t− ctdt +
∫

R+\{0}
((Xt− + x)r −Xr

t−)µX(dt, dx).

Using the relation between µX and µ stated before the theorem, we obtain

dXr
t = rXr−1

t− ctdt +
∫

R+\{0}
((Xt− + g(t−, x))r −Xr

t−)µ(dt, dx).

The positivity of w(s, x) is a consequence of an elementary inequality recalled in the fol-
lowing lemma and the additional properties stated are now straightforward. 2

For the sake of completeness and since it is essential to our results, we recall the following
elementary inequality and give a proof.

11



Lemma 5.2. For a, x ∈ R+ and 0 < r < 1 we have that (a + x)r − ar is monotonically
decreasing in a and

(a + x)r − ar ≥ xr.

In particular, for a, b ∈ R+ it holds that |ar − br| ≤ |a− b|r.
Proof: Define for fixed x the function f : R+ → R, a 7→ (a + x)r − ar. Then f ′(a) =

r
(
(a + x)r−1 − ar−1

) ≤ 0 using that the r−1-th power is monotonically decreasing. Hence, f
is monotonically decreasing and f(a) = (a + x)r − ar ≤ f(0) = xr. For the second inequality
we assume without loss of generality that a ≥ b. Then |ar−br| = (b+(a−b))r−br ≥ (a−b)r =
|a− b|r, due to the first inequality. 2

Remark 5.3. Actually the representation stated in Theorem 5.1 holds for arbitrary powers
Xr

t with r ∈ R. If r ≥ 1, the assumption that Xt is locally bounded away from zero is no
longer necessary.

For processes that start at zero or may become zero, we obviously cannot use Itô’s formula
in the above manner, since there is no way to extend the r-th power for 0 < r < 1 to an open
set containing [0,∞) in a continuously differentiable manner. Likewise, all advanced extensions
of Itô’s formula we know of (e.g. Bardina & Jolis (1997), Ghomrasni & Peskir (2003), Peskir
(2005)), cannot be applied. For instance, the Boleau-Yor formula (Protter (2004, Theorem
IV.77)) allows for a non-continuous derivative, but still demands it to be bounded, but for
r-th roots it is unbounded at zero. The Meyer-Itô formula (Protter (2004, Theorem IV.70))
needs a left derivative, which again cannot be defined at zero. But by using the very standard
Itô formula and applying a tailor-made limiting procedure, we can indeed verify an extension
to processes that may become zero:

Theorem 5.4. Let (Xt)t∈R+ be a given adapted cadlag process which takes values in R+ and
can be represented as

dXt = ctdt +
∫

R+\{0}
g(t−, x)µ(dt, dx)

where ct is a predictable and locally bounded process, µ an extended Poisson random measure
on R+×R+\{0} and g(s, x) is Fs×B(R+\{0}) measurable in (ω, x) and cadlag in s. Moreover,
g(s, x) takes only non-negative values. Assume that the integrals

∫ t
0 rXr−1

s− csds (in the Lebesgue
sense) and

∫ t
0

∫
R+\{0}(Xs− + g(s−, x))r − (Xs−)rµ(ds, dx) exist a.s. for all t ∈ R+.

Then for any 0 < r < 1 the unique positive process Yt = Xt
r is representable as

Y0 = Xr
0

dYt = atdt +
∫

R+\{0}
w(t−, x)µ(dt, dx), (5.1)

where the drift
at := rXr−1

t− ct

is predictable and where
w(s, x) = (Xs + g(s, x))r − (Xs)r

is Fs×B(R+) measurable in (ω, x) and cadlag in s. Moreover, w(s, x) takes only non-negative
values and Yt is a.s. of finite variation
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Note that ct = 0 implies at = 0 above, even if Xt− = 0, using the conventions of Lebesgue
integration theory.

Proof: We first show that Yt = Xr
t is representable by (5.1). Recall below that all

integrals can be viewed as pathwise Lebesgue-Stieltjes ones.
For any ε > 0 the process Xε,t := Xt + ε is bounded away from zero and

Xε,t = X0 + ε +
∫ t

0
csds +

∫ t

0

∫

R+\{0}
g(s−, x)µ(ds, dx).

From Theorem 5.1 we obtain that

(Xt + ε)r = Xr
ε,t = (X0 + ε)r +

∫ t

0
r (Xs− + ε)r−1 csds (5.2)

+
∫ t

0

∫

R+\{0}
((Xs− + ε + g(s−, x))r − (Xs− + ε)r) µ(ds, dx).

For s ∈ R+ we clearly have that (Xs− + ε)r → Xr
s− pointwise as ε → 0. Moreover, since r−1 ∈

(−1, 0), one has that (Xs− + ε)r−1 is decreasing in ε. Thus, |r (Xs− + ε)r−1 cs| ≤ |rXr−1
s− cs|

for all ε > 0. By assumption |rXr−1
s− cs| is Lebesgue-integrable over [0, t] and so majorized

convergence gives that
∫ t

0
r (Xs− + ε)r−1 csds →

∫ t

0
rXr−1

s− csds as ε → 0.

From Lemma 5.2 we see that (Xs− + ε + g(s−, x))r−(Xs− + ε)r is positive and also decreasing
in ε. So our assumptions and majorized convergence ensure that

lim
ε→0

∫ t

0

∫

R+\{0}
((Xs− + ε + g(s−, x))r − (Xs− + ε)r) µ(ds, dx)

=
∫ t

0

∫

R+\{0}

(
(Xs− + g(s−, x))r −Xr

s−
)
µ(ds, dx).

Combining these results we obtain, from (5.2) and by letting ε → 0,

Xr
t = Xr

0 +
∫ t

0
rXr−1

s− csds +
∫ t

0

∫

R+\{0}

(
(Xs− + g(s−, x))r −Xr

s−
)
µ(ds, dx),

which concludes the proof of the representation for Yt.
To establish the finite variation of the process Yt it suffices now to argue that both in-

tegral processes
∫ t
0 rXr−1

s− csds and
∫ t
0

∫
R+\{0}(Xs−+ g(s−, x))r− (Xs−)rµ(ds, dx) are of finite

variation. For the second this is immediately clear and for the first we only need to observe
that the existence in the Lebesgue sense implies the existence of

∫ t
0 |rXr−1

s− cs|ds. The latter
is strictly increasing (thus of finite variation) when viewed as a process in t and its total
variation is an upper bound for the total variation of the first integral. 2

Remark 5.5. a) Inspecting the proof it is clear that Theorem 5.1 remains valid when replacing
the square root with any continuously differentiable function f : R+ → R. If additionally
|f ′(x + ε)| ≤ K|f ′(x)| and |f(x + ε + y)− f(x + ε)| ≤ K̃|f(x + y)− f(x)| for all x, y, ε ∈ R+,
where K and K̃ are some constants, the same is true for Theorem 5.4.
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Then f(Xt) is representable by (5.1) with at = f ′(Xt−)ct and w(t, x) = f(Xt + g(t, x))−
f(Xt).

b) In general, r-th powers with 0 < r < 1 of finite variation processes do not have to be of
finite variation, as the following deterministic example exhibits. Let Xt be given by:

Xt =
1
n2
−

(
1 +

1
n

)(
t− 1 +

1
n

)
for t ∈

[
1− 1

n
, 1− 1

n + 1

)
, n ∈ N,

Xt = 0 for t ∈ [1,∞).

Then we have that X1−(1/n) = 1/n2 and X(1− 1
n+1

)− = 0 for all n ∈ N and in each interval[
1− 1

n , 1− 1
n+1

)
the process Xt is linearly decreasing. From this it is immediate to see that

the total variation of (Xt)t∈R+ is given by 2
∑∞

n=1
1
n2 − 1, which is finite. Likewise, we see

that for 0 < r < 1 the process Xr
t has jumps of size 1/n2r at the times 1− (1/n). As

∑∞
n=1

1
nα

is infinite for all α ≤ 1, this shows that for r ≤ 1/2 the process Xr
t is not of finite variation.

