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Conditions for the existence of strictly stationary multivariate GARCH processes in the
so-called BEKK parametrisation, which is the most general form of multivariate GARCH
processes typically used in applications, and for their geometric ergodicity are obtained.
The conditions are that the driving noise is absolutely continuous with respect to the
Lebesgue measure and zero is in the interior of its support and that a certain matrix built
from the GARCH coefficients has spectral radius smaller than one.

To establish the results semi-polynomial Markov chains are defined and analysed using
algebraic geometry.
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1. Introduction

Generalised autoregressive conditionally heteroskedastic (GARCH) processes (originally introduced
by [6, 16]) are heavily used in various areas of applications for the modelling of heteroskedastic
time series data. Very often one has to model several interrelated time series with an appropriate
multidimensional model. Since for multivariate GARCH processes the latent volatility process needs
to take values in the positive semi-definite matrices, as it has to correspond to a covariance matrix at
each point in time, the multivariate GARCH models are typically considerably more involved than
the univariate one. For an overview over the various multivariate GARCH models existing and their
applications we refer to [3, 31]. As always in time series modelling, existence and uniqueness of
stationary solutions, as well as convergence to the stationary solution is of high importance. While
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this is not so hard a question for some multivariate GARCH specifications where – as in the Constant-
Conditional-Correlation (CCC) Model or its extensions – the variances are modelled by univariate
GARCH models, we address this question here for the very general Baba, Engle, Kraft and Kroner
(BEKK) GARCH model introduced in [17] where all (co)variances influence each other in the time
dynamics. The BEKK model is almost the most general multivariate GARCH model existing. Only the
vec model also introduced in [17] is more general, but all vec models not representable in the BEKK
parametrisation are somewhat degenerate (see [32]). Moreover, the restrictions on the parameters
necessary to ensure a proper GARCH model are more or less not practicably formulatable in the vec
model. Hence, the BEKK model is the most general one normally used.

To prove our results we employ Markov chain theory combined with algebraic geometry to obtain
the proper state spaces and properties like irreducibility. In particular, we analyse stationarity and
ergodicity for a general class of Markov chains which we call “semi-polynomial”, because they gen-
eralise the polynomial Markov chains of [27], and then apply the general results to the special case of
multivariate GARCH processes. Our approach in the present paper is most similar to the PhD thesis
of the first author [8], which, although it has never been published in an accessible way (except for a
summary of the main results without proofs in [9]), has been relied upon in essential ways (see e.g.
[10]). Unfortunately, the statements and proofs in that thesis contain some problematic issues and,
hence, details of the proofs and statements given in the present paper deviate in essential ways. One
difference, for instance, is the use of (weak) Feller chains, another regards the proper state spaces.

The remainder of this paper is structured as follows. Below we briefly summarise some general
notation. In Section 2 we give a detailed definition of BEKK GARCH models, their vec and vech
parametrisations, state our main result on the stationarity and ergodicity of multivariate GARCH pro-
cesses and discuss its implications. Thereafter, we define and analyse semi-polynomial Markov chains
in Section 3. Finally, we proof our main result for multivariate GARCH processes in Section 4. A brief
summary of some notions of algebraic geometry necessary to understand the statements of our main
results on GARCH processes is given in the appendix. There we have also collected some results from
the theory of Markov chains which we are going to use in the proof of Theorem 3.12.

Notation

For the natural numbers excluding zero we write N∗.
We denote the set of real n× d matrices by Mn×d(R), the vector space of real d× d matrices by

Md(R), the linear subspace of symmetric matrices by Sd , the positive semi-definite cone by S+d and
the (strictly) positive definite matrices by S++

d . For a positive definite and positive semi-definite matrix
A ∈ Sd we also write A > 0 and A ≥ 0, respectively. The transpose of a matrix A ∈Mn×d(R) will be
denoted by At and the d× d identity matrix by Id . If the dimension is obvious from the context, we
sometimes neglect the subscript.

Every matrix A ∈Mn×d(R) can be considered as a vector in Rnd using the bijective vec transform-
ation which stacks the columns of a matrix below one another beginning with the leftmost one. In
the case of symmetric matrices, one often uses the vech transformation which maps Sd bijectively to
Rd(d+1)/2 by stacking the lower triangular portion of a matrix. For instance, the matrixa b c

b d e
c e f

 ∈ S3 ⊆M3×3(R)

is mapped to the vector (a,b,c,b,d,e,c,e, f )t ∈ R9 by the vec operator and to (a,b,c,d,e, f )t ∈ R6
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by the vech operator. Finally, we denote for two matrices A ∈Mn×d(R) and B ∈Mr×m(R) the tensor
(Kronecker) product by A⊗B.

For the relevant background on Markov chains and mixing we refer to any of the standard refer-
ences, for instance, [13, 26].

2. Stationarity and Geometric Ergodicity of BEKK Multivariate
GARCH Models

When one moves from a single-dimensional to a d-dimensional GARCH process, the univariate vari-
ance process becomes a d×d covariance matrix process Σ. In the so-called vec parametrisation (see
[17]) the general multivariate GARCH(p,q) model with p,q ∈ N is given by

Xn = Σ
1/2
n εn, (2.1)

vec(Σn) = vec(C)+
q

∑
i=1

Ãi vec(Xn−iX t
n−i)+

p

∑
j=1

B̃ j vec(Σn− j) (2.2)

for n ∈ N∗ where (εn)n∈N ∗ is an Rd-valued i.i.d. sequence and Σ
1/2
n denotes the unique positive semi-

definite square root of Σn (i.e. the unique element Σ
1/2
n of S+d such that Σn = Σ

1/2
n Σ

1/2
n ). To ensure the

positive semi-definiteness of the covariance matrix process Σ the initial values Σ0, . . . ,Σ1−p and C have
to be positive semi-definite and Ã1, . . . , Ãq as well as B̃1, . . . , B̃p need to be d2×d2 matrices mapping
the vectorised positive semi-definite matrices into themselves. The initial values X0,X−1, . . . ,X1−q may
be arbitrary elements of Rd .

The restriction on the linear operators Ãi and B̃ j necessary to ensure positive semi-definiteness
gave rise to the so-called BEKK model (see again [17]) which automatically ensures positive semi-
definiteness:

Xn = Σ
1/2
n εn, (2.3)

Σn =C+
q

∑
i=1

li

∑
k=1

Āi,kXn−iX t
n−iĀ

t
i,k +

p

∑
j=1

s j

∑
r=1

B̄ j,rΣn− jB̄t
j,r, (2.4)

where Āi,k and B̄ j,r are now arbitrary elements of Md(R).
The BEKK model is equivalent to the vec model with Ãi = ∑

li
k=1 Āi,k⊗ Āi,k, i = 1, . . . ,q, and B̃ j =

∑
s j
r=1 B̄ j,r⊗ B̄ j,r, j = 1, . . . , p. More details of the relations between vec and BEKK GARCH models

are given in [32].
If we take the symmetry of the matrices Σn into account, we can write the vec (and thus the BEKK)

model also in the vech representation:

Xn = Σ
1/2
n εn, (2.5)

vech(Σn) = vech(C)+
q

∑
i=1

Ai vech(Xn−iX t
n−i)+

p

∑
j=1

B j vech(Σn− j), (2.6)

where Ai = HdÃiKt
d , B j = HdB̃ jKt

d , i = 1, . . . ,q, j = 1, . . . , p and the matrices Hd and Kd are the
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unique Hd ,Kd ∈M d(d+1)
2 ×d2(R) such that

vech(D) = Hd vec(D), vec(D) = Kt
d vech(D) and HdKt

d = Id(d+1)/2

for every D ∈ Sd , whose existence and uniqueness follows immediately, since both vec and vech are
linear operators.

Example 2.1. Let us give a simple example for the GARCH equations when d = 2. Consider the
following BEKK model with p = q = l1 = s1 = 1:

Σn =C+

(
a c
b d

)
Xn−1X t

n−1

(
a b
c d

)
+

(
e g
f h

)
Σn−1

(
e f
g h

)
(2.7)

where a,b,c,d,e, f ,g,h are arbitrary real numbers.
From (2.7) one immediately derives the corresponding vec model:

vec(Σn) = vec(C)+


a2 ac ca c2

ab ad cb cd
ba bc da dc
b2 bd db d2

 vec(Xn−1X t
n−1)+


e2 eg ge g2

e f eh g f gh
f e f g he hg
f 2 f h h f h2

 vec(Σn−1). (2.8)

Since the matrices H2 and K2 are given by

H2 =

1 0 0 0
0 1 0 0
0 0 0 1

 and K2 =

1 0 0 0
0 1 1 0
0 0 0 1

 ,

the associated vech parametrisation of (2.7) and (2.8) is

vech(Σn) = vech(C)+

a2 2ac c2

ab ad +bc cd
b2 2bd d2

 vech(Xn−1X t
n−1)+

e2 2eg g2

e f eh+ f g gh
f 2 2 f h h2

 vech(Σn−1).

Definition 2.2. Let (Xn)n∈N ∗ be a GARCH(p,q) process in the BEKK representation satisfying

(i) C and the initial values Σ0, . . . ,Σ1−p are positive definite,

(ii) (εn)n∈N ∗ is an Rd-valued i.i.d. sequence with distribution Γ, ε1 ∈ L2, E[ε1] = 0 and E[ε1ε t
1] = Id ,

(iii) (εn)n∈N ∗ is independent of F0 = σ(X1−q,X2−q, . . . ,X0,Σ1−p,Σ2−p, . . . ,Σ0).

Then (Xn)n∈N ∗ is called standard GARCH(p,q) process.

E[ε1ε t
1] = Id is a simple normalisation making the volatility process identifiable and, hence, not

really a restriction.

Remark 2.3. In Xn = Σ
1/2
n εn one could also choose another transformation G(Σn) of the conditional

covariance matrix Σn such that G(Σn)
tG(Σn) = Σn instead of taking the square root. Boussama [8]

takes G(Σn) as a lower triangular matrix resulting from the Cholesky decomposition. However, the
exact form of this transformation does not have any impact on our results concerning stationarity and
ergodicity provided that G is an appropriate “smooth” transformation such that the GARCH process
fits into the setting of semi-polynomial Markov chains studied in Section 3.
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Using the vech representation we embed a standard GARCH(p,q) process into a Markov chain.
Setting C := (vech(C)t ,0,0, . . . ,0)t ∈

(
Rd(d+1)/2

)p ×
(
Rd
)q snd defining the process (Yn)n∈N ∗ in(

Rd(d+1)/2
)p×

(
Rd
)q by Yn :=

(
vech(Σn)

t ,vech(Σn−1)
t , . . . ,vech(Σn−p+1)

t ,X t
n,X

t
n−1, . . . ,X

t
n−q+1

)t
,

one easily sees that

Yn = C +



q
∑

i=1
Ai vech(Xn−iX t

n−i)+
p
∑
j=1

B j vech(Σn− j)

vech(Σn−1)
...

vech(Σn−p+1)
Xn

Xn−1
...

Xn−q+1


.

From this one obtains immediately a regular (in the sense of Definition A.7) map

ϕ :
((

Rd(d+1)/2
)p
×
(
Rd
)q)
×Rd →

(
Rd(d+1)/2

)p
×
(
Rd
)q

such that Yn = ϕ(Yn−1,Xn).

