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This paper considers a utility maximization and optimal asset allocation problem in the presence of a

stochastic endowment that cannot be fully hedged through trading in the financial market. We rely on the

dynamic programming approach to solve the optimization problem. The properties of the value function,

particularly the homogeneity, are used to reduce the HJB equation by one dimension. Furthermore, the

optimal strategy is derived, and its asymptotic behavior is discussed.
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In the present paper, we analyze the utility maximization or optimal investment problem of an

economic agent under stochastic endowments for a finite time period. We deal with an incomplete

market setting because the endowment risk is not perfectly correlated with the traded assets in the

market. A specific example to motivate our approach would be an economic agent who receives

random salaries during her working life and invests her initial wealth and a fixed proportion of

the salary, optimizing the utility of her wealth at the retirement age. Another example could be

a pension fund which receives random contributions from the members of the pension fund and

invests to generate cash flows. In fact, the original idea of the paper arises from the study of

defined contribution (DC) pension plans. This kind of pension schemes has become more popular

and are substituting defined benefit pension plans.

The problem of maximizing the expected utility of an economic agent by investment and/or

consumption dates back to Merton (1969) and Merton (1971) and is further studied e.g. in Cuoco

(1997); Duffie et al. (1997); El Karoui and Jeanblanc-Picqué (1998); Koo (1998), just to quote

a few. Such problems have originally been solved by the dynamic programming approach which
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requires the assumption of Markovianity on the state process and leads to a Hamilton-Jacobi-

Bellman (HJB) equation. In the literature, this approach is called primal approach. In the 1980s,

researchers developed an alternative approach, the so called dual approach where the assumption

of Markovian asset prices can be relaxed to solve the optimal investment problem. In a complete

market setting the dual method has been studied e.g. in Cox and Huang (1989); Pliska (1986) and

in an incomplete market setting e.g. by He and Pearson (1991a) and He and Pearson (1991b).

Our paper considers an optimal asset allocation problem under power utility and solves it

via the classical HJB approach, taking account of exogenous stochastic endowments. Focusing

on a special class of strictly positive endowments, namely the ones following a (possibly) time-

inhomogeneous geometric Brownian motion, we exploit the properties of the value function of the

studied control problem, particularly the homogeneity, to reduce its dimension. The reduction in

the dimension of the problem will e.g. make finite difference methods easier to apply in order to

numerically compute the value function and the corresponding optimal strategy. Furthermore, we

do not assume that the value function belongs to the class C1,2 and study the viscosity solutions to

the HJB equation associated to our control problem. Relying on the theory of viscosity solutions,

we are also able to study the asymptotic behavior of the value function and of the optimal strategy

when the initial capital invested grows to infinity. The optimal strategy turns out to converge to

the famous Merton ratio, i.e. to the optimal asset holding when there is only an initial wealth and

no additional endowments over time.

The idea of incorporating a stochastic endowment in the classical utility maximization prob-

lem is indeed not new. Both dual and primal approaches (sometimes combined with Backward

Stochastic Differential Equation (BSDE) techniques) are adopted to solve this optimization prob-

lem. Most of the papers in this field restrict themselves however to the analytically more nicely

treatable case of exponential utility functions (among several others Davis (2006) and Hu et al.

(2005)). Some authors deal also with the problem of maximizing the expected power utility from

the terminal wealth in the presence of exogenous endowments. In Cvitanić et al. (2001), the

problem is solved via duality for a broad class of utility functions under the assumption that the

random endowment is bounded. The existence and uniqueness of an optimal control are proven,

but an explicit representation of the optimal strategy is subordinated to the decomposition of

the elements of (L∞)∗ into a regular and a singular part, which is hard to characterize explicitly.

The authors of Hugonnier and Kramkov (2004) overcome the problem and relax the hypothesis of

boundedness, by introducing the number of random endowments as a new control variable. Horst

et al. (2014) extends the approach of Hu et al. (2005) to the case of power utility functions, based

on the martingale optimality principle combined with BSDE methods. They reduce the problem

to the solution of a fully-coupled forward-backward stochastic differential equation, which is still

not easy to solve. The most closely related to our paper is Duffie et al. (1997), in which the

expected HARA utility from consumption is optimized in an infinite-time horizon and it yields an

elliptic HJB equation, not depending on time. We adopt their techniques to our different setting

in which the expected utility of the terminal wealth is optimized. We adjust their methods, devel-
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oped in the elliptic case (infinite-time horizon), to the parabolic case (finite-time horizon) and allow

for a slightly broader class of random endowments, allowing for (possibly) time-varying coefficients.

The remainder of the paper is organized as follows. Section 1 describes the model setup and

particularly describes the endowment process. In Section 2, we develop some dimension-reduction

methods for the value function. In Section 3, we study the asymptotic behavior of the optimal

strategy, as the initial investment approaches infinity. Section 4 concludes the paper and provides

some perspectives for future research.