Note, moreover, that Xt is of the form studied in Theorem 5.4 where ct = − (
1 + 1

n

)
for

t ∈ [1− (1/n), 1− (1/(n + 1))), which is trivially predictable and locally bounded, g(s, x) = x
and µ(ds, dx) =

∑∞
n=1 δ(1−1/n)(ds)δ1/n2(dx) with δv denoting the Dirac measure with respect

to v.

Naturally, the next step is to give some readily checkable conditions for the existence of
the integrals.

Lemma 5.6. The integral
∫ t
0

∫
R+\{0}w(s−, x)µ(ds, dx) exists a.s. in the usual sense, if the

integral
∫ t
0

∫
R+\{0}(g(s−, x))rµ(ds, dx) exists a.s. or there is some a.s. finite random variable

C > 0 such that Xt ≥ C for all t ∈ R+.

Proof: In the first case the existence follows by a standard majorization argument from
0 ≤ w(s, x) = (Xs + g(s, x))r − (Xs)r ≤ (g(s, x))r (Lemma 5.2).

Likewise, we observe in the second case that we can argue ω-wise and the function x 7→ xr

is Lipschitz on any interval of the form [a,∞) with a ∈ R+\{0}. Thus there is a (possibly
random) K ∈ R+ such that 0 ≤ (Xs + g(s, x))r − (Xs)r ≤ Kg(s, x). Hence, the claim follows
by a dominated convergence argument, since the integral

∫ t
0

∫
R+\{0} g(s−, x)µ(ds, dx) exists.

2

The condition Xt ≥ C actually means that the previous Theorem 5.1 applies.

Lemma 5.7. The integral
∫ t
0

∫
R+\{0}

(
(Xs− + g(s−, x))r −Xr

s−
)
µ(ds, dx) exists in the usual

sense, provided ct ≥ 0 for all t ∈ R+. In particular, the process Xt is monotonically increasing
then.

Proof: The monotonicity of Xt is obvious. We assume ct = 0 ∀ t ∈ R+ first. As the
mapping x 7→ xr is monotone, also the process Xr

t has cadlag monotonically increasing paths.
Thus Xr

t is necessarily of finite variation. Denoting the variation of a function f over a
time interval [t1, t2] with 0 ≤ t1 ≤ t2 by var(f ; t1, t2), one deducts that var(Xr

t , t1, t2) =
Xr

t2 − Xr
t1− =

∑
t1≤s≤t2

∆(Xr
s ) =

∑
t1≤s≤t2

|∆(Xr
s )|. But obviously,

∑
t1≤s≤t2

|∆(Xr
s )| =∫ t2

t1

∫
R+\{0}

∣∣(Xs− + g(s−, x))r −Xr
s−

∣∣µ(ds, dx) and hence the finite variation of Xr
t implies

the existence of the integral.
If ct does not vanish, we obtain Xr

t2 − Xr
t1− ≥ ∑

t1≤s≤t2
∆(Xr

s ) and can then basically
argue as before. 2
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Lemma 5.8. Suppose the function g(s, x) = g(x) is deterministic and independent of s and
the extended Poisson random measure µ is the jump measure of a Lévy subordinator with
Lévy measure ν. Then the integral

∫ t
0

∫
R+\{0}

(
(Xs− + g(x))r −Xr

s−
)
µ(ds, dx) is a.s. defined

for all t ∈ R+ provided
∫
0≤x≤1 g(x)rν(dx) is finite.

Proof: Recall that E(µ(ds, dx)) = ds × ν(dx) in the given set-up. The existence of the
integral follows immediately by combining Lemma 5.6 and the fact that

∫
0≤x≤1 g(x)rν(dx) <

∞ implies the existence of
∫ t
0

∫
R+\{0} g(x)rµ(ds, dx) for all t ∈ R+ (cf. Marcus & Rosinski

(2005, p. 113)). 2

Regarding the existence of the integral with respect to the Lebesgue measure, we only
present the following criterion (a standard consequence of dominated convergence), which is
applicable to many processes of interest.

Lemma 5.9. Assume that there exists a (possibly random) function f : R+ → R+ with∫ t
0 f(t)dt < ∞ a.s. such that |rXr−1

t− ct| ≤ f(t) for all t ∈ R+. Then the integral
∫ t
0 rXr−1

t− ctdt
exists in the Lebesgue sense. The latter is in particular the case if there are (possibly random)
constants C ≥ 0 and α > −1 such that |rXr−1

t− ct| ≤ Ctα.

For positive Lévy processes, i.e. Lévy subordinators, one can immediately apply the above
results and obtain the following.

Corollary 5.10. Let (Lt)t∈R+ be a Lévy subordinator with initial value L0 ∈ R+, associated
drift γ and jump measure µ. Then for 0 < r < 1 we have that the unique positive root process
Lr

t is of finite variation and

dLr
t = rγLr−1

t− dt +
∫

R+\{0}

(
(Lt− + x)r − Lr

t−
)
µ(dt, dx),

where the drift rγLr−1
t− is predictable. Moreover, the drift is locally bounded, if and only if

L0 > 0 or γ = 0.

Proof: If γ is zero, the integrability condition imposed on the drift in Theorem 5.4 is
trivially satisfied and in the case of a non-vanishing γ we know that Lt ≥ γt for all t ∈ R+. The
latter gives rγLr−1

t ≤ rγrtr−1 and so an application of Lemma 5.9 establishes the existence of∫ t
0 rγLr−1

t dt in the Lebesgue sense. Finally, noting that Lévy subordinators are monotonically
increasing and using Lemma 5.7, the corollary follows immediately from Theorem 5.4. The
result on the local boundedness of the drift is immediate. 2

5.2 The multivariate case

The aim of this section is to generalise the above univariate results to processes taking values
in the cone of positive semidefinite d×d matrices. For reasons becoming clear later we only take
square roots, but generalizations to general roots are straightforward and we shall indicate
them. Before giving rigorous results and proofs, we want to give intuitive but non-rigorous
arguments showing what the results should be. The reason is that for the rigorous proof
we will need the multidimensional Itô formula and the derivative of the matrix square root,
whereas the following two elementary lemmata immediately allow for an intuitive argument
implying what the result should be. Though these lemmata are rather elementary, we decided
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to give complete proofs, as they seem to be unavailable in the standard literature, but should
be useful in many situations.

The first result generalizes the representation for the product of two one-dimensional
semimartingales (confer e.g. Protter (2004, p. 68)) to matrix products of semimartingales
and is briefly stated, without proof, in Karandikar (1991) (for the continuous case already in
Karandikar (1982a, 1982b)).

Lemma 5.11. Let m,n, d ∈ N and At ∈ Md,m(R), Bt ∈ Mm,n(R) be semimartingales. Then
the matrix product AtBt ∈ Md,n(R) is a semimartingale and

AtBt =
∫ t

0
At−dBt +

∫ t

0
dAtBt− + [A,B]Mt

where [A, B]Mt ∈ Md,n(R) is defined by

[A,B]Mt,ij =
m∑

k=1

[Aik, Bkj ]t.

If the continuous part of the quadratic covariation of A and B is zero, we have

[A, B]Mt = A0B0 +
∑

0<s≤t

∆As∆Bs.

Proof: Applying the univariate result componentwise to AtBt we obtain for 1 ≤ i ≤
d, 1 ≤ j ≤ n:

(AtBt)ij =
m∑

k=1

At,ikBt,kj =
m∑

k=1

(∫ t

0
At−,ikdBkj +

∫ t

0
Bt−,kjdAik + [Aik, Bkj ]t

)

=
(∫ t

0
At−dBt +

∫ t

0
dAtBt− + [A,B]Mt

)

ij

.