Next we need to define the set W which the stationary standard GARCH(p,q) process takes its values
in, as is to be seen. Set

B̃ :=
(

B 0
0 0

)
∈Mp d(d+1)

2 +qd(R) with B =


B1 B2 . . . Bp−1 Bp

I 0 . . . 0 0

0 I
. . .

... 0
...

. . . . . . 0
...

0 . . . 0 I 0

 ∈Mp d(d+1)
2

(R)

and consider the point T satisfying
T = C + B̃T. (2.9)

Existence and uniqueness of this point under the conditions of Theorem 2.4 is shown in Section 4.3.
Furthermore, we define ϕn for n ∈ N∗ recursively by ϕ1 := ϕ and

ϕ
n+1 :

((
Rd(d+1)/2

)p
×
(
Rd
)q)
× (Rd)n+1→

(
Rd(d+1)/2

)p
×
(
Rd
)q

,

ϕ
n+1(y,x1, . . . ,xn,xn+1) = ϕ(ϕn(y,x1, . . . ,xn),xn+1)

and set

W =
Z ⋃

n∈N ∗
ϕ n
(
T,(Rd)

n)
with ZS denoting the closure of a set S in the Zariski topology (see appendix). Since Σn is always
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positive definite, we define

U := vech(S++
d )× . . .×vech(S++

d )︸ ︷︷ ︸
p

×Rd× . . .×Rd︸ ︷︷ ︸
q

and consider W ∩U as the natural state space for (Yn)n∈N∗ . Finally, B(W ∩U) denotes the Borel
σ -algebra over W ∩U inherited from the standard Borel σ -algebra on

(
Rd(d+1)/2

)p ×
(
Rd
)q, i.e.

B(W ∩U) is related to the usual Euclidean topology.

Theorem 2.4. Let (Xn)n∈N∗ be a standard GARCH(p,q) process.

(i) If

(H1) the distribution Γ of ε1 is absolutely continuous with respect to the Lebesgue measure on
Rd ,

(H2) the point zero is in the interior of E := supp(Γ) and

(H3) the spectral radius of ∑
q
i=1 Ai +∑

p
j=1 B j is less than 1,

then the Markov chain (Yn)n∈N ∗ is positive Harris recurrent and geometrically ergodic on the
state space (W ∩U,B(W ∩U)).

The strictly stationary solution (Xn)n∈Z of the standard GARCH(p,q) model associated with
(Yn)n∈Z is unique and geometrically β - mixing. Furthermore, Xn ∈ L2 and Σn ∈ L1 for all
n ∈ Z. The strictly stationary solution is, hence, also weakly stationary.

(ii) If there exists a weakly stationary solution for the standard GARCH(p,q) model, then the spec-
tral radius of the matrix ∑

q
i=1 Ai +∑

p
j=1 B j is less than 1.

Remark 2.5. (i) If the initial values Σ0, . . . ,Σ1−p are in W and positive semi-definite but not pos-
itive definite, the geometric ergodicity still holds, since one easily sees that one then has Yp ∈
W ∩U .

(ii) Obviously, our conditions for strict stationarity imply also weak (or second order) stationarity.
In the univariate case it is well-known that for a driving noise ε with finite variance one may
well choose the GARCH parameters in such a way that a unique stationary solution with infinite
second moments exists (see [2, 7, 24], for example). Extending the above result to cover such
cases seems not possible at the moment, although in principle the main problem is “only” to find
an appropriate function for the Foster-Lyapunov drift criterion.

(iii) Theorem 2.4 should cover most of the BEKK multivariate GARCH models used in applications,
since one usually wants a finite second moment and uses absolutely continuous noises ε (e.g.
multivariate standard normal or standard tν -distributed noises with ν > 2). Hence, (H3) will
typically be the only condition that needs checking.

Note, however, that it is possible to weaken the assumptions (H1) and (H2) to the existence of a
non-trivial absolutely continuous part of the innovation distribution with zero in the interior of
its support (cf. [13, Section 2.4]). More precisely, if

(K1) the distribution Γ of ε1 can be decomposed as Γ = Γ0 +Γ1 with Γ0 being non-trivial and
absolutely continuous with respect to the Lebesgue measure on Rd (cf., for instance, [30, p.
174] where the Lebesgue decomposition of any σ -finite measure on B(Rd) is explained),
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(K2) the point zero is in the interior of E = supp(Γ0)

and (H3) hold, then Theorem 2.4 remains valid.

We give a brief summary of the changes that have to be done in the following sections if one
starts with (K1) and (K2) instead of (H1) and (H2): in the statements of Theorem 3.1, Proposition
3.2 and Theorem 3.3 one simply has to replace Γ by Γ0. Further the assumptions (A1) and (A2)
in Section 3.2.1 have to be adapted in the same way as (H1) and (H2) have been weakend. A
crucial point is to replace the right hand side in Proposition 3.9 by the subprobability measure
Fk(T,⊗k

i=1Γ0). In the same manner we take v in the proof of Proposition 3.10 equal to the
subprobability measure F l(T,⊗l

i=1Γ0). The rest of the paper is not affected.

(iv) If we completely omitted the assumptions (K1) and (K2) on the innovations, the mixing result
might be no longer true (cf. [1]). However, one could try to extend the idea of [15] where the
existence of a τ-weakly dependent strictly stationary solution for a chain with infinite memory
has been shown under a Lipschitz-type condition, but the expression of this condition in terms of
the matrices appearing in the BEKK representation seems to be very delicate. In some cases, like
for instance the upcoming Example 2.7, the contraction condition is easily verified (in this case
with the Orlicz function Φ(x) = x2). Hence, in such cases [15, Theorem 3.1] yields the existence
of a τ-weakly dependent strictly stationary solution of the standard GARCH model even if the
innovation sequence does not possess an absolutely continuous component.

Finding an appropriate contraction condition in general appears highly non-trivial but may allow
to show τ-dependence without assuming (K1) and (K2) and without using algebraic geometry.
This would imply Central Limit Theorems (CLTs) and the validity of bootstrap procedures (see,
for instance, [5]) for the strictly stationary solution. However, for simulation purposes as well
as CLTs and Strong Laws of Large Numbers when not starting with the stationary distribution,
geometric ergodicity and the “right” irreducible state space is very important (see again the up-
coming Example 2.7). The latter seem not to be obtainable under τ-weak dependence conditions.
Moreover, note also that τ-weak dependence is a weaker notion than strong mixing.

(v) Strong mixing conditions are, as τ-dependence conditions, a way to derive limit theorems. Any-
way, the CLT under strong mixing, even if the mixing coefficients decline exponentially fast
(which is the case for all geometrically ergodic Markov chains), needs a stronger order moment
condition than the second order ones obtained in Theorem 2.4 (see [19] and also [20, 22]). In [14]
(see also [22, Corollary 3]) it has been shown that for a positive Harris recurrent and geomet-
rically ergodic Markov chain (Xt)t∈Z on a state space S with stationary distribution π , the CLT
holds for any real-valued function f defined on S which satisfies

∫
S π(dx) f 2(x) log+ | f (x)|< ∞.

In our case these references together with the obtained results in particular imply the CLT for
functions f such that

∫
W∩U π(dx) f 2(x) log+ | f (x)| ≤C ·

∫
W∩U π(dx)V (x) (where V is the func-

tion specified in the upcoming proof of Theorem 4.9). Hence, for any ε > 0, the CLT can be
applied to (1/2−ε)th and (1−ε)th absolute powers of Σn and Xn, respectively. Moreover, com-
bining our conditions on geometric ergodicity with the fourth order moment conditions of [18]
immediately gives sufficient conditions for the validity of more classical CLTs.

One might expect that the set W ∩U spans the space
(
Rd(d+1)/2

)p×
(
Rd
)q and that, hence, the state

space of a stationary GARCH process is “non-degenerate”. However, this needs not to be true:

Example 2.6. Consider the following bivariate GARCH(1,1) model:

vech(Σn) = vech(C)+A vech(Xn−1X t
n−1)+B vech(Σn−1) (2.10)
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where A and B are two 3×3 matrices such that the spectral radius of A+B is less than 1 and BA = 0.
Such a GARCH model can be obtained from a BEKK model with l1 = s1 = 1 and B̄11Ā11 = 0.

Starting from the initial point T = (vech(Σ0)
t ,X t

0)
t given by equation (2.9), we note that vech(Σ0) =

vech(C)+B vech(Σ0) and X0 = 0 and obtain by iterating (2.10)

vech(Σn) = vech(Σ0)+A vech(Xn−1X t
n−1).

Let f be the regular map from R4 into R5 given by

(x1,x2,x3,x4) 7→ f (x1,x2,x3,x4) := T +

A (x2
1,x1x2,x2

2)
t

x3
x4

 .

Then W is the Zariski closure of the semi-algebraic set f (R4) (see [4, Theorem 2.3.4]) and W has to
be strictly contained in R5 since dim f (R4)≤ 4 = dimR4.

Note that the problem of degeneracy in this example lies in the non-invertibility of at least one of
the two matrices A, B. Indeed, it is easy to see that W is of full dimension and no such degeneracy
as above can occur if A, B (or Ā11, B̄11 in the BEKK formulation) are both invertible and (H1), (H2)
hold.

Moreover one has to be very careful when using GARCH models not to use them outside the state
space W ∩U . Typically one would simulate a stationary GARCH process by starting with an arbitrary
value and letting the process run. The values are only recorded after a burn-in period. The geometric
ergodicity ensures that after an appropriately long burn-in period the obtained values can be basically
regarded as coming from the stationary dynamics. To ensure that this approach works, our results
show that one needs to start in W ∩U . One choice of the starting values always possible is T which is
easily calculated from the parameters by solving a system of linear equations. Let us give an example
where starting values outside W ∩U indeed lead to a problem.

Example 2.7. Consider the set-up of Example 2.6 with l1 = s1 = 1 and

Ā11 =

(
a 0
0 0

)
, B̄11 =

(
0 0
0 b

)
,

with |a|< 1, |b|< 1 being non-zero real numbers. Obviously (H3) is satisfied.
It is then easy to see that the component corresponding to the second variance is constant in W , say

it equals σ22. If we start with an initial value Σ0 with a second variance (Σ0)22, then one sees easily
that (Σn)22 =C22+b2(Σn−1)22 for all n ∈N∗. Obviously, this equation has a unique fixed point which
must be equal to σ22 and the right hand side corresponds to an injective map. By induction this implies
(Σn)22 6= σ22 for all n ∈ N∗ if the starting value satisfies (Σ0)22 6= σ22.

Hence, for such a starting value Yn 6∈W for all n ∈ N and thus the distribution of Yn can never
converge in the total variation sense to the stationary distribution π . This means that we can never
have geometric ergodicity when allowing such starting values outside W but in U .
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3. Stationarity and Geometric Ergodicity of Semi-polynomial
Markov Chains

In this section we consider a general class of Markov chains and prove criteria for stationarity and
geometric ergodicity. We will apply the results later on to the special case of multivariate GARCH
processes, but the general results of this section seem also of interest of their own, since they should
be applicable to different models as well.

We consider Markov chains in Rn of the form Xt+1 = F(Xt ,et) where (et)t∈N is an m-dimensional
i.i.d. sequence and F is an appropriate map as follows.