1 The model

On a fixed filtered probability space (Ω,F , {Ft}t∈[0,T ],P), satisfying the usual hypotheses, consider

a financial market consisting of a riskless and a risky asset. From now on let T be a fixed finite

time point.

(S0, S1) will denote respectively the savings account and the risky asset, and we assume that the

two assets follow a Black-Scholes model:

dS0
t = rS0

t dt,

dS1
t = µS1

t dt+ σS1
t dW 1

t ,

where µ, r ∈ R, σ > 0 and W 1 is a Brownian motion on the above mentioned filtered space.

Assume that there is another process c with stochastic dynamics driven by another Brownian

motion WC on the same space, correlated with W 1 with a correlation coefficient ρ ∈ (−1, 1). So,

there is a Brownian motion W 2, independent of W 1 such that WC = ρW 1 +
√

1− ρ2W 2.

The process ct describes a random endowment or income, with the following dynamics:

dct = µC(t)ct dt+ σC(t)ct dWC
t , (1.1)

where µC : [0, T ]→ R, σC : [0, T ]→ R+ are deterministic càdlàg functions.

Remark 1.1. Time-homogeneous geometric Brownian motions are sometimes chosen in the litera-

ture to model the behavior of a stochastic income (see Sundaresan and Zapatero (1997)). Thinking

of the example of a DC pension scheme, we can interpret the process c as a diffusion income, or

rather a proportion of it possibly changing over time, which is paid continuously into the pension

fund.

From an analytical point of view, the fundamental feature of this family is that the value function

of the optimization problem we are going to introduce turns out to be homogenous in the spatial

variables. This will be the crucial property to achieve a reduction in the dimension of the problem.

We assume that the agent invests at any time t a proportion πt of the wealth in the stock S1

and 1−πt in the bond S0 with interest rate r. In addition, the random income is paid continuously

to the account at rate ct.

We will often talk about a “strategy” meaning by this the pair (1− π, π).
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The wealth process corresponding to the strategy π, {Aπt }t∈[0,t], has the following dynamics:

dAπt =
Aπt πt
S1
t

dS1
t +

Aπt (1− πt)
S0
t

dS0
t + ct dt, (1.2)

and hence, defining θ := µ−r
σ , for an initial wealth x ∈ R+ we get{
dAπt = [Aπt (πtσθ + r) + ct] dt+Aπt πtσ dW 1

t ,

Aπ0 = x.
(1.3)

This definition reflects the fact that the only allowed additional cash injections to the fund are due

to the continuous payments at rate ct.

A progressively measurable process π is said to be admissible, if it takes values in a fixed closed

convex subset A of R,
∫ T

0
|πs|2 ds <∞ a.s. and Aπt ≥ 0 for every t ∈ [0, T ]. We denote by A the

set of all admissible strategies.

We assume that A is compact, as it is common in the HJB approach.

Remark 1.2. The square-integrability condition ensures the existence and uniqueness of a solution

for Equation (1.3).

Remark 1.3. In the definition of admissibility, one usually has to ensure that the wealth process

never becomes negative. Under our assumption, the wealth process stays positive without any

extra requirement on the admissible strategies, since the contribution process is always positive.

It is worth mentioning that this assumption also reflects the fact that withdrawals do not occur.

2 The stochastic optimization problem: an HJB approach

Recall that the driving Brownian motion WC represents the uncertainty in the income, which is

supposed not to be traded in the market. This makes the market incomplete and we are then

facing the problem of maximizing the expected utility of an investment in an incomplete market.

More precisely, we are looking for an optimal investment strategy π∗ such that

E
[
U(Aπ

∗

T )
]

= sup
π∈A

E [U(AπT )] ,

where U : R→ R+ is a CRRA power utility function and A is the set of admissible strategies, i.e.

for a risk aversion parameter γ < 1, γ 6= 0,

U(x) =
xγ

γ
.

The power utility is abundantly used in both theoretical and empirical research because of its

nice analytical tractability. Most importantly, the use of the power utility is also well-motivated

economically, since the long-run behavior of the economy suggests that the long run risk aversion

cannot strongly depend on wealth, see Campbell and Viceira (2002).
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The agent wants to maximize the expected utility from the terminal wealth at the final time

T , and thus the value function of the utility maximization problem is given by

v(t, x, y) := sup
π∈A

E
[
U(Aπ,t,x,yT )

]
, (t, x, y) ∈ [0, T ]× [0,+∞)× (0,+∞), (2.1)

where we are taking as controlled process the pair Xπ = (Aπ, c), and the notation Aπ,t,x,y stands

for the first coordinate of the process Xπ starting from the point (x, y), respectively the initial

wealth and the initial endowment, at time t.

Note that the process c actually does not depend on the control π, nor on the initial wealth. We

will therefore write sometimes ct,y for cπ,t,x,y. Applying well-known results in stochastic control,

see e.g. Pham (2009) Chapter 3, we can write down the HJB equation for the value function of

our control problem:

− vt = sup
π∈A

{
[x(πσθ + r) + y] vx + µC(t)yvy +

1

2
(πσx)2vxx +

1

2
σ2
C(t)y2vyy + ρσσC(t)yπxvxy

}
,

(2.2)

v(T, x, y) = U(x), ∀(x, y).