In particular, we see immediately that all components of AtBt are semimartingales being
sums of products of semimartingales. Thus AtBt is a matrix-valued semimartingale.

If the continuous quadratic covariation is zero, we have that

[A,B]Mt =
m∑

k=1

[Aik, Bkj ]t =
m∑

k=1


A0,ikB0,kj +

∑

0<s≤t

∆As,ik∆Bs,kj




=


A0B0 +

∑

0<s≤t

∆As∆Bs




ij

,

since ∆As = (∆As,kl)1≤k≤d, 1≤l≤m and likewise for B. 2

Remark 5.12. Obviously the operator [·, ·]M plays the same role for the matrix multiplication
of matrix-valued semimartingales, as the quadratic variation does for ordinary multiplication
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of one-dimensional semimartingales. Therefore we call the operator [·, ·]M the matrix covari-
ation. Note that in general it can be decomposed into

[A,B]Mt = A0B0 + [A,B]M,c
t +

∑

0<s≤t

∆As∆Bs

where [A, B]M,c
t,ij =

∑m
k=1[Aik, Bkj ]ct , i.e. into a continuous part and a pure jump part.

Our next result concerns quadratic equations of positive semidefinite matrices.

Lemma 5.13. Let A,B ∈ S+
d (R). The equation

X2 + AX + XA−B = 0

has a unique positive semidefinite solution given by

X =
√

A2 + B −A.

Proof: We start by establishing the positive semidefiniteness of
√

A2 + B −A. It is clear
that A2 +B ≥ A2. Observing that the matrix square root is a matrix monotone function (i.e.
preserves the ordering on S+

d , see e.g. Bhatia (1997, Proposition V.1.8)), we have
√

A2 + B ≥
A, which is equivalent to the claim.

Solving the equation can actually be done using the standard trick for complex quadratic
equations:

X2 + AX + XA−B = (X + A)2 −A2 −B = 0 ⇔ (X + A)2 = A2 + B.

Taking any “square root” in the right hand equation would now lead to a solution X. How-
ever, we consider only positive semidefinite solutions and thus X + A has to be in S+

d , which
is the case, if and only if we take the unique positive semidefinite square root. Therefore there
is one and only one solution in S+

d which is given by X =
√

A2 + B −A. 2

Let now a positive semidefinite process Xt be given by dXt = ctdt+
∫
S+d \{0} g(t−, x)µ(dt, dx)

where ct is an Sd-valued, predictable and locally bounded process, µ an extended Poisson ran-
dom measure on R+×S+

d \{0} and g(s, x) is Fs×B(S+
d \{0}) measurable in (ω, x) and cadlag

in s. Moreover, g(s, x) assumes only values in S+
d . Suppose Yt :=

√
Xt is representable as

dYt = atdt +
∫
S+d \{0}w(t−, x)µ(dt, dx) for some appropriate at and w(t, x) being of the same

type as ct and g(t, x). Using a differential version of Lemma 5.11 we obtain

dY 2
t = Yt−dYt + dYtYt− + d[Y, Y ]Mt = Yt−dYt + dYtYt− + (∆Yt)

2

= Yt−

(
atdt +

∫

S+d \{0}
w(t−, x)µ(dt, dx)

)
+

(
atdt +

∫

S+d \{0}
w(t−, x)µ(dt, dx)

)
Yt−

+
∫

S+d \{0}
w2(t−, x)µ(dt, dx)

=
(√

Xt−at + at

√
Xt−

)
dt

+
∫

S+d \{0}

(√
Xt−w(t−, x) + w(t−, x)

√
Xt− + w2(t−, x)

)
µ(dt, dx).
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As one clearly needs to have dY 2
t = dXt, the equations ct =

√
Xt−at + at

√
Xt− and√

Xt−w(t−, x) + w(t−, x)
√

Xt− + w2(t−, x) = g(t−, x) have to hold. Assuming the necessary
invertibility this gives at = X−1

t− ct, where Xt− : Md(R) → Md(R) is the linear operator
Z 7→ √

Xt−Z + Z
√

Xt−, and w(s−, x) =
√

Xs− + g(s−, x) − √Xs− using Lemma 5.13. In
the following we show that this representation for

√
Xt is indeed true. It will also turn out

that we implicitly obtained the derivative of the positive definite matrix square root, which is
given in the next Lemma. Here and in the following we regard S++

d as a subset of the vector

space Sd, which we identify with R
d(d+1)

2 .

Lemma 5.14. The positive definite square root
√· : S++

d → S++
d is continuously differentiable

and the derivative D
√

X is given by the inverse of the linear operator Z 7→ √
XZ + Z

√
X.

Proof: The square root is the inverse of the bijective function f : S++
d → S++

d , X 7→ X2.
It is easy to see that Df(X) is the linear operator Z 7→ XZ + ZX (see also Bhatia (1997,
Example X.4.2)). Using that σ(Df(X)) = σ(X) + σ(X) ⊂ R+\{0}, we see that Df(X) is
invertible for all X ∈ S++

d . Thus, Rudin (1976, Theorem 9.24) shows that the square root is
continuously differentiable and the derivative is given by the claimed linear operator. 2

With the above results, we can now generalize our results on the behaviour of univariate
square roots in a straightforward manner to the multivariate case.

Theorem 5.15. Let (Xt)t∈R+ be a given adapted cadlag process which takes values in S++
d ,

is locally bounded within S++
d and can be represented as

dXt = ctdt +
∫

S+d \{0}
g(t−, x)µ(dt, dx) (5.3)

where ct is an Sd-valued, predictable and locally bounded process, µ an extended Poisson
random measure on R+ × S+

d \{0}, and g(s, x) is Fs ×B(S+
d \{0}) measurable in (ω, x) and

cadlag in s. Moreover, g(s, x) takes only values in S+
d .

Then the integral
∫ t
0

∫
S+d \{0}

(√
Xs− + g(s−, x)−√Xs−

)
µ(ds, dx) exists a.s. for all t ∈

R+ and the unique positive definite square root process Yt =
√

Xt is given by

Y0 =
√

X0

dYt = atdt +
∫

S+d \{0}
w(t−, x)µ(dt, dx),

with
at = X−1

t− ct,

where Xt− is the linear operator Z 7→ √
Xt−Z + Z

√
Xt− on Md(R). The drift process at is

predictable and locally bounded and

w(s, x) :=
√

Xs + g(s, x)−
√

Xs

is Fs×B(S+
d \{0}) measurable in (ω, x) and cadlag in s. Moreover, w(s, x) takes only positive

semidefinite values.

Proof: The representation of Yt follows from Proposition 3.4 and Lemma 5.14 by the
same arguments as used for Theorem 5.1.
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Using the vec-transformation and the Kronecker product, the linear operator Xt− is eas-
ily seen to be symmetric (self-adjoint) and to possess a spectrum that is positive and loc-
ally bounded away from 0, since σ(Xt−) = σ(

√
Xt−) + σ(

√
Xt−), the function f : S++

d →
S++

d , Z 7→ min(σ(Z)) is continuous and
√

Xt− is locally bounded within S++
d . The variational

characterizations of the eigenvalues of a self-adjoint operator (cf. Horn & Johnson (1990, Sec-
tion 4.2) for a matrix formulation) imply that min (σ(Xt−)) = min‖x‖2̃ 6=0

(‖Xt−x‖2̃
‖x‖2̃

)
. Hence,

‖X−1
t− ‖2̃ ≤ (min (σ(Xt−)))−1 is locally bounded. Here ‖ · ‖2̃ denotes the norm on Md(R)

given by ‖x‖2̃ = ‖vec(x)‖2 =
√

tr(xxT ), with ‖ · ‖2 being the Euclidean norm on Rd2
, and

the associated operator norm on the linear operators over Md(R). This establishes the local
boundedness of at.