Let V ⊆ Rn be an algebraic variety (cf. Definition A.5) and U an open subset of Rn and let F : U×
Rm→U be a C1 - map such that there exist a C1 - map f : U×Rm→Rm and a map ϕ : Rn×Rm→Rn

satisfying:

(F1) F(z,y) = ϕ(z, f (z,y)) for all (z,y) ∈U×Rm,

(F2) ϕ(V ∩U×Rm)⊆V ∩U ,

(F3) the map (z,y) 7→ ϕ(z,y) is regular in (z,y) (cf. Definition A.7) and

(F4) for all z ∈U , the map fz(·) = f (z, ·) is a C1 - diffeomorphism from Rm onto Rm and the map
U×Rm→ Rm, (z,y) 7→ f−1

z (y) is continuous in (z,y) where f−1
z (·) denotes the inverse map of

fz(·).

The case when F is a regular map, i.e. when fz is the identity, has been considered in [27] under the
name “polynomial Markov chains”. Similarly to that paper we use extensively algebraic geometry (see
the appendix for references and the most relevant definitions) and drift criteria to show the stationarity
and ergodicity of these Markov chains, but the presence of the additional diffeomorphism fz makes
all proofs considerably more involved. Moreover, we always need to ensure that we stay in U .

3.1. Properties of the Image Measure

In a first step we consider how F acts for a fixed first argument on the noise distribution, which will
lead to ψ-irreducibility conditions in the next section.

In general, the image of Rm under Fz(·) := F(z, ·) is a semi-algebraic set in Rn with dimension less
than n (see [4, Theorem 2.3.4]). Thus the Lebesgue measure of this image is often zero.

Therefore we need to work with Hausdorff measures (see, for example, [12] for a detailed intro-
duction). We suppose that the algebraic variety V is equipped with a regular measure µV defined on
(V,B(V )) where B(V ) denotes again the Borel σ -algebra over V inherited from the usual Euclidean
topology. Recall that µV is said to be regular if, for any A ∈ B(V ) and any δ > 0, there exist an
open set U ∈B(V ) and a compact set K ∈B(V ) such that K ⊆ A ⊆U and µV (U\K) < δ . In the
following we assume that this measure µV is obtained by equipping the regular set R(V ) of V (cf.
Definition A.6) with an appropriate Hausdorff measure which is extended by zero to the singular set
S (V ) = V\R(V ). Moreover we henceforth suppose that Γ is a measure absolutely continuous with
respect to the Lebesgue measure on Rm with density γ . For z ∈ V ∩U we denote by Γz the image
measure of Γ under Fz in V ∩U . Furthermore we define E := supp(Γ) which is essentially also the
domain of positivity of the density γ . For the notion of smooth points we refer to [27, A 20] or [28, p.
42] and note that the definition makes sense for general C1 - maps.

Theorem 3.1. Suppose that z0 ∈ V ∩U and Fz0(·) has a smooth point in Rm. Then Γz0 is absolutely
continuous with respect to the measure µV and has support Fz0(E).
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Proof. First we denote by Γ′z0
the image measure fz0(Γ). One obtains immediately by the Density

Transformation Theorem that Γ′z0
is absolutely continuous with respect to the Lebesgue measure on

Rm with density

γ
′
z0
(y) := γ( f−1

z0
(y)) · 1∣∣detD fz0( f−1

z0 (y))
∣∣ , y ∈ Rm. (3.1)

The support of Γ′z0
is given by fz0(E).

There exists x0 ∈Rm such that Fz0(x0) = ϕz0(y0) is a regular point of V and rank(DFz0(x0)) = dimV
where y0 = fz0(x0). Since Fz0(·) = ϕz0( fz0(·)), we have DFz0(x0) = Dϕz0(y0) ·D fz0(x0). Since fz0(·)
is a C1 - diffeomorphism, the linear map D fz0(x0) is invertible. Thus rank(Dϕz0(y0)) = dimV . Since
ϕz0(y0) ∈ R(V ) and y0 ∈ R(Rm) (Rm is a smooth algebraic variety, i.e. R(Rm) = Rm), the regular
map ϕz0(·) is smooth at y0 and hence dominating (in the sense of [27, A23]). Applying [27, Theorem
3.1] gives the result.

Proposition 3.2. Let z0 ∈U. Then, for every ε > 0, there exists α > 0 such that∣∣Γ′z(B)−Γ
′
z0
(B)
∣∣= | fz(Γ)(B)− fz0(Γ)(B)|< ε

for all B ∈B(Rm) and every z ∈U with ‖z− z0‖< α .

Proof. The image measure Γ′z = fz(Γ) is absolutely continuous with respect to the Lebesgue measure
on Rm with density γ ′z given by equation (3.1).
Let ε > 0 and B∈B(Rm). The space of real-valued continuous functions on Rm with compact support
is dense in the L1 sense in the space of all Lebesgue-integrable functions on Rm. Thus, there exists a
continuous function γ̃ : Rm→ R with compact support K such that∫

Rm
|γ(x)− γ̃(x)| dx <

ε

3
. (3.2)

Hence, ∣∣Γ′z(B)−Γ
′
z0
(B)
∣∣= ∣∣∣∣∫B

γ
′
z(y) dy−

∫
B

γ
′
z0
(y) dy

∣∣∣∣
≤
∫
Rm

∣∣γ( f−1
z (y))− γ̃( f−1

z (y))
∣∣ · ∣∣detD f−1

z (y)
∣∣ dy

+
∫
Rm

∣∣∣γ̃( f−1
z (y))

∣∣detD f−1
z (y)

∣∣− γ̃( f−1
z0

(y))
∣∣detD f−1

z0
(y)
∣∣ ∣∣∣ dy

+
∫
Rm

∣∣γ̃( f−1
z0

(y))− γ( f−1
z0

(y))
∣∣ · ∣∣detD f−1

z0
(y)
∣∣ dy =: I1 + I2 + I3.

With (3.2) we obtain immediately by substitution I1 < ε/3 and I3 < ε/3.
γ̃ is bounded on Rm by sup γ̃ and for all r > 0 such that B(z0,r) := {z ∈ Rn : ‖z− z0‖ ≤ r} ⊆U , the

set C :=
{
(z,y) ∈U×Rm : ‖z− z0‖ ≤ r and f−1

z (y) ∈ K
}

is a compact set in U ×Rm, since the map
ψ : U ×Rm→U ×Rm, ψ(z,y) := (z, fz(y)) is continuous and C = ψ(B(z0,r)×K). Thus, there is a
real number b > 0 such that, for all (z,y) ∈C,

∣∣detD f−1
z (y)

∣∣< b. The map γ̃( f−1
z (y)) ·

∣∣detD f−1
z (y)

∣∣
is hence bounded on C by b · sup γ̃ .
Let C1 be the projection of C on Rm and suppose without loss of generality ‖z− z0‖ ≤ r. Then, for all
y /∈C1, we have γ̃( f−1

z (y)) = γ̃( f−1
z0

(y)) = 0 which implies

I2 =
∫

C1

∣∣∣γ̃( f−1
z (y))

∣∣detD f−1
z (y)

∣∣− γ̃( f−1
z0

(y))
∣∣detD f−1

z0
(y)
∣∣ ∣∣∣ dy.
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This integrand is dominated by 2bsup γ̃ and converges pointwise to zero if z converges to z0 (cf. (F4)).
Since b and sup γ̃ are finite constants and C1 is compact the dominant 2bsup γ̃ is integrable over C1.
Hence, we can apply the Dominated Convergence Theorem and get I2→ 0 as z→ z0, i.e. there exists
0 < α < r such that I2 < ε/3 for all z ∈U with ‖z− z0‖< α .

Theorem 3.3. Suppose that z0 ∈V ∩U and Fz0(·) has a smooth point in Rm. Then

liminf
z→z0

z∈V∩U

Γz(A)≥ Γz0(A) (3.3)

for every A ∈B(V ∩U) (the Borel σ -algebra inherited from the usual Euclidean topology).

Proof. Let A ∈B(V ∩U) and ε > 0. Since ϕz0(·) is dominating and Γ′z0
= fz0(Γ) is absolutely con-

tinuous with respect to the Lebesgue measure on Rm (cf. proof of Theorem 3.1), [27, Theorem 3.2]
yields a neighbourhood V0 of z0 in V ∩U such that ϕz(Γ

′
z0
)(A)≥ ϕz0(Γ

′
z0
)(A)− ε

2 for all z ∈V0 which
is equivalent to

fz0(Γ)(ϕ
−1
z (A))≥ fz0(Γ)(ϕ

−1
z0

(A))− ε

2
∀z ∈V0. (3.4)

Due to Proposition 3.2, there exists α > 0 such that fz(Γ)(B)≥ fz0(Γ)(B)− ε

2 for all B ∈B(Rm) and
every z ∈U with ‖z− z0‖< α . We choose B = ϕ−1

z (A) and deduce for every z ∈U, ‖z− z0‖< α,

fz(Γ)(ϕ
−1
z (A))≥ fz0(Γ)(ϕ

−1
z (A))− ε

2
. (3.5)

With (3.4) and (3.5) we obtain for all z∈V0 with ‖z− z0‖<α that fz(Γ)(ϕ
−1
z (A))≥ fz0(Γ)(ϕ

−1
z0

(A))−
ε. Since ϕz(Γ

′
z) = Fz(Γ) = Γz, this is equivalent to

Γz(A)≥ Γz0(A)− ε ∀z ∈V0∩{z ∈ Rn : ‖z− z0‖< α} .

This shows (3.3) since ε > 0 can be chosen arbitrarily small.

3.2. Stationarity and Ergodicity

Culminating in Theorem 3.11 we now gradually show Harris recurrence, geometric ergodicity and
β -mixing for semi-polynomial Markov chains.

3.2.1. Assumptions

Concerning the sequence (et)t∈N we make the following additional assumptions for our semi-poly-
nomial Markov chain:

(A1) Every et has distribution Γ which is absolutely continuous with respect to the Lebesgue measure
on Rm with density γ . Let E denote the support of Γ.

We define for all k ∈ N∗, k > 1 the functions Fk(z,y1, . . . ,yk) := F(Fk−1(z,y1, . . . ,yk−1),yk) where
z ∈U, (y1, . . . ,yk) ∈ (Rm)k and set F1 = F .

With this notation we introduce for z ∈V ∩U the orbit

Sz :=
⋃

k∈N ∗

{
Fk(z,y1, . . . ,yk) : y1, . . . ,yk ∈ E

}
.

To prove the desired properties for semi-polynomial Markov chains we assume:
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(A2) There is a point a ∈ int(E) and a point T ∈ V ∩U such that, for all z ∈ V ∩U , the sequence
(X z

t )t∈N defined by X z
0 = z and X z

t = F(X z
t−1,a) for t ≥ 1 converges to the point T .

T is called attracting point of the chain (Xt)t∈N.
We set W := ZST the Zariski closure of the orbit ST . Note that obviously T ∈W and W ⊆ V . To

show uniqueness of the strictly stationary solution we need the assumption:

(A3) Any strictly stationary solution of the Markov chain Xt+1 = F(Xt ,et) takes its values in the
algebraic variety W ∩U .

Remark 3.4. (i) If (A2) is satisfied, then T is a fixed point of F(·,a), since F is continuous.

(ii) It is obvious that W is an algebraic set since it is the Zariski closure of ST . In fact, it is even
irreducible (cf. the upcoming Section 3.2.2).