Here, and in the following, we will denote the partial derivatives by subscripts, and often omit the

argument of the function in the equations.

2.1 Some properties of the value function

Proposition 2.1. The value function v(t, x, y) is increasing, concave, and hence continuous in

the interior of the domain, in the second variable.

Proof. The proof works along standard lines (cf. e.g. Section 3.6.1 in Pham (2009)).

Fix 0 < x1 < x2, 0 < t < T and y > 0. Define Bs := Aπ,t,x2,y
s − Aπ,t,x1,y

s for s > t. The process B

hence satisfies

dBs = Bs(πsθσ + r) ds+ πsBsσ dW 1
s .

Since x2 − x1 > 0 is the initial condition at time t, it follows that Bs ≥ 0 a.s. and hence

Aπ,t,x2,y
s ≥ Aπ,t,x1,y

s for every s > t. For the utility function U is increasing, it also holds a.s. that

U(Aπ,t,x2,y
T ) ≥ U(Aπ,t,x1,y

T ),

and ∀π ∈ A
E
[
U(Aπ,t,x2,y

T )
]
≥ E

[
U(Aπ,t,x1,y

T )
]
.

This implies that v(t, x1, y) < v(t, x2, y), i.e. that the value function is monotonically increasing

in the second variable.

To see that it also fulfills the second property claimed, fix again 0 < t < T and let x1, x2 > 0 and

π1, π2 ∈ A, and denote by Ai := Aπ
i,t,xi,y, i = 1, 2. For λ ∈ [0, 1] write xλ := λx1 + (1− λ)x2, and
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Aλ := λA1 + (1− λ)A2. Now, the strategy

πλs :=
λA1

sπ
1
s + (1− λ)A2

sπ
2
s

Aλs

is in A for the set A is convex.

Moreover, the dynamics of the process Aλ are given by

dAλs = Aλs (πλs θσ + r) ds+ ct,ys ds+Aλsπ
λ
s σ dW 1

s ,

Aλt = xλ.

This shows that Aλ is a wealth process starting from xλ at t and controlled by πλ. Using the

concavity of the utility function, we get that

U(AλT ) = U(λA1
T + (1− λ)A2

T ) ≥ λU(A1
T ) + (1− λ)U(A2

T ),

and hence

v(t, λx1 + (1− λ)x2, y) ≥ λv(t, x1, y) + (1− λ)v(t, x2, y).

Lemma 2.2. The value function (2.1) is homogeneous in (x, y) with degree γ, and therefore there

exists a function u : [0, T ]× [0,+∞)→ R such that v can be represented in a separable form as

v(t, x, y) = yγu

(
t,
x

y

)
, ∀y > 0. (2.3)

Proof. First recall that, under the assumptions of our model, for every fixed strategy π the wealth

process A := Aπ has dynamics given in (1.3) by{
dAt = [At (πtσθ + r) + ct] dt+Atπtσ dW 1

t ,

A0 = x.

and observe that the explicit solution to this equation is given as (see, e.g., Protter (2004), Ch. V,

Theorem 52):

At,x,ys =

(
x+

∫ s

t

ct,yu
Zu

du

)
Zs,

where Z is a stochastic exponential factor given as:

Zs := exp

{∫ s

t

[
(πuσθ + r)− 1

2
(πuσ)2

]
du+

∫ s

t

σπu dW 1
u

}
.

It holds

ct = c0E(P )t, Pt =

∫ t

0

µC(s) ds+

∫ t

0

σC(s) dWC
s .

The formula above implies the linearity property of the endowment process with respect to the
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initial data, and the process c has hence the property that ct,kys = kct,ys .

Now, it is straightforward to check homogeneity. Indeed, for every k > 0 we have:

v(t, kx, ky) = sup
π∈A

E
[
U(Aπ,t,kx,kyT )

]
= sup
π∈A

E

[
(kAπ,t,x,yT )γ

γ

]
= kγv(t, x, y).

This implies that we can define a function u : [0, T ]× [0,+∞)→ [0,+∞) by

u(t, z) := v(t, z, 1),

and then, for every y > 0, we will have that

v(t, x, y) = yγu

(
t,
x

y

)
.

2.2 A reduced equation for the control problem

We can now use the homogeneity property to reduce the problem by one dimension. This technique

is used already in Duffie et al. (1997) to deal with the problem of optimization of consumption in

presence of a random income modelled as a GBM. All results in the following are basically obtained

by extending the methods in Duffie et al. (1997) to the parabolic case. In that work, the problem of

maximizing the utility from consumption is considered over an infinite time horizon, which yields

an elliptic HJB equation, not depending on time. We consider here the problem of maximizing

the utility of the terminal wealth in a finite time horizon (time-dependent HJB equation), and

allow for a slightly more general class of random endowments, since we allow for time-dependent

coefficients in the GBM.