That w(s, x) takes only positive semidefinite values follows from Lemma 5.13 and the
additional properties stated are straightforward. 2

Remark 5.16. In principle we could immediately extend the above result to arbitrary r-th
powers with 0 < r < 1 again. Yet, this would mean that we need to calculate Dfr where fr

denotes the unique positive definite r-th power and at would become Dfr(Xt−)ct. In general
there seems to be no useful formula for Dfr. Arguing as in Lemma 5.14 was possible for
r = 1/n with n ∈ N, but then Dfr(X) would be characterized as the inverse of the linear
operator Z 7→ ∑

j+k=n−1;j,k∈N0
XjrZXkr. Although in principle this can be applied, it appears

to be infeasible for general n.

Assuming the existence of the relevant integrals, the strict positivity condition can again
be relaxed. To be able to argue as in the univariate case we need two new technical results,
the first one involving the so-called trace norm ‖ · ‖tr of matrices. For A ∈ Md(R) it is defined
as ‖A‖tr = tr

(
(AA∗)1/2

)
and it is easy to see that ‖A‖tr = tr(A) for A ∈ S+

d .

Lemma 5.17. Let A, B ∈ S+
d and 0 < r < 1. Then the function R+ → R+, ε 7→ ‖(A + εId +

B)r − (A + εId)r‖tr is monotonically decreasing. In particular,

‖(A + εId + B)r − (A + εId)r‖tr ≤ ‖(A + B)r −Ar‖tr

for all ε ∈ R+.

Proof: Denote for some matrix Z ∈ S+
d by λ1(Z), λ2(Z), . . . , λd(Z) the eigenvalues of Z

sorted in ascending order.
Choose now some arbitrary ε, ε̃ ∈ R+ with ε ≥ ε̃. From Horn & Johnson (1990, Corollary

4.3.3) we obtain λi(A + B) ≥ λi(A) for i = 1, 2, . . . , d. This implies using Lemma 5.2 that

d∑

i=1

((λi(A + B) + ε)r − (λi(A) + ε)r)

=
d∑

i=1

((λi(A) + ε + λi(A + B)− λi(A))r − (λi(A) + ε)r)

≤
d∑

i=1

((λi(A) + ε̃ + λi(A + B)− λi(A))r − (λi(A) + ε̃)r)

=
d∑

i=1

((λi(A + B) + ε̃)r − (λi(A) + ε̃)r) .
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Noting that the trace of a matrix is the sum of its eigenvalues and that λi(Z+εId) = λi(Z)+ε
and λi(Z)r = λi(Zr) for all Z ∈ S+

d and ε > 0, we conclude tr((A+εId+B)r)−tr((A+εId)r) ≤
tr((A + ε̃Id + B)r)− tr((A + ε̃Id)r). This immediately implies

‖(A + εId + B)r − (A + εId)r‖tr ≤ ‖(A + ε̃Id + B)r − (A + ε̃Id)r‖tr.

This shows the claimed monotonicity and inequality, choosing ε̃ = 0. 2

Lemma 5.18. Let A ∈ S+
d , ε ∈ R+ and denote by Aε the linear operator Md(R) → Md(R) :

X 7→ √
A + εIdX+X

√
A + εId. Then we have for every x ∈ Md(R) that ‖A−1

ε x‖2̃ is decreasing
in ε.

Here ‖ · ‖2̃ denotes again the norm on Md(R) given by ‖x‖2̃ = ‖vec(x)‖2 =
√

tr(xxT ),
with ‖ · ‖2 being the Euclidean norm on Rd2

, and the associated operator norm on the linear
operators over Md(R).

We understand ‖A−1
0 x‖2̃ = ∞ in the case A ∈ S+

d \S++
d above.

Proof: Note first that ‖A−1
ε x‖2̃ = ‖ (√

A + εId ⊗ Id2 + Id2 ⊗√A + εId

)−1 vec(x)‖2 and
that

√
A + εId ⊗ Id2 + Id2 ⊗ √

A + εId ∈ S+
d2 and in particular self-adjoint. Thus we have

‖A−1
ε x‖2̃ =

〈
vec(x),

(√
A + εId ⊗ Id2 + Id2 ⊗√A + εId

)−2 vec(x)
〉1/2

. Using that taking the

inverse reverses the ordering on S+
d2 , this implies that it is sufficient to show that (

√
A + εId⊗

Id2 + Id2 ⊗ √
A + εId)2 is increasing in ε in the ordering on Sd. But let now U ∈ Md(R)

be a unitary matrix such that U∗AU is diagonal, then (U∗ ⊗ U∗)(
√

A + εId ⊗ Id2 + Id2 ⊗√
A + εId)2(U ⊗ U) is diagonal and obviously increasing in ε. Observing that U ⊗ U is again

unitary and that such transformations preserve the ordering on S+
d concludes the proof. 2

Proposition 5.19. Let (Xt)t∈R+ be a given adapted cadlag process which takes values in S+
d

and can be represented as

dXt = ctdt +
∫

S+d \{0}
g(t−, x)µ(dt, dx)

where ct is an Sd-valued, predictable and locally bounded process, µ an extended Poisson
random measure on R+ × S+

d \{0} and g(s, x) is Fs × B(S+
d \{0}) measurable in (ω, x) and

cadlag in s. Moreover, g(s, x) takes values in S+
d . Let Xt− be the linear operator Md(R) →

Md(R), Z 7→ √
Xt−Z + Z

√
Xt− and assume that the integrals

∫ t
0 X−1

s−csds (in the Lebesgue

sense) and
∫ t
0

∫
S+d \{0}

(√
Xs− + g(s−, x)−√Xs−

)
µ(ds, dx) exist a.s. for all t ∈ R+.

Then the unique positive semidefinite square root process Yt =
√

Xt is representable as

Y0 =
√

X0

dYt = atdt +
∫

S+d \{0}
w(t−, x)µ(dt, dx), (5.4)

where the drift
at = X−1

t− ct

is predictable and where
w(s, x) :=

√
Xs + g(s, x)−

√
Xs

is Fs×B(S+
d \{0}) measurable in (ω, x) and cadlag in s. Moreover, w(s, x) takes only positive

semidefinite values and Yt is a.s. of finite variation.
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Due to the conventions of Lebesgue integration theory we always have at = 0 if ct = 0
above.

Proof: We first show that Yt =
√

Xt is representable by (5.4). Recall below that the
integral of a Md(R)-valued function exists if and only if the integral of the norm exists for
one and hence all norms on Md(R).

For any ε > 0 we define the process Xε,t := Xt + εId. Obviously Xε,t ≥ εId for all t ∈ R+

and the process Xε,t is of finite variation and hence locally bounded. Observing that for all
δ,K > 0 the set {x ∈ S++

d : x ≥ δId, ‖x‖ ≤ K} is convex and compact, this implies that Xε,t

is locally bounded within S++
d . and

Xε,t = X0 + εId +
∫ t

0
csds +

∫ t

0

∫

S+d \{0}
g(s−, x)µ(ds, dx).

From Theorem 5.15 we obtain that
√

Xt + εId =
√

Xε,t =
√

X0 + εId +
∫ t

0
X−1

ε,s−csds (5.5)

+
∫ t

0

∫

S+d \{0}

(√
Xs− + εId + g(s−, x)−

√
Xs− + εId

)
µ(ds, dx),

where Xε,s− denotes the linear operator Md(R) → Md(R) : Z 7→ √
Xs− + εIdZ+Z

√
Xs− + εId

For s ∈ R+ we clearly have that
√

Xs− + ε → √
Xs− and Xε,s− → Xs− pointwise as ε →

0. Moreover, Lemma 5.18 ensures ‖X−1
ε,s−cs‖2̃ ≤ ‖X−1

s−cs‖2̃ for all ε > 0. By assumption
‖X−1

ε,s−cs‖2̃ is Lebesgue-integrable over [0, t] and so majorized convergence gives that
∫ t

0
X−1

ε,s−csds →
∫ t

0
X−1

s−csds as ε → 0.