Strictly speaking W ∩U is not necessarily an algebraic variety, but, as it is the intersection of an
algebraic variety in Rn and the set U where our Markovian dynamics are defined, we refer to it as an
algebraic variety.

3.2.2. Algebraic Variety of States

In this subsection we suppose that the assumptions (A1) and (A2) hold. We will show that W , defined
as above, is indeed an algebraic variety which we will call the Markov chain’s algebraic variety of
states.

Let (Dk)k∈N ∗ be the sequence of subsets of U defined by Dk := Fk(T,Ek). Since F(T,a) = T
(cf. Remark 3.4 (i)) we obtain Dk = Fk(F(T,a),Ek) = Fk+1(T,{a}×Ek) ⊆ Dk+1, i.e. the sequence
(Dk)k∈N ∗ is an ascending sequence of subsets of Rn.

We set Wk := ZFk(T,(Rm)k). Then we have Wk =
Z
ϕk(T,(Rm)k) (defining ϕk analogously to Fk)

since fT (·) is a C1 - diffeomorphism.

Lemma 3.5. For all k ∈ N∗ we have Wk =
ZDk.

Proof. To this end consider the map f (k)T : (Rm)k → (Rm)k, (y1, . . . ,yk) 7→ (x1, . . . ,xk) where x1 =
fT (y1), x2 = fF(T,y1)(y2), . . . , xk = fFk−1(T,y1,...,yk−1)

(yk).

Due to the properties of f and F (in particular (F4)), it is clear that f (k)T is bijective, continuous and its
inverse is continuous as well, i.e. f (k)T is a homeomorphism.
Assumption (A2) implies that Ek contains an open ball of (Rm)k. Thus, since f (k)T is homeomorphic,
f (k)T (Ek) contains an open ball of (Rm)k.

From [4, Corollary 3.4.5] we obtain
Z

f (k)T (Ek) = (Rm)k. This shows

Wk =
ZFk(T,(Rm)k) = Z

ϕk(T,(Rm)k) =
Z
ϕk

(
T,

Z
f (k)T (Ek)

)
.

Since ϕk(T, ·) is regular (cf. (F3)), ϕk(T, ·) is continuous with respect to the Zariski topology due

to Proposition A.8. Hence, Wk =
Z
ϕk
(

T, f (k)T (Ek)
)
= ZFk(T,Ek) = ZDk which proves Wk to be the

Zariski closure of Dk.

Lemma 3.6. Wk is irreducible for all k ∈ N∗.
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Proof. If we suppose that there is k ∈ N∗ such that Wk = V1 ∪V2 where V1 and V2 are algebraic sets
with V1 (Wk and V2 (Wk, then

(Rm)k =
(

ϕ
k
T

)−1
(Wk) =

(
ϕ

k
T

)−1
(V1)︸ ︷︷ ︸

(∗)

∪
(

ϕ
k
T

)−1
(V2)︸ ︷︷ ︸

(∗∗)

where ϕk
T (·) = ϕk(T, ·). Now (∗) and (∗∗) are algebraic sets, because V1 and V2 are algebraic sets and

ϕk
T (·) is continuous with respect to the Zariski topology (see proof of Lemma 3.5). Since

(
ϕk

T
)−1

(Vi)(
(Rm)k for i = 1,2 (otherwise Wk = Z

ϕk(T,(Rm)k) ⊆ ZVi = Vi which would be a contradiction to
Vi (Wk), this would prove (Rm)k to be reducible which is a contradiction.

Proposition 3.7. There exists l ∈ N∗ such that Wk =Wl for all k ≥ l and W =Wl . In particular, W is
an algebraic variety.

Proof. From [4, Corollary 3.4.5] it follows that if V1 ⊆ V2 ⊆ V3 ⊆ . . . is an ascending sequence of
algebraic varieties in Rn then there exists l ∈ N∗ such that Vk =Vl for all k ≥ l.

Lemma 3.5 and Lemma 3.6 show that (Wk)k∈N ∗ is an ascending sequence of algebraic varieties and
so there exists l ∈ N∗ such that Wk =Wl for all k ≥ l. We then observe that

ST =
⋃

k∈N ∗

{
Fk(T,y1, . . . ,yk) : y1, . . . ,yk ∈ E

}
︸ ︷︷ ︸

=Fk(T,Ek)

=
⋃

k∈N ∗
Dk.

Since
Z ⋃

k∈N ∗
Dk ⊆

Z ⋃
k∈N ∗

ZDk︸ ︷︷ ︸
=

⋃
k∈N ∗

Wk=Wl

= ZWl =Wl

and Wl =
ZDl ⊆ Z∪k∈N ∗Dk, we obtain W = ZST =Wl .

Lemma 3.8. For all k ∈ N∗ we have Fk(W ∩U,(Rm)k) ⊆W ∩U. Hence, the Markov chain can be
restricted to the variety of states W ∩U.

Proof. With the definition of the subsets Dk and Wk, respectively, one has for all k ∈ N∗

ϕ(Dk,Rm) = F(Dk,Rm) = F( Fk(T,Ek)︸ ︷︷ ︸
⊆Fk(T,(Rm)k)

,Rm)⊆ Fk+1(T,(Rm)k+1)⊆Wk+1∩U ⊆W ∩U. (3.6)

The continuity of regular maps with respect to the Zariski topology and the regularity of ϕ yield

F(W ∩U,Rm) = ϕ(W ∩U,Rm)⊆ ϕ(W,Rm) = ϕ
(ZDl,Rm)⊆ Z

ϕ
(ZDl,Rm

)
= Z

ϕ(Dl,Rm)
(3.6)
⊆ W.

Since we assume F : U ×Rm→U , we have F(W ∩U,Rm)⊆W ∩U . By induction we have Fk(W ∩
U,(Rm)k) ⊆W ∩U for all k ∈ N∗. Hence we can restrict the Markov chain to the variety of states
W ∩U .
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Proposition 3.9. For all A ∈B(W ∩U) and all k ≥ l

liminf
z→T

z∈W∩U

Pk(z,A)≥ Pk(T,A),

where Pk is the k-step transition probability kernel of the Markov chain (Xt)t∈N.

Proof. Since ϕk
T (·) = ϕk(T, ·) is regular and dominating for all k ≥ l (since Z

ϕk(T,(Rm)k) =Wk =W
for all k ≥ l, cf. Proposition 3.7), [27, A 23] implies that ϕk

T (·) has a smooth point.
Similar to the proof of Theorem 3.1 we can now show that the map Fk(T, ·) has a smooth point in

(Rm)k. Let x0 ∈ (Rm)k be the smooth point of ϕk
T (·), i.e. ϕk(T,x0) ∈ R(W ) and rank

(
Dϕk

T (x0)
)
=

dimW . Then Fk
(

T,
(

f (k)T

)−1
(x0)

)
= ϕk(T,x0) and

DFk(T, ·)
((

f (k)T

)−1
(x0)

)
= Dϕ

k
T (x0) ·D f (k)T

((
f (k)T

)−1
(x0)

)
where the linear map D f (k)T (x) is invertible for all x ∈ (Rm)k (to this end note that f (k)T is not only
continuous but also differentiable and that D f (k)T is a block matrix with lower triangle structure where
the blocks on the diagonal are invertible). Hence the matrix on the left hand side has also rank dimW
and

(
f (k)T

)−1
(x0) is a smooth point of Fk(T, ·).

Finally, note that Pk(z,A) = Fk(z,⊗k
i=1Γ)(A) where Γ is the distribution of every et (cf. (A1)) and we

conclude with Theorem 3.3.

3.2.3. Harris Recurrence, Ergodicity and β - Mixing

In this subsection we will prove the promised properties of semi-polynomial Markov chains under a
Foster-Lyapunov-condition. First we show irreducibility on the algebraic variety of states and aperi-
odicity. As usual, ψ denotes a maximal irreducibility measure.

Proposition 3.10. Suppose that (A1) and (A2) hold. Then the semi-polynomial Markov chain (Xt)t∈N
is ψ - irreducible and aperiodic on the state space (W ∩U,B(W ∩U)).
Moreover, the support of ψ has non-empty interior.

Proof. (1) Due to Proposition 3.9 we have for all A ∈B(W ∩U)

liminf
z→T

z∈W∩U

Pl(z,A)≥ Pl(T,A). (3.7)

We define a probability measure ν on the state space (W ∩U,B(W ∩U)) by ν(A) := Pl(T,A), A ∈
B(W ∩U). Then, for every A ∈B(W ∩U) with ν(A) 6= 0, there exists due to (3.7) a neighbourhood
W1 of T in W ∩U such that

Pl(z,A)≥ ν(A)
2
∀z ∈W1. (3.8)

(2) Let K = {z1, . . . ,zr} ⊆W ∩U for some r ∈ N∗. We are going to show that there is a q ∈ N∗ such
that Pq(zi,W1)> 0 ∀i∈ {1, . . . ,r} . To this end, consider for i = 1, . . . ,r the sequences (X zi

t )t∈N defined
by

X zi
0 = zi and X zi

t = F(X zi
t−1,a), t ≥ 1

where a ∈ int(E) as in (A2).
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Due to assumption (A2) there is q ∈ N∗ such that X zi
q = Fq(zi,a, . . . ,a) ∈W1 ∀i ∈ {1, . . . ,r}. Since

Fq : W ∩U × (Rm)q→W ∩U is continuous, there exists for every i ∈ {1, . . . ,r} a neighbourhood Ui

of (zi,a, . . . ,a) in W ∩U× (Rm)q such that

Fq(y,y1, . . . ,yq) ∈W1∀(y,y1, . . . ,yq) ∈Ui.

Then, for all i∈ {1, . . . ,r}, Ui contains U ′i ×U i
(a,...,a) where U ′i and U i

(a,...,a) are suitable neighbourhoods
of zi in W ∩U and (a, . . . ,a) in (Rm)q, respectively.

We define U(a,...,a) :=
r⋂

i=1
U i
(a,...,a) which is clearly also a neighbourhood of (a, . . . ,a) in (Rm)q.

Then we have Fq(zi,y1, . . . ,yq) ∈W1 for all i ∈ {1, . . . ,r} and (y1, . . . ,yq) ∈ U(a,...,a). Since U(a,...,a)
contains itself Ua× . . .×Ua where Ua is an appropriate neighbourhood of a in Rm, we deduce for all
i ∈ {1, . . . ,r}:

Pq(zi,W1)≥ P((e1, . . . ,eq) ∈U(a,...,a))≥ P(e1 ∈Ua)
q = Γ(Ua)

q. (3.9)

(3) Let A ∈B(W ∩U) with ν(A) 6= 0. As in (1), W1 denotes the neighbourhood of T in W ∩U such
that Pl(z,A) ≥ ν(A)/2 for all z ∈W1. Using the Chapman-Kolmogorov equation (cf. [26] Theorem
3.4.2), we obtain for every i ∈ {1, . . . ,r}

Pq+l(zi,A) =
∫

W∩U
Pq(zi,dy)Pl(y,A)≥

∫
W1

Pq(zi,dy)Pl(y,A)
(3.8)
≥ ν(A)

2
·
∫

W1

Pq(zi,dy)

=
ν(A)

2
·Pq(zi,W1)

(3.9)
≥ Γ(Ua)

q

2
·ν(A).