The assumption that the value function belongs to the class C1,2 is too demanding in the

general case. We hence look for a characterization of the value function which uses the well-known

property of the value function being a viscosity solution of the HJB equation associated to the

control problem (see, e.g., Chapter 4 of Pham (2009)). We refer to Crandall et al. (1992) for the

definition of (and all important results on) viscosity solutions of second order non-linear PDEs.

Let us recall the following fundamental classical result.

Theorem 2.3. The value function v is a viscosity solution of the Hamilton-Jacobi-Bellman equa-

tion (2.2) associated to the optimization problem.

Proof. See, e.g., Theorem 4.3.1 in Pham (2009), together with Remark 4.3.4. Note that the value

function of our control problem is locally bounded on [0, T )×(0,+∞)×(0,+∞), due to Proposition

2.1.

Theorem 2.4. 1) For a fixed initial random endowment ȳ > 0, define ū(t, z) := v(t, z, ȳ). Then
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ū : (0, T ]× R+ → R is a viscosity solution of the reduced PDE with parameter ȳ:

ūt + ȳūz + µC(t) [γū− zūz] +
1

2
σ2
C(t)

[
γ(γ − 1)ū− 2(γ − 1)zūz + z2ūzz

]
+

sup
π∈A

{
(πσθ + r)zūz +

1

2
(πσ)2z2ūzz + ρσC(t)σπ(γ − 1)zūz − ρσσC(t)πz2ūzz

}
= 0, (2.4)

ū(T, z) =
zγ

γ
, ∀z ≥ 0.

In particular, for ȳ = 1

ut + uz + µC(t) [γu− zuz] +
1

2
σ2
C(t)

[
γ(γ − 1)u− 2(γ − 1)zuz + z2uzz

]
+ (2.5)

sup
π∈A

{
(πσθ + r)zuz +

1

2
(πσ)2z2uzz + ρσC(t)σπ(γ − 1)zuz − ρσσC(t)πz2uzz

}
= 0,

2) The value function of the control problem (2.1) is given by

v(t, x, y) = yγu

(
t,
x

y

)
, ∀(t, x, y) ∈ (0,+∞)× (0,+∞)× [0, T ],

where u : (0, T ] × R+ → R is the unique viscosity solution to Equation (2.4) for ȳ = 1 with

polynomial growth at infinity.

Proof. Define the following operators:

for t ∈ [0, T ], x ∈ (0,+∞), y ∈ (0,+∞), s ∈ R, q ∈ R, p ∈ R2, M ∈ S2 (S2 being the space of the

2−dimensional symmetric matrices)

F (t, x, y, s, q, p,M) =− q + sup
π∈A

{
− yp1 − µC(t)yp2 − (πσθ + r)xp1

−1

2
σC(t)2y2M22 −

1

2
(πσx)2M11 − ρσC(t)σπxyM12

}
;

for each ȳ ∈ (0,+∞) fixed, and t ∈ [0, T ], z ∈ (0,+∞), s ∈ R, q ∈ R, p ∈ R, M ∈ R

F (ȳ)(t, z, s, q, p,M) =− q − ȳp− µC(t) [γs− zp] +
1

2
σ2
C(t)

[
γ(γ − 1)s− 2(γ − 1)zp+ z2M

]
+

sup
π∈A

{
(πσθ + r)zp+

1

2
(πσ)2z2M + ρσC(t)σπ(γ − 1)zp− ρσσC(t)πz2M

}
.

1) To prove 1) we have to show that the function ū is both a super- and a subsolution. We

just show the subsolution property, since the arguments for the supersolution property are

completely analogous.

Recall that, thanks to Theorem 2.3, v is known to be a viscosity solution of Equation (2.2). In

particular, v is a viscosity subsolution, which implies that for each fixed point (t0, z0, ȳ) and for

each ϕ ∈ C1,2([0, T ] × [0,+∞) × (0,+∞)) such that ϕ ≥ v on [0, T ] × [0,+∞) × (0,+∞) and
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ϕ(t0, z0, ȳ) = v(t0, z0, ȳ), it holds

F
(
t0, z0, ȳ, v(t0, z0, ȳ), ϕt(t0, z0, ȳ), Dϕ(t0, z0, ȳ), D2ϕ(t0, z0, ȳ)

)
≤ 0. (2.6)

We want to show that the function ū is also a viscosity subsolution of the reduced form F (ȳ),

i.e. that for every (t0, y0) ∈ [0, T ]×(0,+∞) and ψ ∈ C1,2([0, T ]×(0,+∞)) such that ψ(t0, z0) =

ū(t0, z0) and ψ ≤ ū,

F (ȳ)(t0, z0, ū(t0, z0), ψt(t0, z0), Dψ(t0, z0), D2ψ(t0, z0)) ≤ 0.

Let hence ψ ∈ C1,2([0, T ] × (0,+∞)) be such that ψ(t0, z0) = ū(t0, z0) and ψ ≤ ū on [0, T ] ×
(0,+∞). We will denote by (t, z) the variables of the function ψ and by ψt and ψz its partial

derivatives with respect to the first and (resp.) the second variable.