From Lemma 5.17 we see that ‖
√

Xs− + εId + g(s−, x) − √Xs− + εId‖tr is decreasing in ε.
So our assumptions and majorized convergence ensure that

lim
ε→0

∫ t

0

∫

S+d \{0}

(√
Xs− + εId + g(s−, x)−

√
Xs− + εId

)
µ(ds, dx)

=
∫ t

0

∫

S+d \{0}

(√
Xs− + g(s−, x)−

√
Xs−

)
µ(ds, dx).

Combining these results we obtain, from (5.5) and by letting ε → 0,

√
Xt =

√
X0 +

∫ t

0
X−1

s−csds +
∫ t

0

∫

S+d \{0}

(√
Xs− + g(s−, x)−

√
Xs−

)
µ(ds, dx),

which concludes the proof of the representation for Yt.
To establish the finite variation of the process Yt it suffices now to argue that both integral

processes
∫ t
0 X−1

s−csds and
∫ t
0

∫
S+d \{0}

√
Xs− + g(s−, x)−√Xs−µ(ds, dx) are of finite variation.

For the second this is immediately clear and for the first we only need to observe that the
existence in the Lebesgue sense implies the existence of

∫ t
0 ‖X−1

s−cs‖ds for any norm ‖ · ‖. The
latter is strictly increasing (thus of finite variation) when viewed as a process in t and its total
variation is an upper bound for the total variation of the first integral calculated using the
same norm ‖ · ‖. 2
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Remark 5.20. When replacing the square root with an arbitrary continuously differentiable
function f : S+

d → S, the above proposition remains valid if ‖Df(x + εId)z‖ ≤ K‖Df(x)z‖
and

‖f(x + εId + y)− f(x + εId)‖ ≤ K̃‖f(x + y)− f(x)‖ (5.6)

for all x, y ∈ S+
d , z ∈ Sd and ε ∈ R+, where K and K̃ are some constants. Then f(Xt) is

representable by (5.4) with at = Df(Xt−)ct and w(t, x) = f(Xt + g(t, x))− f(Xt).
For general r-th powers with 0 < r < 1 condition (5.6) holds due to Lemma 5.17. In

particular, this implies that the above theorem applies immediately to the r-th power if ct = 0
for all t ∈ R+. Furthermore, the square root can be replaced by the r-th power in all the
following Lemmata 5.23, 5.24, 5.25, 5.26 and 5.27.

Before giving criteria for the existence of the integrals assumed in the above theorem,
we establish some auxiliary results. The first one establishes that S+

d -increasing functions are
always of finite variation.

Lemma 5.21. Let f : R+ → S+
d be an S+

d -increasing function, i.e. f(a) ≤ f(b) for all
a, b ∈ R+ with a ≤ b. Then f is of finite variation on compacts.

Proof: Obviously we are free to choose any norm on Md(R). Let thus ‖ · ‖tr again denote
the trace norm and recall that ‖A‖tr = tr(A) for all A ∈ S+

d . For s, t ∈ R+, t ≥ s we obtain

‖f(t)− f(s)‖tr = tr(f(t)− f(s)) = tr(f(t))− tr(f(s)),

due to the linearity of the trace. From this we can immediately conclude that the total
variation of f over any interval [a, b] with a, b ∈ R+, a ≤ b calculated in the trace norm is
given by tr(f(b))− tr(f(a)), which is finite. Hence, f is of finite variation on compacts. 2

The trace norm has also been used in Pérez-Abreu & Rocha-Arteaga (2005) and Barndorff-
Nielsen & Pérez-Abreu (2006) and thus seems to be very well adapted to the structure of
matrix subordinators. The lemma could alternatively be easily established using the theory
for general cones developed in Duda (2005) and the properties of the trace functional/norm.

Moreover, we need to consider an appropriate matrix extension of the inequality
√

a + b−√
a ≤

√
b for all a, b ∈ R+. Actually, the question whether

√
A + B−√A ≤ √

B for A,B ∈ S+
d

seems not to have been discussed in the literature yet. However, the following norm version
suffices for our purposes.

Definition 5.22. Let A,B ∈ Md(R) then |A| = (A∗A)1/2 is called the modulus (absolute
value) of A.

A norm ‖ · ‖ on Md(R) is said to be unitarily invariant, if ‖UAV ‖ = ‖A‖ for all unitary
matrices U, V ∈ Md(R).

For more information see e.g. Bhatia (1997) and for unitarily invariant norms also Horn
& Johnson (1990).

Lemma 5.23 (Ando (1988, Corollary 2)). Let A,B ∈ S+
d and ‖ · ‖ be any unitarily invariant

norm. Then
‖
√

A−
√

B‖ ≤ ‖
√
|A−B|‖.

This result has originally been obtained in Birman, Koplienko & Solomjak (1975). We can
simplify the result somewhat by using the operator norm associated to the usual Euclidean
norm on Rd.
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Corollary 5.24 (cf. Bhatia (1997, Section X.1)). Let A,B ∈ S+
d and let ‖ · ‖2 denote the

operator norm associated with the Euclidean norm. Then

‖
√

A−
√

B‖2 ≤
√
‖ (|A−B|) ‖2.

In particular, ‖√A + B −√A‖2 ≤
√
‖B‖2.

Armed with these prerequisites we can now state criteria for the existence of the integrals
in Theorem 5.19.

Lemma 5.25. The integral
∫ t
0

∫
S+d \{0}w(s−, x)µ(ds, dx) exists a.s. for all t ∈ R+ in the usual

sense if the integrals
∫ t
0

∫
S+d \{0}

√
‖g(s−, x)‖2µ(ds, dx) or

∫ t
0

∫
S+d \{0}

√
g(s−, x)µ(ds, dx) exist

a.s. for all t ∈ R+ or there is some S++
d -valued random variable C such that Xt ≥ C for all

t ∈ R+.

Due to the equivalence of all norms one can actually use any other norm instead of ‖ · ‖2.
Moreover, the second case corresponds to Theorem 5.15.

Proof: First of all we note that
∫ t
0

∫
S+d \{0}

√
‖g(s−, x)‖2µ(ds, dx) exists if and only

if the integral
∫ t
0

∫
S+d \{0}

√
g(s−, x)µ(ds, dx) exists. This follows immediately, since accord-

ing to the definition of integration with respect to Poisson random measures the integral∫ t
0

∫
S+d \{0}

√
g(s−, x)µ(ds, dx) exists if and only if

∫ t
0

∫
S+d \{0} ‖

√
g(s−, x)‖µ(ds, dx) exists for

one and hence all norms ‖ · ‖, and ‖√x‖2 =
√
‖x‖2 for all x ∈ S+

d .
Noting that Corollary 5.24 gives ‖w(s−, x)‖2 ≤

√
‖g(s−, x)‖2, a simple majorization

argument establishes the existence of
∫ t
0

∫
S+d \{0}w(s−, x)µ(ds, dx) in the first case.

Assume now that Xt ≥ C for all t ∈ R+ holds with some C ∈ S+
d . Then we once again

argue ω-wise. The square root function is Lipschitz on any set A ⊂ S++
d for which there is

some C0 ∈ S++
d such that C ≥ C0 for all C ∈ A (see, for instance, Bhatia (1997, p. 305)). Thus

there exists a constant K (possibly depending on C) such that
∥∥∥
√

Xs− + g(s−, x)−√Xs−
∥∥∥ ≤

K ‖g(s−, x)‖. This implies the existence of the integral, as
∫ t
0

∫
S+d \{0} g(s−, x)µ(ds, dx) exists

due to our assumptions on the process Xt. 2

Lemma 5.26. The integral
∫ t
0

∫
S+d \{0}w(s−, x)µ(ds, dx) exists a.s. for all t ∈ R+ in the usual

sense provided ct ∈ S+
d for all t ∈ R+, i.e. the process Xt is S+

d -increasing.