Due to assumption (A2) Ua contains an open set of E. Thus Γ(Ua) > 0. This implies that the chain
(Xt)t∈N is ν - irreducible (and thus also ψ - irreducible due to [26, Proposition 4.2.2]).
(4) To show aperiodicity, we suppose the chain to be periodic with period d. Due to [26, Theorem
5.4.4] there exist disjoint sets D1, . . . ,Dd ∈B(W ∩U) such that

(i) P(z,D(i mod d)+1) = 1∀i = 1, . . . ,d and z ∈ Di and (ii) ψ((∪d
i=1Di)

c) = 0.

Since ψ � ν (cf. [26, Proposition 4.2.2]), (∪d
i=1Di)

c is also a ν - null set. Obviously there must be
a set Di with positive ν - measure, let this set be D1 without loss of generality.
Let x ∈ D1 and y ∈ Dd . For K := {x,y} we have just shown in step (3) that

Pq+l(x,D1)> 0 and Pq+l(y,D1)> 0

for some q ∈ N∗. Hence, the integers q+ l and q+ l−1 are divisible by d. Consequently d = 1.
(5) We have shown in step (3) that (Xt)t∈N is Pl(T, ·) - irreducible. Since F l(T, ·) has a smooth point
in (Rm)l (cf. proof of Proposition 3.9) Theorem 3.1 implies that Pl(T, ·) = F l(T,⊗l

i=1Γ) is absolutely
continuous with respect to the measure µW . Hence, int(supp Pl(T, ·)) 6= /0 and we also obtain that
int(supp ψ) 6= /0.

We can now state our main result for semi-polynomial Markov chains. Therefore we use the stand-
ard notation PV (x) := E[V (X1)|X0 = x] = Ex[V (X1)].

Theorem 3.11. Suppose (A1) and (A2) are valid. If in addition the Foster-Lyapunov-condition holds,
i.e. there exist a small set C ∈B(W ∩U), positive constants α < 1, b < ∞ and a function V ≥ 1 such
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that
PV (x)≤ α ·V (x)+b ·1C(x)∀x ∈W ∩U, (FL)

then the semi-polynomial Markov chain (Xt)t∈N is positive Harris recurrent and geometrically er-
godic on the algebraic variety of states W ∩U. Furthermore, the strictly stationary process (Xt)t∈Z is
geometrically β - mixing and π(V ) := E[V (Xt)]< ∞.

Proof. Due to Proposition 3.10 and the assumptions (A1) and (A2), (Xt)t∈N is ψ - irreducible and
aperiodic on (W ∩U,B(W ∩U)). We conclude by using the following Theorem 3.12.

Theorem 3.12. Let (Xt)t∈N be a ψ - irreducible Markov chain on a state space (S,B(S)) with trans-
ition probability kernel P. If the chain is aperiodic and the Foster-Lyapunov-condition holds, i.e. there
exist a small set C ∈B(S), positive constants α < 1, b < ∞ and a function V ≥ 1 such that

PV (x)≤ α ·V (x)+b ·1C(x) ∀x ∈ S,

then (Xt)t∈N is positive Harris recurrent, geometrically ergodic and the strictly stationary process
(Xt)t∈Z is geometrically β - mixing. Furthermore, π(V )< ∞.

Proof. Since the Foster-Lyapunov-condition holds, the non-negative functions V ′ :=V−1, f := 1−α

and s := b1C satisfy the assumption of Theorem B.1. Hence we obtain for the first return time to C,
denoted by τC,

Ex[τC] =
1

1−α
Ex

[
τC−1

∑
k=0

f (Xk)

]
≤ 1

1−α

(
V (x)−1+Ex

[
τC−1

∑
k=0

s(Xk)

]
︸ ︷︷ ︸

=b1C(x)

)
< ∞∀x ∈ S

and thus obviously L(x,C) = Px(τC < ∞) = 1 for all x ∈ S. Since every small set is also petite (cf. [25]
or [26]), Proposition B.2 yields Harris recurrence of (Xt)t∈N. Again the Foster-Lyapunov-condition
shows that V ′ := (1−α)−1V, f :=V and b′ := (1−α)−1b satisfy (ii) of Theorem B.3 which implies
that (Xt)t∈N is positive and π(V )<∞. It is once more the same condition that yields directly geometric
ergodicity by virtue of Theorem B.4. Finally, combining [11, Proposition 1 (1)] with (B.1) and π(V )<
∞, we deduce that the strictly stationary process (Xt)t∈Z is geometrically β -mixing.

Theorem 3.13. Suppose the setting of Theorem 3.11 and assume in addition that (A3) holds. Then the
strictly stationary process is unique.

Proof. If there is another P - invariant probability measure π ′, then supp(π ′) ⊆W ∩U due to (A3).
Since the chain (Xt)t∈N is recurrent on W ∩U (Theorem 3.11), it has at most one P - invariant prob-
ability measure on (W ∩U,B(W ∩U)) (cf. [26, Theorem 10.4.4]). Therefore the strictly stationary
solution is unique.

Remark 3.14. Note that the whole theory from algebraic geometry has only been used to prove irre-
ducibility and aperiodicity on the algebraic variety of states W ∩U . The results thereafter (Theorems
3.12 and 3.13) are consequences of the theory of Markov chains.

4. Proof of the Main Theorem 2.4

In this section we gradually prove our main result for multivariate GARCH processes, Theorem 2.4.

16



4.1. GARCH Processes as Semi-Polynomial Markov Processes

First we show that the autoregressive representation of standard GARCH processes involving the
function ϕ leads to a semi-polynomial Markov chain.

Lemma 4.1. The mapping G : S+d → S+d which maps Σ to Σ1/2 is a C1 - diffeomorphism on S++
d .

Proof. We define fd : S++
d → S++

d , X 7→ X ·X . Since every X ∈ S++
d has full rank, fd is well-defined.

We will show that fd is bijective and that, for every X ∈ S++
d , the differential d fd(X) is a linear

homeomorphism.
By [21, Theorem 7.2.6], a positive definite matrix has a unique positive definite square root. Hence

fd is bijective. Let X ∈ S++
d . The differential of fd at the point X is given by

∀H ∈ Sd d fd(X)H =
∂

∂ t
fd(X + tH)

∣∣∣∣
t=0

= HX +XH.

Our aim is to show that H = 0 whenever d fd(X)H = 0. In fact, this is a simple consequence of [29,
Theorem 1] where the solutions X of the general matrix quadratic equation 0 = A+BX +XBt−XCX
for fixed A,B,C ∈Md(R) have been analysed.

Since Xn = Σ
1/2
n εn, we thus obtain that

f : U×Rd → Rd , (Yn−1,εn) 7→ G(Σn)εn = Xn

is a C1 - map from U×Rd into Rd where U is the open set in
(
Rd(d+1)/2

)p×
(
Rd
)q defined by

U := vech(S++
d )× . . .×vech(S++

d )︸ ︷︷ ︸
p

×Rd× . . .×Rd︸ ︷︷ ︸
q

.

Due to the assumption that C and the initial values Σ0, . . . ,Σ1−p are positive definite, every Σn and
Σ

1/2
n is also positive definite and thus G(Σn) = Σ

1/2
n is always an invertible matrix. Hence, for every

Y ∈U , the map fY (·) = f (Y, ·) is linear bijective from Rd onto Rd , i.e. fY (·) is a C1 - diffeomorphism.
Moreover the map U ×Rd → Rd , (Y,ε) 7→ f−1

Y (ε) is continuous in (Y,ε) where f−1
Y (·) denotes the

inverse of fY (·).
Altogether we are thus in our setting of semi-polynomial Markov chains. For the Markovian rep-

resentation Yn of a standard GARCH(p,q) process Xn we have

Yn = F(Yn−1,εn) := ϕ(Yn−1, fYn−1(εn)︸ ︷︷ ︸
=Xn

) (4.1)

where F is a C1 - map from U ×Rd into U . Moreover, it is obvious that (2.5), (2.6) have a stationary
solution if and only if (4.1) has one.

4.2. Some Results from Linear Algebra

In this section we will show some results from linear algebra which will be necessary to establish the
Foster-Lyapunov-condition for multivariate GARCH models.
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Let n ∈ N∗ and (Fi)1≤i≤n be elements of Md(R). We set

ξ : Md(R)→Md(R), ξ (M) :=
n

∑
i=1

FiMF t
i .

This map is obviously linear. We can consider ξ a linear map from Rd2
into Rd2

using the vec operator
as follows :

vec(ξ (M)) =

( n

∑
i=1

Fi⊗Fi

)
vec(M) = Fvec(M) where F :=

n

∑
i=1

Fi⊗Fi.

Note that we have ξ (Sd)⊆ Sd , i.e. the symmetric d×d matrices are mapped into themselves by ξ .
We denote by ξ̃ the restriction of ξ to the linear subspace Sd . Using the vech operator, we obtain, for
all M ∈ Sd ,

vech(ξ̃ (M)) = vech(ξ (M)) = Hd vec(ξ (M)) = HdF vec(M) = HdFKt
d vech(M).

Since we can identify Sd via the vech operator with Rd(d+1)/2, the transformation matrix of ξ̃ is given
by

F̃ := HdFKt
d .

We obtain the following lemma:

Lemma 4.2. Let C ∈ S++
d . The following statements are equivalent:

(i) The spectral radius of ξ is less than 1.

(ii) The spectral radius of ξ̃ is less than 1.

(iii) There is Σ ∈ S++
d such that Σ =C+ξ (Σ).

Proof. (i)⇒ (ii): Obvious since ξ̃ is a restriction of ξ .
(ii)⇒ (iii): If the spectral radius of ξ̃ is less than 1, then the Neumann series ∑

∞
n=0 ξ̃ n is convergent

with respect to a suitable operator norm. We define

Σ :=
∞

∑
n=0

ξ̃
n(C). (4.2)

Clearly, Σ is symmetric. Moreover, for all M ∈ S+d , we have ξ̃ (M) ∈ S+d by the definition of ξ̃ and ξ ,
respectively. By iteration we obtain that ξ̃ n(M)∈ S+d for all n∈N∗. Thus the matrix Σ− ξ̃ 0(C) = Σ−C
is symmetric and positive semi-definite. This implies that Σ is positive definite.

Since ξ and ξ̃ coincide on Sd , we deduce Σ =
∞

∑
n=0

ξ n(C) =C+ξ

( ∞

∑
n=1

ξ n−1(C)
)
=C+ξ (Σ).

(iii)⇒ (i): Suppose that there exists Σ ∈ S++
d such that Σ =C+ ξ (Σ). We denote the complex d×d

matrices by Md(C) and the conjugate transpose of a vector x ∈ Cd by x∗. For every P ∈ Md(C) we
define

‖P‖
Σ

:= sup
x∈Cd , x∗Σ x=1

|x∗Px|

which is a norm on Md(C) since Σ ∈ S++
d .
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Then, for all x ∈ Cd , |x∗Px| ≤ ‖P‖
Σ
(x∗Σx). Since the unit sphere

{
x ∈ Cd : x∗Σx = 1

}
is compact,

there exists, for every P ∈ Md(C), a vector xp ∈ Cd such that ‖P‖
Σ
= |x∗PPxP| with x∗PΣxP = 1. Let

now λ be an eigenvalue of ξ . Then there is an M ∈Md(C), M 6= 0 such that λM = ξ (M) =
n
∑

i=1
FiMF t

i .