Define

ϕ(t, x, y) :=

(
y

ȳ

)γ
ψ

(
t, ȳ

x

y

)
.

Then at the point (t0, z0, ȳ)

ϕ(t0, z0, ȳ) =

(
ȳ

ȳ

)γ
ψ (t0, z0) = ū(t0, z0) = v(t0, z0, ȳ)

and for every (t, x, y)

ϕ(t, x, y) :=

(
y

ȳ

)γ
ψ

(
t, ȳ

x

y

)
≥
(
y

ȳ

)γ
ū

(
t, ȳ

x

y

)
= v(t, x, y),

where the last equality follows from the homogeneity property of the function v and the defini-

tion of the function ū. Moreover, the function ϕ is of class C1,2([0, T ]× (0,+∞)× (0,+∞)) and

the viscosity subsolution property of the value function yields (2.6). We can write the partial

derivatives of ψ in terms of the partial derivatives of ϕ, getting:

ϕt =
(
y
ȳ

)γ
ψt, ϕxy = (γ − 1)

(
y
ȳ

)γ−2
1
ȳψz −

(
y
ȳ

)γ−2
x
yψzz,

ϕx =
(
y
ȳ

)γ−1

ψz, ϕy = γ
(
y
ȳ

)γ−1
1
ȳψ −

(
y
ȳ

)γ−1
x
yψz,

ϕxx =
(
y
ȳ

)γ−2

ψzz, ϕyy = γ(γ − 1)
(
y
ȳ

)γ−2
1
ȳ2ψ − 2(γ − 1)

(
y
ȳ

)γ−2
1
ȳ
x
yψz +

(
y
ȳ

)γ−2 (
x
y

)2

ψzz.
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The form above hence becomes, at the point (t0, z0, ȳ),

0 ≤− F
(
t0, z0, ȳ, v(t0, z0, ȳ), ϕt(t0, z0, ȳ), Dϕ(t0, z0, ȳ), D2ϕ(t0, z0, ȳ)

)
=(

ȳ

ȳ

)γ
ψt +

(
ȳ

ȳ

)γ
ȳψz + µC(t0)

[
γ

(
ȳ

ȳ

)γ
ψ −

(
ȳ

ȳ

)γ
z0ψz

]
+

1

2
σ2
C(t0)

[
γ(γ − 1)

(
ȳ

ȳ

)γ
ψ − 2(γ − 1)

(
ȳ

ȳ

)γ
z0ψz +

(
ȳ

ȳ

)γ
z2

0ψzz

]
+

sup
π∈A

{
(πσθ + r)

(
ȳ

ȳ

)γ
z0ψz +

1

2
(πσ)2z2

0

(
ȳ

ȳ

)γ
ψzz+

ρσC(t0)σπ(γ − 1)

(
ȳ

ȳ

)γ
z0ψz − ρσσC(t0)πz2

0ψzz

}
=− F (ȳ)(t0, z0, ū(t0, z0), ψt(t0, z0), Dψ(t0, z0), D2ψ(t0, z0)).

This implies that, at the point (t0, z0)

F (ȳ)(t0, z0, ū(t0, z0), ψt(t0, z0), Dψ(t0, z0), D2ψ(t0, z0)) ≤ 0,

which gives the stated viscosity subsolution property.

2) We will first show that the function u has polynomial growth in z at infinity.

As the behavior of the power utility function at infinity is rather different for 0 < γ < 1 and

for γ < 0, we will consider the two cases separately.

Let hence γ > 0. Using standard moment estimation arguments (see e.g. Lemma 4.5.3 in Kunita

(1997)) and the compactness of the constraint set A, we can show that u(t, z) := v(t, z, 1) has

polynomial growth. From the definition of the value function v we have:

v(t, z, 1) := sup
π∈A

E

[
(AπT )γ

γ

∣∣∣Aπt = z, ct = 1

]
,

and hence the above mentioned Lemma yields

|u(t, z)| =
∣∣∣∣sup
π∈A

E

[
(AπT )γ

γ

∣∣∣Aπt = z, ct = 1

]∣∣∣∣
≤ sup
π∈A

∣∣∣∣E [ (AπT )γ

γ

∣∣∣Aπt = z, ct = 1

]∣∣∣∣
≤ sup
π∈A

{
C(γ, π)

(
1 + |z|

γ
2

)2
}
≤ K(γ,A)

(
1 + |z|

γ
2

)2

,

where C and K denote some constants independent of z. In the last inequality we use the

compactness of the constraint set A together with the fact that the coefficients of the SDE

describing the process Aπ depend linearly on the strategy π.