Proof: The S+
d -increasingness of Xt is clear. Since the square root preserves the ordering

on S+
d , the process

√
Xt is S+

d -increasing, as well. Thus, Lemma 5.21 ensures that
√

Xt is of
finite variation.

Now, we first assume ct = 0 for all t ∈ R+. Denoting the variation (in the trace norm)
of a function f over a time interval [t1, t2] with 0 ≤ t1 ≤ t2 by var(f ; t1, t2), one deducts
that var(

√
X, t1, t2) = tr(

√
Xt2) − tr(

√
Xt1−) =

∑
t1≤s≤t2

‖∆ (√
Xs

) ‖tr. But obviously,
∑

t1≤s≤t2

∥∥∆
(√

Xs

)∥∥
tr

=
∫ t2
t1

∫
S+d \{0}

∥∥∥
√

Xs− + g(s−, x)−√Xs−
∥∥∥

tr
µ(ds, dx) and hence the

finite variation of
√

Xt implies the existence of the integral.
If ct does not vanish, then we obtain tr(

√
Xt2)−tr(

√
Xt1−) ≥ ∑

t1≤s≤t2
‖∆ (√

Xs

) ‖tr and
can argue as before. 2

For the following recall that we refer to S+
d -increasing Lévy processes as matrix subordin-

ators.
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Lemma 5.27. Suppose the function g(s, x) = g(x) is deterministic and independent of s and
the extended Poisson random measure µ is the jump measure of a matrix subordinator with
Lévy measure ν. Then the integral

∫ t
0

∫
S+d \{0}

(√
Xs− + g(x)−√Xs−

)
µ(ds, dx) is indeed a.s.

defined for all t ∈ R+ provided
∫
0≤‖x‖2≤1, x∈S+d \{0}

√
‖g(x)‖2ν(dx) is finite.

Again we can use any other norm instead of ‖ · ‖2.
Proof: Recall that E(µ(ds, dx)) = ds×ν(dx) in the given set-up. The existence of the in-

tegral follows immediately by combining Lemma 5.25 and the fact that
∫
‖x‖2≤1

√
‖g(x)‖2ν(dx)

=
∫
‖x‖2≤1 ‖

√
g(x)‖2ν(dx) < ∞ implies the existence of

∫ t
0

∫
S+d \{0}

√
g(x)µ(ds, dx) for all

t ∈ R+ (cf. Marcus & Rosinski (2005, p. 113)). Here we note that

∫ t

0

∫

S+d \{0}

min (‖g(x)‖2, 1) ν(dx)ds ≤ t


ν

({x ∈ S+
d : ‖x‖2 > 1}) +

∫

‖x‖2≤1

√
‖g(x)‖2ν(dx)


 .

is finite. 2

Regarding the existence of the integral with respect to the Lesbesgue measure, we only
restate the criterion of Lemma 5.9 for the multivariate case.

Lemma 5.28. Assume that there exists a (possibly random) function f : R+ → R+ with∫ t
0 f(t)dt < ∞ a.s. such that ‖X−1

t− ct‖ ≤ f(t) for all t ∈ R+. Then the integral
∫ t
0 X−1

t− ctdt
exists in the Lebesgue sense. The latter is in particular the case, if there are (possibly random)
constants C ≥ 0 and α > −1 such that ‖X−1

t− ct‖ ≤ Ctα.

After these general considerations we shall now turn to studying the roots of matrix
subordinators.

Corollary 5.29. Let (Lt)t∈R+ be a matrix subordinator with initial value L0 ∈ S+
d , associated

drift γ and jump measure µ. Then the unique positive semidefinite process
√

Lt is of finite
variation and, provided that either L0 ∈ S++

d or γ ∈ S++
d ∪ {0},

d
√

Lt = L−1
t−γdt +

∫

S+d \{0}

(√
Lt− + x−

√
Lt−

)
µ(dt, dx),

where Lt− is the linear operator on Md(R) with Z 7→ √
Lt−Z + Z

√
Lt−. The drift L−1

t−γ is
predictable, and additionally locally bounded provided L0 ∈ S++

d or γ = 0.

Proof: As the square root preserves the ordering on S+
d ,
√

Lt is S+
d -increasing and thus

of finite variation by Lemma 5.21.
In the case L0 ∈ S++

d the Corollary follows from Theorem 5.15.
Else we know from Lemma 5.26 that the integral

∫ t
0

∫
S+d \{0}

(√
Ls− + x−√Ls−

)
µ(ds, dx)

exists a.s. for all t ∈ R+. Next we show that the integral
∫ t
0 L−1

s−γds exists for all t ∈ R+.
For γ = 0 this is trivial. For γ ∈ S++

d , we have that Ls ≥ γs ∈ S++
d . Using the variational

characteristics of the eigenvalues as in the proof of Theorem 5.15 we get

min
‖x‖2̃ 6=0

(‖Ls−x‖2̃

‖x‖2̃

)
= min (σ(Ls−)) = 2 min

(
σ(

√
Ls−)

)
≥ 2

√
s
√

min (σ(γ)).
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Therefore ‖L−1
s−‖2̃ ≤ (min (σ(Ls−)))−1 ≤

(
2
√

min (σ(γ))
)−1

s−1/2. Hence, ‖L−1
s−γ‖ ≤ Cs−1/2

for all s ∈ R+ with some constant C ∈ R+ and so Lemma 5.28 establishes the existence of∫ t
0 Ls−csds for all t ∈ R+ in the Lebesgue sense. Therefore Proposition 5.19 concludes the

proof. 2

Remark 5.30. If the Lévy process is supposed to have initial value in ∂S+
d (e.g. zero, as is

usual) and non-zero drift γ ∈ ∂S+
d , then there appears to be basically no hope to obtain a

representation of the above type.

6 Roots of Ornstein-Uhlenbeck processes

Now we turn to studying the behaviour of the roots of positive Ornstein-Uhlenbeck processes
as defined in Section 4. Recall in particular that the driving Lévy process Lt is assumed to
be a (matrix) subordinator.

Straightforward calculations based on Theorems 5.1 and 5.4 establish the following result
for a univariate OU process dXt = −λXt + dLt.

Proposition 6.1. Let (Xt)t∈R+ be a positive univariate process of Ornstein-Uhlenbeck type
driven by a Lévy subordinator Lt with drift γ and associated Poisson random measure µ.
Then for 0 < r < 1 the unique positive r-th power Yt = Xr

t is of finite variation and has the
following representation:

dYt =
(−λrXr

t− + γrXr−1
t−

)
dt +

∫

R+\{0}
((Xt− + x)r − (Xt−)r) µ(dt, dx)

=
(
−λrYt− + γrY

1−1/r
t−

)
dt +

∫

R+\{0}

(
(Y 1/r

t− + x)r − Yt−
)

µ(dt, dx),

provided that the process Xt is locally bounded away from zero or the integrals
∫ t
0 γrXr−1

s− ds

and
∫ t
0

∫
R+\{0}

(
(Xs− + x)r −Xr

s−
)
µ(ds, dx) exist a.s. for all t ∈ R.

Before showing that the conditions are actually satisfied for all positive OU processes,
we show this for stationary ones, as this case is of particular interest and the proof is very
straightforward. Recall in particular that a stationary OU process can be represented as∫ t
−∞ e−λ(t−s)dLs, where the driving Lévy process has a finite logarithmic moment.

Proposition 6.2. Let Xt be a stationary positive process of OU type with driving Lévy process
Lt (having drift γ and non-zero Lévy measure ν). Then it is locally bounded away from zero.

The same holds for any positive Ornstein-Uhlenbeck process Xt with X0 > 0 a.s.