For every x ∈ Cd , we deduce

|λ | · |x∗Mx|=
∣∣∣∣ n

∑
i=1

x∗FiMF t
i x
∣∣∣∣≤ n

∑
i=1

∣∣(F t
i x
)∗M

(
F t

i x
)∣∣≤ ‖M‖

Σ

n

∑
i=1

x∗FiΣF t
i x = ‖M‖

Σ
x∗
( n

∑
i=1

FiΣF t
i

)
︸ ︷︷ ︸
=ξ (Σ)=Σ−C

x.

If we choose xM such that ‖M‖
Σ
= |x∗MMxM| and x∗MΣxM = 1, we obtain |λ | ≤ 1− x∗MCxM < 1 (note

that ‖M‖
Σ
6= 0). Hence the spectral radius of ξ is less than 1.

We consider now the families of matrices (Āi,k, B̄ j,r) and (Ai,B j) which occur in the BEKK and
vech representation of a standard GARCH(p,q) model, respectively.

Proposition 4.3. The spectral radius of ∑
q
i=1 Ai +∑

p
j=1 B j is less than 1 if and only if there exists

Σ ∈ S++
d such that

Σ =C+
q

∑
i=1

li

∑
k=1

Āi,kΣĀt
i,k +

p

∑
j=1

s j

∑
r=1

B̄ j,rΣB̄t
j,r. (4.3)

Proof. Define ξ : Md(R)→ Md(R) by ξ (M) =
q
∑

i=1

li
∑

k=1
Āi,kMĀt

i,k +
p
∑
j=1

s j

∑
r=1

B̄ j,rMB̄t
j,r. Then the trans-

formation matrix of ξ is

F =
q

∑
i=1

li

∑
k=1

Āi,k⊗ Āi,k +
p

∑
j=1

s j

∑
r=1

B̄ j,r⊗ B̄ j,r =
q

∑
i=1

Ãi +
p

∑
j=1

B̃ j.

Note that the transformation matrix of ξ̃ (restriction of ξ to the linear subspace Sd) is HdFKt
d =

∑
q
i=1 Ai+∑

p
j=1 B j. Due to Lemma 4.2 the spectral radius of ∑

q
i=1 Ai+∑

p
j=1 B j is less than 1 if and only

if there is Σ ∈ S++
d such that (4.3) holds.

Remark 4.4. By a simple transposition argument one can equivalently state that the spectral radius
of ∑

q
i=1 Ai +∑

p
j=1 B j is less than 1 if and only if there exists Σ ∈ S++

d such that

Σ =C+
q

∑
i=1

li

∑
k=1

Āt
i,kΣĀi,k +

p

∑
j=1

s j

∑
r=1

B̄t
j,rΣB̄ j,r

which we are going to use in the upcoming proof of Theorem 4.9.

In the following we consider the block matrix B defined as in Section 2.

Proposition 4.5. (i) If the spectral radius of the matrix ∑
p
j=1 B j is less than 1, then the one of B is

also less than 1.

(ii) If the spectral radius of the matrix ∑
q
i=1 Ai +∑

p
j=1 B j is less than 1, then the one of ∑

p
j=1 B j is

also less than 1.
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Proof. (i) Suppose that the spectral radius of ∑
p
j=1 B j is less than 1. Then there exists due to Lemma

4.2 a symmetric positive definite matrix Σ̃ ∈ S++
d such that

Σ̃ =C+
p

∑
j=1

s j

∑
r=1

B̄ j,rΣ̃B̄t
j,r. (4.4)

Let λ be an eigenvalue of B associated with the eigenvector h = (ht
1, . . . ,h

t
p)

t ∈
(
Rd(d+1)/2

)p
. Then

λh1 = ∑
p
j=1 B jh j and λh j = h j−1 for 2 ≤ j ≤ p. Thus hp 6= 0 (otherwise h would be zero) and

λ php = λ (λ p−1hp) = λh1 = ∑
p
j=1 B jh j = ∑

p
j=1 λ p− jB jhp. Let M ∈ Sd such that vech(M) = hp. Then

λ pM = ∑
p
j=1 ∑

s j
r=1 λ p− jB̄ j,rMB̄t

j,r. We define the norm ‖·‖
Σ̃

on Md(C) as in the proof of Lemma 4.2
by ‖P‖

Σ̃
:= sup

x∈Cd , x∗Σ̃ x=1
|x∗Px| , P ∈Md(C). Then, for all x ∈ Cd ,

|λ |p · |x∗Mx|=
∣∣∣∣ p

∑
j=1

s j

∑
r=1

λ
p− jx∗B̄ j,rMB̄t

j,rx
∣∣∣∣≤ p

∑
j=1

s j

∑
r=1
|λ |p− j ∣∣x∗B̄ j,rMB̄t

j,rx
∣∣

≤ ‖M‖
Σ̃

p

∑
j=1

s j

∑
r=1
|λ |p− j (x∗B̄ j,rΣ̃B̄t

j,rx).

If we assume that there is an eigenvalue λ of B with |λ | ≥ 1, then we obtain, taking the vector x such
that x∗Σ̃x = 1 and |x∗Mx|= ‖M‖

Σ̃
and using (4.4), that

|λ |p ≤
p

∑
j=1

s j

∑
r=1
|λ |p− j (x∗B̄ j,rΣ̃B̄t

j,rx)≤ |λ |
p−1

[
x∗
(

p

∑
j=1

s j

∑
r=1

B̄ j,rΣ̃B̄t
j,r

)
x

]
= |λ |p−1 [x∗ (Σ̃−C

)
x
]
= |λ |p−1 (1− x∗Cx).

Since C is symmetric positive definite, one has x∗Cx > 0. Hence, |λ |p < |λ |p−1, i.e. |λ |< 1 which is
a contradiction. Thus the spectral radius of B has to be less than 1.

(ii) Suppose that the spectral radius of the matrix ∑
q
i=1 Ai+∑

p
j=1 B j is less than 1. Then, due to Pro-

position 4.3, there exists Σ ∈ S++
d such that Σ =C+∑

q
i=1 ∑

li
k=1 Āi,kΣĀt

i,k +∑
p
j=1 ∑

s j
r=1 B̄ j,rΣB̄t

j,r. We set

C̃ :=C+∑
q
i=1 ∑

li
k=1 Āi,kΣĀt

i,k. Now, C̃ is symmetric positive definite and Σ = C̃+∑
p
j=1 ∑

s j
r=1 B̄ j,rΣB̄t

j,r.

Using again Proposition 4.3 we deduce that the spectral radius of ∑
p
j=1 B j is less than 1.

Remark 4.6. The matrix Σ̃ in (4.4) is the limit of a Neumann series (cf. proof of Lemma 4.2).Thus

vech(Σ̃) =
(

I−
p

∑
j=1

B j

)−1

vech(C).

4.3. Verification of Assumption (A2)

We will suppose throughout that (H1) holds.

Proposition 4.7. Suppose that (H2) holds. If the spectral radius of the matrix
p
∑
j=1

B j is less than 1,

then (A2) holds.
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Proof. Let U be the open set in
(
Rd(d+1)/2

)p×
(
Rd
)q defined as in Section 4.1. For arbitrary y ∈U

we define the sequence (Y y
n )n∈N by Y y

0 = y and Y y
n = F(Y y

n−1,0), n≥ 1.
We denote by Xy

n and vech(Σy
n) the associated values of Xn and vech(Σn). Since, by definition,

Xn = G(Σn)εn = Σ
1/2
n εn, we obtain that Xy

n = 0 for all n≥ 1. Due to (2.6), Σ
y
n can be written, for every

n > q, as

vech(Σy
n) = vech(C)+

p

∑
j=1

B j vech(Σy
n− j).

Thus, for all n > q and for all y ∈U ,
Y y

n = C + B̃Y y
n−1 (4.5)

where B̃ is defined as in Section 2. Due to (4.5), the assumption (A2) is satisfied with a = 0 if the

spectral radius of B is less than 1. This is the case, since the spectral radius of
p
∑
j=1

B j is supposed to be

less than 1 (cf. Proposition 4.5 (i)).

Hence, for all y ∈U , the sequence (Y y
n )n∈N converges to the unique fixed point T defined by

T = C + B̃T. (4.6)

Using Lemma 4.2 and the fact that the spectral radius of ∑
p
j=1 B j is assumed to be less than 1, there is

Σ̃ ∈ S++
d (cf. (4.4)) such that

Σ̃ =C+
p

∑
j=1

s j

∑
r=1

B̄ j,rΣ̃B̄t
j,r.

It is then easy to see that T can be written as

T =

(
vech(Σ̃)t , . . . ,vech(Σ̃)t︸ ︷︷ ︸

p

,0, . . . ,0︸ ︷︷ ︸
qd

)t

∈U. (4.7)

We set C1 := (vech(C)t ,0, . . . ,0)t ∈
(
Rd(d+1)/2

)p
. Then (4.6) yields

σ = C1 +Bσ (4.8)

where σ :=
(
vech(Σ̃)t , . . . ,vech(Σ̃)t

)t ∈
(
Rd(d+1)/2

)p
.

4.4. Verification of Assumption (A3)

If (H2) is satisfied, then E contains an open set of Rd and we obtain for the algebraic variety of states
with the same arguments as in Section 3.2.2 that

W = ZST =
Z ⋃

n∈N ∗
F n (T, E n) =

Z ⋃
n∈N ∗

F n
(
T,(Rd)

n)
=

Z ⋃
n∈N ∗

ϕn
(
T,(Rd)

n)
.
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Let n ∈N∗ and consider y(n) ∈ ϕn
(
T,(Rd)n

)
given by y(n) = ϕn(T,x1, . . . ,xn) where x1, . . . ,xn ∈Rd .

We define x(n) and σ(n) by the coordinates of y(n) as follows:

x(n) =
(
vech(xnxt

n)
t , . . . ,vech(xn−q+1xt

n−q+1)
t)t

and σ(n) =
(
vech(σn)

t , . . . ,vech(σn−p+1)
t)t

.

That is, y(n) =
(
σ(n)t ,xt

n, . . . ,x
t
n−q+1

)t . Then

σ(n+1) = C1 +Ax(n)+Bσ(n) (4.9)

where C1 and B are defined in Section 4.3 and A is given by

A :=


A1 A2 . . . Aq

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 ∈Mp d(d+1)
2 ×q d(d+1)

2
(R).

Iterating (4.9) and due to σ(0) = σ =
(
vech(Σ̃)t , . . . ,vech(Σ̃)t

)t (since y(0) = T ) we deduce

σ(n) =
n−1

∑
i=0

BiC1 +Bn
σ︸ ︷︷ ︸

(4.8)
= σ

+
n−1

∑
i=1

Bi−1Ax(n− i) = σ +
n−1

∑
i=1

Bi−1Ax(n− i).

This yields vech(σn) = vech(Σ̃)+∑
n−1
i=1 Ki vech(xn−ixt

n−i) where, for all i ∈ N∗, Ki is defined by Ki :=[
Bi−1A

]
1,1 +

[
Bi−2A

]
1,2 + . . .+

[
Bi−qA

]
1,q with the convention B0 := I, Bi := 0 if i < 0 and [M]1, j is

the d(d+1)/2×d(d+1)/2 block from lines 1 to d(d+1)/2 and from columns ( j−1)d(d+1)/2+1
to jd(d +1)/2 of M.