The case γ < 0 is actually straightforward. Indeed, in this case the function u(t, z) is bounded

from above by 0 and increasing in z. We can therefore bound |u(t, z)| uniformly on each set of

the form (0, T ]× (z̄,+∞), for every z̄ > 0 fixed.
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This shows that the function u has polynomial growth at infinity which, combined with the

strong comparison principle for viscosity solutions (Theorem 4.4.5 and Remark 4.3.5 in Pham

(2009)), yields uniqueness. Notice that Theorem 4.4.5 requires the coefficient of the function

u in the HJB equation to be constant. The arguments in the proof stay nevertheless true in

the case where its coefficient is time dependent, and the results still apply in this case (see

Appendix A).

The statement follows hence from the results above.

Remark 2.5. The reason we are allowed to just ignore the boundary conditions at zero is due to the

structure of the equation. Indeed, one can apply the arguments in Oleinik and Radkevich (1971)

to see that the behavior of the function at the part of the boundary characterized by {z = 0} can

be ignored, being the corresponding Fichera function strictly positive in that region.

If we denote the coefficients of uzz, and uz respectively by

a(z, t, π) :=
1

2
σ2
C(t)z2 +

1

2
(πσ)2z2 − ρσσC(t)πz2; (2.7)

b(z, t, π) := 1− µC(t)z + σ2
C(t)(1− γ)z + (πσθ + r)z + ρσC(t)σπ(γ − 1)z, (2.8)

c(z, t, π) := c(t) = −γ
(
µC(t)− 1

2
σ2
C(t)(1− γ)

)
, (2.9)

and denote by Lπ the operator

Lπu := a(z, t, π)uzz + b(z, t, π)uz − c(z, t, π)u,

our equation reads

−ut = sup
π∈A
Lπu.

Now, if we take the limit of the Fichera function, we obtain for every t ∈ [0, T ] and every π

lim
z→0

b(z, t, π)− az(z, t, π) = 1 > 0,

which implies that no boundary condition is required at {z = 0}.

2.3 The optimal strategy: a verification argument for the regular case

We have already shown how to reduce the HJB equation by one dimension, in order to simplify the

optimization problem. Due to this, we can then solve (possibly numerically) the reduced problem

and get the solution of the original one. But what about the optimal strategy? Can we derive an

optimal strategy for the original problem given an optimal strategy for the reduced one? This will

be done by means of a verification theorem. Verification results are available in this setting (see

e.g. Pham (2009) Theorem 3.5.2). The arguments used to prove optimality mostly rely on the

regularity of the value function.
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Proposition 2.6. Assume that u ∈ C1,2 is a classical solution to Equation (2.5).

Let π∗ := h(t, x, y), where

h(t, x, y) = argmax
π∈A

{
(πσθ + r)

x

y
uz(t, x/y) +

1

2
(πσ)2

(
x

y

)2

uzz(t, x/y)−

ρσC(t)σπ(1− γ)

(
x

y

)
uz(t, x/y)− ρσC(t)σπ

(
x

y

)2

uzz(t, x/y)

}
.

Then the optimal strategy is Markovian and given by

Πt = h
(
t, AΠ

t , ct
)
. (2.10)

Remark 2.7. One can actually compute the supremum analytically. It is given by

π∗ = −θ − ρσC(t)(1− γ)

σ

yuz
xuzz

+
ρσC(t)

σ
, if it belongs to A

and is attained at some point on the boundary of A otherwise, since the function

A 3 π 7→ (πσθ + r)zuz +
1

2
(πσ)2z2uzz − ρσC(t)σπ(1− γ)zuz − ρσC(t)σπz2uzz

is strictly concave on the closed convex set A.

Proof. The proof works along standard lines (cf. e.g. Section 3.5 in Pham (2009)), and strongly

relies on the regularity of the value function.

Fix t ∈ [0, T ] and let hence {At}s∈[t,T ] be the solution to
dAs = [As (Πsσθ + r) + cs] ds+AsΠsσ dW 1

s , ∀s ∈ (t, T ]

At = x,

dcs = cs
(
µC(s) ds+ σC(s) dWC

s

)
, ∀s ∈ (t, T ]

ct = y,

with Π as in Equation 2.10.

First observe that, since Zs := As
cs

is a well defined semimartingale, and u(s, ·) is a concave

function, the process Us := u(s, Zs) is also a well-defined semimartingale. This is a consequence of

an application of the Itô formula, which yields:

• for the process Z:

dZs =Zs
{
−µC(s) + σ2

C(s)−ΠsρσσC(s) + Πsθσ + r
}

ds+ ds+

Zs
{

Πsσ dW 1
s − σC(s) dWC

s

}
.
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• for the process Us, under the assumption that u ∈ C1,2,

dUs =
{
us(s, Zs) +

1

2
uzz(s, Zs)Z

2
s (Πsσ − ρσC(s))2 +

1

2
uzz(s, Zs)Z

2
s (1− ρ2)σ2

C(s) + uz(s, Zs)

+ uz(s, Zs)Zs
(
−µC(s) + σ2

C(s)−ΠsρσσC(s) + Πsθσ + r
)}

ds+

uz(s, Zs)Zs
{

Πsσ dW 1
s − σC(s) dWC

s

}
.