Proof: Let us first consider the stationary case. If γ > 0, we see from Proposition 4.6 that
Xt ≥ γ/λ > 0 for all t, which implies that Xt is locally bounded away from 0. Otherwise note
first that Xt ≥ e−λtX0 for all t ≥ 0 and that the stationary distribution is self-decomposable
(cf. Sato (1999, Theorem 17.5)). As the driving Lévy process has a non-zero Lévy measure the
stationary distribution must be non-trivial and thus by Sato (1999, Example 27.8) absolutely
continuous with respect to the Lebesgue measure. Therefore we have X0 > 0 a.s. Hence, there
is a.s. a sequence of stopping times (Tn)n∈N increasing to infinity such that Xt ≥ 1/n for all
t ∈ [0, Tn) (actually we can set Tn = ln(X0n)

λ ), which gives that Xt is locally bounded away
from the origin.

Obviously, the same arguments apply in the non-stationary case. 2
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Proposition 6.3. Let (Xt)t∈R+ be a positive univariate process of Ornstein-Uhlenbeck type
driven by a Lévy subordinator Lt with drift γ and associated Poisson random measure µ. Then
the integrals

∫ t
0 γrXr−1

s− ds and
∫ t
0

∫
R+\{0}

(
(Xs− + x)r −Xr

s−
)
µ(ds, dx) exist for all t ∈ R.

Proof: To show this we introduce the auxiliary process Zt = X0 +
∫ t
0 eλsdLs for t ∈ R+.

It holds that Zt = eλtXt for all t ∈ R+, the process is monotonically increasing and dZt =
eλtγdt +

∫
R\{0} eλtxµ(dt, dx).

The increasingness implies the existence of the integral
∫ t

0

∫

R+\{0}

(
(Zs− + eλsx)r − Zr

s−
)

µ(ds, dx) =
∫ t

0

∫

R+\{0}
eλrs

(
(Xs− + x)r −Xr

s−
)
µ(ds, dx).

Since 0 < min{1, eλrt} ≤ eλrs ≤ max{1, eλrt} for all s ∈ [0, t], this shows that the integral∫ t
0

∫
R+\{0}

(
(Xs− + x)r −Xr

s−
)
µ(ds, dx) exists for all t ∈ R.

Obviously, Zt ≥
∫ t
0 eλsγds = γ

λ

(
eλt − 1

)
. Assuming first λ ≥ 0, this gives

∫ t

0
γrXr−1

s− ds =
∫ t

0
rγe−λ(r−1)sZr−1

s− ds ≤
∫ t

0
rγrλ1−re−λ(r−1)s

(
eλs − 1

)r−1
ds

= rγrλ1−re−λ(r−1)t

∫ t

0

(
eλs − 1

)r−1
ds.

Noting that eλs−1 ≥ s for all s ∈ R+, this implies the existence of
∫ t
0 γrXr−1

s− ds for all t ∈ R+

immediately. In the case λ < 0 one calculates
∫ t
0 γrXr−1

s− ds ≤ rγr|λ|1−r
∫ t
0 (e−λs − 1)r−1ds,

which likewise implies the existence of the integral for all t ∈ R+. 2

Remark 6.4. For a driftless driving Lévy process we see from

dYt = −λrYt−dt +
∫

R+\{0}

(
(Y 1/r

t− + x)r − Yt−
)

µ(dt, dx) (6.1)

that the drift part is a again that of an Ornstein-Uhlenbeck process.
Moreover, observe that (6.1) gives a stochastic differential equation (cf. Applebaum (2004)

for information on this type of SDEs) for the r-th power of the OU process. Since the derivative
of y 7→ (y1/r + x)r is given by y 7→ (

y1/r/(y1/r + x)
)1−r

and is thus obviously bounded by one
for all x ∈ R+, the function y 7→ (y1/r + x)r is (globally) Lipschitz. This implies that for any
initial value Y0 the SDE (6.1) has a unique solution.

If γ > 0 one likewise has the SDE

dYt =
(
−λrYt− + γrY

1−1/r
t−

)
dt +

∫

R+\{0}

(
(Y 1/r

t− + x)r − Yt−
)

µ(dt, dx)

for the r-th power of the OU process. In this case one has only local Lipschitz continuity in
R+ for y 7→ γry1−1/r. In such a set-up results on the existence of unique solutions are still
obtainable, but as these would require a rather lengthy discussion, we refrain from giving any
details.

From the following proposition we see that the r-th power of a positive OU process Xt

with γ = 0 has a representation quite similar to the one for the OU process given by Xt =
e−λtX0 +

∫ t
0

∫
R+\{0} e−λ(t−s)xµ(ds, dx):
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Proposition 6.5. Assume that γ = 0 and X0 ≥ 0 a.s. Then the process Yt = Xr
t can be

represented as

Yt = e−λrtXr
0 +

∫ t

0

∫

R+\{0}

(
(e−λ(t−s)Xs− + e−λ(t−s)x)r − (e−λ(t−s)Xs−)r

)
µ(ds, dx)

= e−λrtXr
0 +

∫ t

0

∫

R+\{0}
e−λr(t−s)

(
(Xs− + x)r −Xr

s−
)
µ(ds, dx).

Proof: As in the proof of Proposition 6.3 we use the auxiliary process Zt = X0 +∫ t
0

∫
R+ eλsxµ(ds, dx). For the process Zr

t we obtain from Proposition 5.4

dZr
t =

∫

R+\{0}

(
(Zs− + eλsx)r − Zr

s−
)

µ(ds, dx)

=
∫

R+\{0}

(
(eλsXs− + eλsx)r − (eλsXs−)r

)
µ(ds, dx).

Thus,

Zr
t = Xr

0 +
∫ t

0

∫

R+\{0}

(
(eλsXs− + eλsx)r − (eλsXs−)r

)
µ(ds, dx).

This implies the assertion via Yt = Xr
t = e−λrtZr

t . 2

Finally let us improve the representation of Proposition 6.5 for a stationary Ornstein-
Uhlenbeck process.

Proposition 6.6. Let Xt be a stationary process of OU type with driving Lévy subordinator
Lt (having non-zero Lévy measure) with a vanishing drift γ. Then for 0 < r < 1 the stationary
process Yt = Xr

t can be represented as

Yt =
∫ t

−∞

∫

R+\{0}

(
(e−λ(t−s)Xs− + e−λ(t−s)x)r − (e−λ(t−s)Xs−)r

)
µ(ds, dx)

=
∫ t

−∞

∫

R+\{0}
e−λr(t−s)

(
(Xs− + x)r −Xr

s−
)
µ(ds, dx).

Proof: Note that as in Proposition 6.5 we have that

Yt = e−λr(t−τ)
√

Xτ +
∫ t

τ

∫

R+\{0}
e−λr(t−s)

(
(Xs− + x)r −Xr

s−
)
µ(ds, dx)

holds for all τ ∈ (−∞, 0]. Letting τ go to −∞ we see that e−λr(t−τ)Xr
τ goes to zero, since for

any stationary OU process e−λ(t−τ)Xτ converges to zero. As, moreover, the left hand side is
independent of τ , the integral

∫ t
τ

∫
R+\{0} e−λr(t−s)

(
(Xs− + x)r −Xr

s−
)
µ(ds, dx) exists for all

τ ∈ (−∞, 0] and is increasing for decreasing τ , the limit of the integrals for τ → −∞ exists.
This implies the result immediately. 2

Having analysed the univariate positive Ornstein-Uhlenbeck processes in depth, let us now
turn to multivariate positive definite ones and see which results can be extended. Here we
state all results again only for the square root, but extensions to more general powers are
immediate. The general result on the representation of the square root follows immediately
from the results of Section 5.2.
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Proposition 6.7. Let (Xt)t∈R+ be an S+
d -valued process of Ornstein-Uhlenbeck type driven

by a matrix subordinator Lt with drift γ ∈ S+
d and associated Poisson random measure µ.