Thus, W is the Zariski closure of the orbit

ST =
⋃

n∈N ∗

{
y(n) : x1, . . . ,xn ∈ Rd

}
=

⋃
n∈N ∗

{
T +

(
n−1

∑
i=1

(
Ki vech(xn−ixt

n−i)
)t
, . . . ,

n−p

∑
i=1

(
Ki vech(xn−p+1−ixt

n−p+1−i)
)t
,

xt
n,x

t
n−1, . . . ,x

t
n−q+1

)t

: x1, . . . ,xn ∈ Rd

}

where x1−q = x2−q = . . .= x0 = 0 (since y(0) = T = (σ t ,0, . . . ,0)t).
In particular, this implies ϕ(W ∩U ×Rd) ⊆W ∩U (cf. (F2)), because ϕ(U ×Rd) ⊆U and ϕ(ST ×
Rd)⊆ ST yields

ϕ(W ∩U×Rd)⊆ ϕ

(
ZST ×Rd

)
⊆ Z

ϕ
(ZST ×Rd

)
= Z

ϕ(ST ×Rd)⊆ ZST =W,

since ϕ is a regular map and thus continuous with respect to the Zariski topology.

Theorem 4.8. Suppose that (H2) holds and that there is a strictly stationary solution (Xn)n∈Z for the
standard GARCH(p,q) model, then the process (Yn)n∈Z takes its values in the algebraic variety of
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states W ∩U. Moreover, one has

vech(Σn) =

(
I−

p

∑
j=1

B j

)−1

vech(C)+
∞

∑
i=1

Ki vech(Xn−iX t
n−i).

Proof. Let (Xn)n∈Z be a strictly stationary solution of the standard GARCH(p,q) model with condi-
tional covariance matrices Σn. We denote by X(n) and Σ(n) the following random vectors:

X(n) =
(
vech(XnX t

n)
t , . . . ,vech(Xn−q+1X t

n−q+1)
t)t

and Σ(n) =
(
vech(Σn)

t , . . . ,vech(Σn−p+1)
t)t

.

Since Σ(n) = C1 +AX(n−1)+BΣ(n−1) (cf. (4.9)), iterating yields

Σ(n) =
k−1

∑
i=0

BiC1 +Bk
Σ(n− k)+

k

∑
i=1

Bi−1AX(n− i) (4.10)

for all k ∈ N.
Now for any M =(vech(M1)

t , . . . ,vech(Mp)
t)t and N =(vech(N1)

t , . . . ,vech(Np)
t)t in (Rd(d+1)/2)p,

let us denote M ≥ N if and only if M1 ≥ N1, . . . ,Mp ≥ Np (where, for all Mi,Ni ∈ Sd , Mi ≥ Ni ⇔
Mi−Ni ≥ 0⇔Mi−Ni positive semi-definite). This defines a partial order on (Rd(d+1)/2)p.

Then (4.10) yields Σ(n)≥ ∑
k−1
i=0 BiC1. Since Σ(n) is finite the series ∑

k−1
i=0 BiC1 converges as k→ ∞

(see for instance [33] for further details concerning partially ordered topological spaces; in particular
the Corollary after Lemma 5 proves that our series must converge). Setting σ̃ := ∑

∞
i=0 BiC1, it is easy

to see that σ̃ = C1 +Bσ̃ . Using the definitions of B and C1, we obtain that σ̃ = (σ t
1,σ

t
1, . . . ,σ

t
1)

t for
some σ1 ∈Rd(d+1)/2 which fulfils σ1 = vech(C)+∑

p
j=1 B jσ1. One may then verify that σ1 = vech(Σ1)

for some Σ1 ∈ S++
d and hence that the spectral radius of ∑

p
j=1 B j is less than 1 (cf. Proposition 4.3).

Due to Proposition 4.5 (i) we obtain that the spectral radius of B is also less than 1. Thus σ̃ = σ .
Next, since the spectral radius of B is less than 1, the sequence (Bk)k∈N converges to zero as k→∞.

The random vectors (Σ(n− k))k∈N have a constant law because (Xn)n∈Z is supposed to be a strictly
stationary solution of the GARCH model. Thus BkΣ(n− k) converges to zero in probability when
k→ ∞.

With an analog argument as for ∑
k−1
i=0 BiC1 one can see that ∑

k
i=1 Bi−1AX(n− i) converges almost

surely as k→ ∞. Hence, taking the limit of (4.10) yields

Σ(n) = σ +
∞

∑
i=1

Bi−1AX(n− i) a.s.

Using the matrices Ki, defined during the investigation of the variety of states W , we obtain

vech(Σn) = vech(Σ̃)+
∞

∑
i=1

Ki vech(Xn−iX t
n−i) a.s.

This shows that (Yn)n∈Z takes its values in the variety W and hence in W ∩U . Note that the strictly
stationary solution is causal. To finish the proof we refer to Remark 4.6 from which we obtain
vech(Σ̃) = (I−∑

p
j=1 B j)

−1 vech(C).
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4.5. Foster - Lyapunov Condition (FL)

We now derive a function V satisfying the Foster-Lyapunov-condition provided that the spectral radius
of ∑

q
i=1 Ai +∑

p
j=1 B j is less than 1. That is, we prove the following theorem:

Theorem 4.9. Suppose that the spectral radius of the matrix ∑
q
i=1 Ai +∑

p
j=1 B j is less than 1. Then

there exist a function V : U → [1,∞) and positive constants α < 1, b < ∞ as well as a Borel set K in
W ∩U such that the (FL) - condition is satisfied, i.e. there are positive constants α < 1, b < ∞ such
that

PV (x)≤ α ·V (x)+b ·1K(x)∀x ∈W ∩U.

Proof. For notational convenience we suppose that in the BEKK representation (2.4) li = s j = 1 for
all i = 1, . . . ,q and j = 1, . . . , p, since the extension to general li,s j 6= 1 is obvious and trivial. We set
Āi := Āi,1 and B̄ j := B̄ j,1. That is, we have

Σn =C+
q

∑
i=1

ĀiXn−iX t
n−iĀ

t
i +

p

∑
j=1

B̄ jΣn− jB̄t
j. (4.11)

If the spectral radius of the matrix ∑
q
i=1 Ai +∑

p
j=1 B j is less than 1, then, due to Proposition 4.3 and

Remark 4.4, there exists Σ ∈ S++
d such that Σ =C+∑

q
i=1 Āt

iΣĀi +∑
p
j=1 B̄t

jΣB̄ j.
We define the map V : U → [1,∞) by

V (Yn) := tr(V1Σn)+ . . .+ tr(VpΣn−p+1)+X t
nVp+1Xn + . . .+X t

n−q+1Vp+qXn−q+1 +1

where tr( · ) denotes the trace of a matrix and the d×d matrices (Vi)1≤i≤p+q are given by

Vk :=
p− k+1

p+q
C+

p

∑
j=k

B̄t
jΣB̄ j, 1≤ k ≤ p

Vp+k :=
q− k+1

p+q
C+

q

∑
i=k

Āt
iΣĀi, 1≤ k ≤ q.

Setting y =
(
vech(Σn−1)

t , . . . ,vech(Σn−p)
t ,X t

n−1, . . . ,X
t
n−q
)t ∈U we obtain

E[V (Yn)|Yn−1 = y] =E
[
tr(V1Σn)+X t

nVp+1Xn|Yn−1 = y
]
+ tr(V2Σn−1)+ . . .+ tr(VpΣn−p+1)

+X t
n−1Vp+2Xn−1 + . . .+X t

n−q+1Vp+qXn−q+1 +1. (4.12)

Using (4.11) for Σn, we deduce for the first term at the right hand side

E
[
tr(V1Σn)+X t

nVp+1Xn|Yn−1 = y
]

= E
[
X t

nVp+1Xn|Yn−1 = y
]
+ tr(V1C)+ tr(V1Ā1Xn−1X t

n−1Āt
1)+ . . .+ tr(V1ĀqXn−qX t

n−qĀt
q)

+ tr(V1B̄1Σn−1B̄t
1)+ . . .+ tr(V1B̄pΣn−pB̄t

p)

= E
[
X t

nVp+1Xn|Yn−1 = y
]
+ tr(V1C)+X t

n−1Āt
1V1Ā1Xn−1 + . . .+X t

n−qĀt
qV1ĀqXn−q

+ tr(B̄t
1V1B̄1Σn−1)+ . . .+ tr(B̄t

pV1B̄pΣn−p).
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Since Xn = Σ
1/2
n εn, Σ

1/2
n Σ

1/2
n = Σn and E[εnε t

n] = Id , we obtain

E
[
X t

nVp+1Xn|Yn−1 = y
]
= E

[
tr(Xn(Vp+1Xn)

t)|Yn−1 = y
]

= tr
(
E
[
XnX t

nVp+1|Yn−1 = y
])

= tr
(
E
[
XnX t

n|Yn−1 = y
]
Vp+1

)
= tr(ΣnVp+1)

= tr(Vp+1C)+ tr(Vp+1Ā1Xn−1X t
n−1Āt

1)+ . . .+ tr(Vp+1ĀqXn−qX t
n−qĀt

q)

+ tr(Vp+1B̄1Σn−1B̄t
1)+ . . .+ tr(Vp+1B̄pΣn−pB̄t

p)

= tr(Vp+1C)+X t
n−1Āt

1Vp+1Ā1Xn−1 + . . .+X t
n−qĀt

qVp+1ĀqXn−q

+ tr(B̄t
1Vp+1B̄1Σn−1)+ . . .+ tr(B̄t

pVp+1B̄pΣn−p).

Hence, (4.12) can be rewritten as

E[V (Yn)|Yn−1 = y]

= tr
[(

B̄t
1(V1 +Vp+1)B̄1 +V2

)
Σn−1

]
+ . . .+ tr

[(
B̄t

p−1(V1 +Vp+1)B̄p−1 +Vp
)

Σn−p+1
]

+ tr
[
B̄t

p(V1 +Vp+1)B̄pΣn−p
]
+X t

n−1
(
Āt

1(V1 +Vp+1)Ā1 +Vp+2
)

Xn−1 + . . .

+X t
n−q+1

(
Āt

q−1(V1 +Vp+1)Āq−1 +Vp+q
)

Xn−q+1 +X t
n−qĀt

q(V1 +Vp+1)ĀqXn−q

+ tr[(V1 +Vp+1)C]+1.

By definition of Vi, we deduce

B̄t
k(V1 +Vp+1)B̄k +Vk+1 =Vk−

C
p+q

, 1≤ k ≤ p−1

B̄t
p(V1 +Vp+1)B̄p =Vp−

C
p+q

Āt
k(V1 +Vp+1)Āk +Vp+k+1 =Vp+k−

C
p+q

, 1≤ k ≤ q−1

Āt
q(V1 +Vp+1)Āq =Vp+q−

C
p+q

.

Furthermore, Vk is symmetric positive definite for all k = 1, . . . , p+ q which implies that Vk− C
p+q is

symmetric positive semi-definite for all k = 1, . . . , p+q.
Consider the non-negative constants (αk)1≤k≤p+q defined by

αk := max
{

xt
(

Vk−
C

p+q

)
x : x ∈ Rd , xtVkx = 1

}
.

Since the maximum is calculated over the unit sphere with respect to the induced norm by Vk and
since this unit sphere is compact, there exists xk ∈ Rd such that xt

kVkxk = 1 and

αk = xt
k

(
Vk−

C
p+q

)
xk = 1− xt

k
C

p+q
xk.