• finally, for the process Vs := cγsUs we get again by the partial integration formula

dVs =cγs

{
us(s, Zs) +

1

2
uzz(s, Zs)Z

2
s (Πsσ)2 +

1

2
uzz(s, Zs)Z

2
sσ

2
C(s)− uzz(s, Zs)Z2

sΠsρσσC(s)

+ uz(s, Zs) + uz(s, Zs)Zs
(
−µC(s) + (1− γ)σ2

C(s)− (1− γ)ΠsρσσC(s) + Πsθσ + r
)

+ γu(s, Zs)

(
µC(s) +

γ − 1

2
σ2
C(s)

)}
ds

+ (local martingale terms).

It is then immediate to see that, after a localization argument to make the local martingale

term vanish, and due to the fact that u solves Equation (2.5) for every value of cs,

v(t, x, y) = E
[
U(AΠ∗

T )
]
,

which yields the optimality of Π, as conjectured.

2.4 The optimal strategy: general case

The verification argument used in the regular case does not apply in general, since the value

function can be even non-differentiable.

One important advantage of the viscosity solution property of the value function is that it can be

used as a verification criterion. In order to verify that a given function is indeed the value function

of the studied control problem, it suffices to verify that the function is a viscosity solution of the

corresponding HJB equation. For this method to work, it is necessary that we know that the value

function is the unique viscosity solution, which is already the case in our setting, due to Theorem

2.4. To do this, we need a guess of the solution, as it was the case in the previous paragraph.

Let now u be the (unique) viscosity solution to Equation (2.5). We cannot give meaning to the

expression in Equation (2.7) anymore, since the second order derivatives need not exist in general.

We therefore appeal to the concavity of the function u in the variable z, proven in Proposition

2.1. Thanks to a classical result by Alexandrov, this property guarantees (see Evans and Gariepy

(1991), pp. 239-245) the existence a.e. of a second derivative.

Let hence N be the set where uzz is not defined.

13



Consider the set M defined by

M :=

{
(t, x, y) ∈ [0, T ]× R+ × R+ :

x

y
∈ N

}
.

M is a null set in R3. We can exploit the product structure of the Lebesgue measure to see

that it is sufficient to show that the set

M̃ :=

{
(x, y) ∈ R+ × R+ :

x

y
∈ N

}
is a null set in R2.

By disintegration we can indeed see that, if λ2 denotes the Lebesgue measure in R2 and λ the

Lebesgue measure in R,

λ2(M̃) =

∫ ∞
0

∫ ∞
0

1{Sy}(x) dy dx =

∫ ∞
0

∫ ∞
0

1{Sy}(x) dx dy = 0,

where Sy := {x > 0 : x ∈ yN} has Lebesgue measure zero (due to invariance by linear transfor-

mations), and we can apply Tonelli’s theorem as the argument is non-negative. Here, for a set A,

1{A} stems for the indicator function of the set A, taking the value 1 if the argument belongs to

the set, and 0 otherwise.

Define a function

h(t, x, y) :=

 −
θ−ρσC(t)(1−γ)

σ

yuz(t, xy )
xuzz(t, xy )

+ ρσC(t)
σ if it belongs to A and (t, x, y) /∈M

some fixed point at the boundary of A, otherwise.

(2.11)

The strategy Πt defined as before

Πt = h
(
t, AΠ

t , ct
)

is therefore again admissible, and will be the intuitive candidate for the optimal strategy.

To prove optimality, one should use the fact that the value function is the unique viscosity

solution to the HJB equation. More precisely, one has to show that the function

v̄(t, x, y) := E
[
AΠ,t,x,y
T

]
is also a viscosity solution to the HJB equation for v with boundary condition v̄(T, x, y) = U(x). The

argument above works, for example, as a verification for the strategies approximated numerically

according to (2.11). The reason why this argument applies is that, for a concave function, it is

sufficient to fulfill the equation a.e. pointwise. It is a consequence of the maximum principle which

for semiconvex/semiconcave functions goes by the name of Jensen’s lemma (see e.g. Crandall et al.

(2000)).

14



2.5 A numerical example

We want now to apply some finite difference methods to solve Equation (2.5).

Finite difference methods are well-known to work for finding viscosity solutions of non-linear PDEs,

and the literature on the topic is rich. We will apply the methods developed in Wang and Forsyth

(2008), and refer to this paper for a more detailed description of the algorithms and a survey of the

literature on the topic. If we specify the model for T = 20 years, by taking the following parameters

σ = 0.2 µ = 0.04 σC = 0.1 µC = 0.02

r = 0 ρ = 0.5 γ = −1

we obtain that the optimal proportion to be invested in the stock is given as in Figure 1. The

choice of the parameters is purely academic, but it is roughly based on the empirical estimations in

Topel and Ward (1992), since we have in mind the optimization problem of a defined contribution

pension scheme, where the random endowment will be (a portion of) the related salary process.

Figure 1: Optimal equity proportion as a function of the ratio wealth to income z = x/y and of
the time to maturity T − t.