Then the unique positive square root Yt =
√

Xt is of finite variation and has the following
representation:

dYt = X−1
t− (AXt− + Xt−A∗ + γ) dt +

∫

S+d \{0}

(√
Xt− + x−

√
Xt−

)
µ(dt, dx)

= Y−1
t−

(
AY 2

t− + Y 2
t−A∗ + γ

)
dt +

∫

S+d \{0}

(√
Y 2

t− + x− Yt−

)
µ(dt, dx),

provided that the process Xt is locally bounded within S++
d or the integrals

∫ t

0
X−1

s− (AXs− + Xs−A∗ + γ) ds and
∫ t

0

∫

S+d \{0}

(√
Xs− + x−

√
Xs−

)
µ(ds, dx)

exist a.s. for all t ∈ R. Here, Xt− is the linear operator Z 7→ √
Xt−Z + Z

√
Xt− and Yt− the

map Z 7→ Yt−Z + ZYt−

For stationary OU processes one can again establish local boundedness, provided the
driving Lévy process is non-degenerate.

Proposition 6.8. Let Xt be a stationary positive semidefinite OU process and assume that
the driving Lévy process Lt has drift γ ∈ S++

d or Lévy measure ν such that ν(S++
d ) > 0. Then

the process Xt is locally bounded within S++
d .

The same holds for any positive definite OU process with initial value X0 ∈ S++
d a.s.

Proof: In the stationary case Theorem 4.9 implies X0 ∈ S++
d a.s. From (4.6) we thus

always obtain that Xt ≥ eAtX0e
A∗t ∈ S++

d for all t ∈ R. As min
(
σ

(
eAtX0e

A∗t)) is continuous
in t and strictly positive, minσ

(
eAtX0e

A∗t) is locally bounded away from 0; in particular,
Tn := inf{t ∈ R+ : eAtX0e

A∗t < 1
nId} defines a sequence of stopping times that a.s. increases

to infinity. But this implies Xt ≥ 1
nId for all t ∈ [0, Tn). Together with the local boundedness

of Xt and the fact that sets of the form {x ∈ S+
d : x ≥ εId, ‖x‖ ≤ K} with ε,K > 0 are

convex and compact, this establishes the local boundedness of Xt within S++
d . 2

In general we cannot obtain the existence of the relevant integrals for all positive definite
OU processes, but the following proposition covers many cases of interest.

Proposition 6.9. Let Xt be a positive definite OU process driven by a matrix subordinator Lt

with drift γ and Lévy measure ν. Then the integral
∫ t
0 X−1

s− (AXs− + Xs−A∗ + γ) ds exists a.s.
for all t ∈ R provided γ ∈ S++

d or γ = 0, X0 = 0 and Lt is a compound Poisson process with
ν(S+

d \S++
d ) = 0. Furthermore, the integral

∫ t
0

∫
S+d \{0}

(√
Xs− + x−√Xs−

)
µ(ds, dx) exist a.s.

for all t ∈ R, provided Lt is compound Poisson (with drift) or
∫
0≤‖x‖2≤1

√
‖x‖2ν(dx) is finite.

Proof: Let us first consider the second integral. Then
∫
0≤‖x‖2≤1

√
‖x‖2ν(dx) < ∞ is

trivially satisfied for any compound Poisson process and so Lemma 5.27 gives the result.
If γ = 0, X0 = 0 and Lt is a compound Poisson process, Xt = 0 for all t ∈ [0, T ) where

T denotes the first jump time of Lt. So the integral
∫ t
0 X−1

s− (AXs− + Xs−A∗ + γ) ds exists
a.s. for all t ∈ [0, T ). The condition ν(S+

d \S++
d ) = 0 ensures that the first jump ∆LT is a.s.

strictly positive definite and hence XT ∈ S++
d a.s. Using basically the same arguments as in
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Proposition 6.8 this shows that the integral
∫ t
0 X−1

s− (AXs− + Xs−A∗ + γ) ds exists also a.s.
for all t ∈ [T,∞), which concludes the proof of this case.

Assume now that γ ∈ S++
d . We have

Xt ≥
∫ t

0
eA(t−s)γeA∗(t−s)ds ≥

∫ t

0
min

(
σ

(
eA(t−s)γeA∗(t−s)

))
Idds.

But eA(t−s)γeA∗(t−s) ∈ S++
d for all t, s ∈ R+ and so for any M ∈ R+ continuity and compact-

ness ensures the existence of a constant kM > 0 such that min
(
σ

(
eA(t−s)γeA∗(t−s)

)) ≥ kM

for all t, s ∈ [0,M ]. Hence, Xt ≥ kM t for all t ∈ [0,M ]. Using the same matrix analytical ar-
guments as in the proof of Corollary 5.29, this implies ‖X−1

t− ‖2̃ ≤ 1
2
√

kM
t−1/2 for all t ∈ [0,M ].

Moreover, as Xt− is locally bounded there is a.s. a constant KM such that ‖Xt‖2̃ ≤ KM

for all t ∈ [0,M ]. (Here we have fixed ω ∈ Ω, but recall that we can argue pathwise.) Since∫ t
0
‖A‖2̃KM+‖γ‖2̃

2
√

kM
s−1/2ds is finite for all t ∈ [0,M ], where A is the linear operator Md(R) →

Md(R), Z 7→ AZ + ZA∗, majorized convergence gives that
∫ t
0 X−1

s− (AXs− + Xs−A∗ + γ) ds
exists a.s. for all t ∈ [0,M ]. As M ∈ R+ was arbitrary, this concludes the proof. 2

However, one can again show that the square root of a positive definite OU process
Xt with γ = 0 has a representation similar to the one for the OU process given by Xt =
eAtX0e

A∗t +
∫ t
0

∫
S+d \{0} eA(t−s)xeA∗(t−s)µ(ds, dx):

Proposition 6.10. Assume that γ = 0 and X0 ≥ 0 a.s. Then the process Yt =
√

Xt can be
represented as

Yt =
√

eAtX0eA∗t+
∫ t

0

∫

S+d \{0}

(√
eA(t−s)(Xs− + x)eA∗(t−s) −

√
eA(t−s)Xs−eA∗(t−s)

)
µ(ds, dx).

Proof: Let (Zu)u∈R+ be the auxiliary process given by Zu = eA(t−u)XueA∗(t−u) where
t ∈ R+ is fixed. Then Zu = eAtX0e

A∗t +
∫ u
0

∫
S+d \{0} eA(t−s)xeA∗(t−s)µ(ds, dx) is S+

d -increasing.
Using Theorem 5.19 and Lemma 5.26 this implies that

√
Zu =

√
eAtX0eA∗t +

∫ u

0

∫

S+d \{0}

(√
Zs− + eA(t−s)xeA∗(t−s) −

√
Zs−

)
µ(ds, dx).

Since Xt = Zt and Zs− = eA(t−s)Xs−eA∗(t−s), this immediately concludes the proof. 2

Finally let us improve the above representation for a stationary positive definite Ornstein-
Uhlenbeck process.

Proposition 6.11. Let Xt be a stationary process of OU type with driving matrix subordinator
Lt with a vanishing drift γ. Then the stationary process Yt =

√
Xt can be represented as

Yt =
∫ t

−∞

∫

S+d \{0}

(√
eA(t−s)(Xs− + x)eA∗(t−s) −

√
eA(t−s)Xs−eA∗(t−s)

)
µ(dx, ds).

Proof: Follows from Proposition 6.10 using the same arguments as in the proof of Pro-
position 6.6. 2
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Applebaum, D. (2004). Lévy Processes and Stochastic Calculus, Vol. 93 of Cambridge Studies in
Advanced Mathematics, Cambridge University Press, Cambridge.
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