The matrices Vk, k = 1, . . . , p+ q, and C
p+q are positive definite which yields 0 ≤ αk < 1 for all k =

1, . . . , p+q.
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Setting α0 := max{αk : k = 1, . . . , p+q} we obtain 0≤ α0 < 1 and

Vk−
C

p+q
≤ α0Vk ∀k ∈ {1, . . . , p+q} .

Hence, for all M ∈ S++
d and all k ∈ {1, . . . , p+q},

tr
[(

Vk−
C

p+q

)
M
]
≤ α0 tr(VkM).

We deduce E[V (Yn)|Yn−1 = y]≤ α0V (y)+ tr(ΣC)+1−α0.
If we choose α := (α0+1)/2∈ [1/2,1) and b := tr(ΣC)+1−α0 ∈ (0,∞), then the (FL) - condition

is satisfied with the set K given by

K :=
{

x ∈W ∩U : V (x)≤ b
α−α0

}
.

4.6. Proof of Theorem 2.4

Now we can prove our stationarity and ergodicity result for standard GARCH(p,q) processes. The
main remaining problem is that K is not compact and, hence, it is somewhat tricky to prove that it is
small.

Proof of Theorem 2.4 . (i) Since due to Proposition 4.5 (ii) the spectral radius of ∑
p
j=1 B j is also less

than 1, Proposition 4.7 and Theorem 4.8 imply that (A2) and (A3) hold. Using then Proposition 3.10
we deduce that (Yn)n∈N ∗ is ψ-irreducible and aperiodic on the state space (W ∩U,B(W ∩U)).

Define UC =
(
vech({x ∈ S++

d : x≥C})
)p× (Rd)q which is a closed set and a proper subset of U .

Then we have by inspecting the iteration that Yk ∈W ∩UC for all Y0 ∈W ∩U and k ∈N, k≥ p. By the
way, T ∈UC by (4.7). By condition (H3), Theorem 4.9 ensures the existence of a function V which
fulfils the (FL) - condition on the set K. Now we show that K is small.

Det K1 = K ∩Uc
C and K2 = K\K1. Using the self-duality of the cone of positive semi-definite

matrices, it is straightforward to see that V maps unbounded (with respect to norms on (Rd(d+1)/2)p×
(Rd)q) subsets of U to unbounded subsets of R+ and thus K is a bounded subset of U . Inspecting the
iteration defining the GARCH processes further we see that Yp is not only in W ∩UC when Y0 ∈ K1,
but necessarily also in a compact set K̃ ⊆W ∩UC conditional on ‖εi‖ ≤ η for i = 1,2, . . . , p and a
fixed η > 0. W.l.o.g. one can assume K̃ ⊇ K2. This implies Pp(x, K̃)≥ P(‖ε1‖ ≤ η)p =: ζ > 0 for all
x ∈ K1 due to (H2).

Moreover, the Markov chain (Yn)n∈N ∗ has the Feller property, as an elementary and standard dom-
inated convergence argument shows, and supp ψ has non-empty interior (see Proposition 3.10).
Thus, [26, Proposition 6.2.8] shows that K̃ is petite (see [25]), i.e. there is a non-degenerate meas-
ure ν on B(W ∩U) and a probability measure a on N∗ such that ∑

∞
i=1 a({i})Pi(x,B) ≥ ν(B) for all

x ∈ K̃ and Borel sets B⊆W ∩U . Using Chapman-Kolmogorov this implies 0.5∑
∞
i=1 a({i})Pi(x,B)+

0.5∑
∞
i=p+1 a({i− p})Pi(x,B) ≥ 0.5ζ ν(B) for all x ∈ K̃ ∪K1 and Borel sets B ⊆W ∩U . Thus K̃ ∪K1

is petite. Since K ⊆ K̃∪K1, also K is petite and thus small by [26, Theorem 5.5.7].
Applying Theorem 3.11 and Theorem 3.13 we obtain the claimed positive Harris recurrence, geo-

metric ergodicity as well as geometric β -mixing and π(V )< ∞ for the stationary distribution π .
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Let (Xn)n∈Z now be the unique stationary GARCH process. Then π(V )< ∞ implies

E[X t
nVp+1Xn]≤ E[V (Yn)] = π(V )< ∞∀n ∈ Z

by definition of V (cf. proof of Theorem 4.9). This shows that Xn ∈ L2 for all n ∈ Z.
Since E[Σn] = E[XnX t

n], we deduce E[Σn]< ∞. Using the diagonal dominance property of a positive
semi-definite matrix (|mi j| ≤ 0.5(mii +m j j) for M = (mi j)1≤i, j≤d ∈ S+d ), this implies Σn ∈ L1 for all
n ∈ Z.

(ii) We now assume that there is a weakly stationary solution for the standard GARCH(p,q) model.
Then Σ := E[XnX t

n] is well-defined. Since Σ = E[Σn], taking the expectation in (2.4) on both sides
yields

Σ =C+
q

∑
i=1

li

∑
k=1

Āi,kΣĀt
i,k +

p

∑
j=1

s j

∑
r=1

B̄ j,rΣB̄t
j,r.

Due to Proposition 4.3 the spectral radius of the matrix (∑
q
i=1 Ai +∑

p
j=1 B j) has to be less than 1.

Note that the proof shows that π is concentrated on W ∩UC, so in the stationary regime the GARCH
covariance matrices are always bigger than or equal to C.

A. Algebraic Geometry

In this appendix we summarise the necessary details of algebraic geometry to understand the statement
of our main result. For more details and comprehensive treatments we refer to [4, 28].

We denote by R[X1, . . . ,Xn] the polynomial ring in n variables formed from the set of polynomials
in the variables X1, . . . ,Xn with coefficients in the field R.

Definition A.1. (i) A subset V ⊆ Rn is called semi-algebraic if it admits some representation of
the form

V =
s⋃

i=1

ri⋂
j=1

{
x ∈ Rn : Pi, j(x) ∼i j 0

}
,

where, for all i = 1, . . . ,s and j = 1, . . . ,ri,

(a) ∼i j ∈ {>,=,<}
(b) Pi, j(X) ∈ R[X ], X = (X1, . . . ,Xn).

(ii) A subset V ⊆ Rn is called algebraic if it can be represented as

V = {x ∈ Rn : P1(x) = . . .= Pk(x) = 0}

where k ∈ N∗ and Pi(X) ∈ R[X1, . . . ,Xn] for all i = 1, . . . ,k.

Remark A.2. Real algebraic sets can be represented by one single polynomial, namely, if V =
{P1 = . . .= Pk = 0}, then we can take P := P2

1 + . . .+P2
k .

Definition A.3 (“Zariski topology”). The topology over Rn for which the algebraic sets in Rn are the
closed sets is called the Zariski topology.

Remark A.4. (i) The Zariski topology is not Hausdorff (i.e. it does not separate points).
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(ii) Every Zariski closed set in Rn is also closed in the usual topology on Rn. Thus, the usual
topology is finer than the Zariski topology.

(iii) We define the Zariski closure of a set A by ZA :=
⋂

B Zariski closed
B⊇A

B.

Definition A.5. An algebraic set V ⊆ Rn is said to be irreducible if it cannot be decomposed as
V =V1∪V2, where both V1 and V2 are algebraic sets and V1 6=V and V2 6=V .
If V is an irreducible algebraic set, it is also called algebraic variety.

Definition A.6. Let V ⊆ Rn be an algebraic variety and define the ideal of V by

I(V ) := {P ∈ R[X1, . . . ,Xn] : P(x) = 0 ∀x ∈V} .

It is an easy consequence of the Hilbert Basis Theorem (cf. for example [23]) that the ideal I(V ) has to
be finitely generated, i.e. there exist l ∈N∗ and Q1, . . . ,Ql ∈ I(V ) such that I(V ) is the ideal generated
by these polynomials. We then call

ρ(V ) := sup
x∈V

rank
(

∂Qi

∂x j
(x)
)

1≤ i≤ l
1≤ j ≤ n

the rank of the ideal I(V ).
A point x0 ∈ V is said to be a regular point of V if ρ(V ) = rank

(
∂Qi
∂x j

(x0)
)

1≤ i≤ l
1≤ j ≤ n

. Otherwise x0 is

called a singular point of V . We write R(V ) to denote the set of regular points of V and S (V ) for the
set of singular points.

A natural class of maps are those such that preimages of algebraic sets are again algebraic, i.e. maps
which are continuous with respect to the Zariski topology.

Definition A.7. Let V ⊆ Rn and W ⊆ Rm be algebraic varieties. Then f : V →W is said to be a
regular map, if all its components ( fi)1≤i≤m are regular functions, i.e., for all i = 1, . . . ,m, there exist
Pi,Qi ∈ R[X1, . . . ,Xn] such that

V ∩{x ∈ Rn : Qi(x) = 0}= /0 and fi(x) =
Pi(x)
Qi(x)

∀x ∈V.

Proposition A.8. Let V ⊆ Rn, W ⊆ Rm be algebraic varieties and f : V →W a regular map. Then f
is continuous with respect to the Zariski topology.

B. Theory of Markov Chains

In this appendix we recall the theorems for Markov chains used in the proof of Theorem 3.12. To this
end let (Xt)t∈N be a Markov chain on the state space (S,B(S)) with transition probability kernel P.

Theorem B.1 (cf. [26], Theorem 14.2.2).
Suppose that the non-negative functions V, f , s satisfy the relationship

PV (x)≤V (x)− f (x)+ s(x)∀x ∈ S,
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then, for each x ∈ S and any stopping time τ , we have

Ex

[
τ−1

∑
k=0

f (Xk)

]
≤V (x)+Ex

[
τ−1

∑
k=0

s(Xk)

]
.

Proposition B.2 (cf. [26], Proposition 9.1.7 (ii)).
Suppose that (Xt)t∈N is ψ-irreducible. If there exists some petite set C ∈B(S) such that L(x,C) = 1
for all x ∈ S, then (Xt)t∈N is Harris recurrent.

Theorem B.3 (cf. [26], Theorem 14.0.1).
Suppose that the chain (Xt)t∈N is ψ-irreducible and aperiodic and let f ≥ 1 be a function on S. Then
the following conditions are equivalent:

(i) The chain is positive recurrent with invariant probability measure π and

π( f ) =
∫

S
π(dx) f (x)< ∞.

(ii) There exist some petite set C ∈B(S), a positive constant b < ∞ and some extended-valued non-
negative function V satisfying V (x0)< ∞ for some x0 ∈ S and

∆V (x) := PV (x)−V (x)≤− f (x)+b1C(x)∀x ∈ S.

Theorem B.4 (cf. [26], Theorem 15.0.1).
Suppose that the chain (Xt)t∈N is ψ-irreducible and aperiodic. If there exist a petite set C ∈B(S),
constants b < ∞, β > 0 and an extended-valued function V ≥ 1 finite at some x0 ∈ S satisfying

∆V (x)≤−βV (x)+b1C(x)∀x ∈ S,

then there exist r > 1, R < ∞ such that for any x ∈ {y ∈ S : V (y)< ∞}

∞

∑
n=1

rn ‖Pn(x, · )−π‖V ≤ RV (x) (B.1)

with ‖µ‖V := sup
g: |g|≤V

|µ(g)| for any signed measure µ defined on (S,B(S)).
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