The numerical results, and in particular Figure 2, show that the optimal strategy is bounded

from below by the Merton ratio, and converges towards it as the initial wealth significantly exceeds

the initial endowment, or as T − t → 0. This is actually perfectly intuitive, since the amount

available to the investor is always higher compared to the case without endowments, and a riskier

behavior is allowed due to the future endowments. Moreover, as the endowments become negligible

with respect to the wealth, the problem resembles the classical one considered by Merton.

These phenomena can be actually rigorously shown, as we will do in the following section.
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Figure 2: Optimal equity proportion at different time points.
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3 Asymptotics

In this section, we examine the asymptotic behavior of the value function and the optimal policy

as the initial capital converges to infinity.

Proposition 3.1. Let ϕ : [0, T ]→ R+, be the non-negative solution of the following linear ODE{
ϕt = ϕ(r − µC(t) + θρσC(t))− 1

ϕ(T ) = 0.
(3.1)

It holds

exp{K(T − t)}U(x) ≤ v(t, x, y) ≤ exp{K(T − t)}U(x+ ϕ(t)y), (3.2)

where K is constant and given by

K :=
θ2

2

γ

1− γ
+ rγ.

Proof. To prove the two inequalities in (3.2) we will use the comparison results for viscosity solu-

tions (see e.g. Pham (2009), Section 4.4). It will be therefore sufficient to prove that

(i) f(t, x, y) = f(t, x) := exp{K(T − t)}U(x) is a subsolution to (2.2)

(ii) g(t, x, y) := exp{K(T − t)}U(x+ φ(t, y)) is a supersolution to (2.2), for φ(t, y) = ϕ(t)y.

(i) First observe that at the terminal time t = T, f(T, x, y) = U(x) and the terminal condition

of (2.2) is satisfied.

Computing the derivatives with respect to t and x we obtain

ft(t, x) = −K exp{K(T − t)}U(x),

fx(t, x) = exp{K(T − t)}U ′(x),

fxx(t, x) = exp{K(T − t)}U ′′(x).
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Substituting in (2.2) and computing the maximum in π we obtain

− K

γ
exp{K(T − t)}xγ − 1

2

θ2 exp{2K(T − t)}x2γ−2

(γ − 1) exp{K(T − t)}xγ−2
+ y exp{K(T − t)}xγ−1+

rx exp{K(T − t)}xγ−1

= exp{K(T − t)}
[
−x

γ

γ

(
K − 1

2

θ2γ

1− γ
− rγ

)
+ yxγ−1

]
=xγ−1y exp{K(T − t)} ≥ 0.

(ii) Again notice that also the function g satisfies the terminal condition in (2.2), at least with the

inequality. Indeed, at the terminal time t = T, we have g(T, x, y) = U(x+ φ(T, y)) = U(x),

since the function φ satisfies φ(T, y) = 0.

Denote by ζ = ζ(t, x, y) := x
φ(t,y) and ξ(t) := exp{K(T − t)}.

To check the supersolution property, after computing again the partial derivatives of g,

substituting in (2.2), and computing the supremum, we therefore obtain in terms of the new

variable

Kξ(t)(φ(t, y))γ(1 + ζ)γ
1

γ
− ξ(t)(φ(t, y))γ−1(1 + ζ)γ−1φt(t, y)

+
1

2

(ξ(t))2(1 + ζ)2γ−4(φ(t, y))2γ−4

ξ(t)(γ − 1)(φ(t, y))γ−2(1 + ζ)γ−2

{
(φ(t, y))2(ζ + 1)2θ2+

ρ2σ2
C(t)y2(γ − 1)2(φy(t, y))2 + 2θρσC(t)yφ(t, y)φy(t, y)(γ − 1)(1 + ζ)

}
−ξ(t)(φ(t, y))γ−1(1 + ζ)γ−1y − rξ(t)(φ(t, y))γ−1(1 + ζ)γ−1x

−µC(t)yξ(t)(φ(t, y))γ−1φy(t, y)(1 + ζ)γ−1+

−1

2
σ2
C(t)y2ξ(t)

[
(γ − 1)(φ(t, y))γ−2(φy(t, y))2(1 + ζ)γ−2 + (φ(t, y))γ−1(1 + ζ)γ−1φyy(t, y)

]
=

ξ(t)(φ(t, y))γ
{
K

γ
(1 + ζ)γ − (1 + ζ)γ−1φt(t, y)

φ(t, y)
+

1

2

1

γ − 1

θ2

(φ(t, y))2
(φ(t, y))2(1 + ζ)γ+

−1

2

1

γ − 1

(φy(t, y))2

(φ(t, y))2
(1 + ζ)γ−2ρ2σ2

C(t)y2(γ − 1)2 +
1

2

1

γ − 1

φy(t, y)

φ(t, y)
(γ − 1)2θρσC(t)y(1 + ζ)γ−1

+
y

φ(t, y)
(1 + ζ)γ−1 − rζ(1 + ζ)γ−1

−µC(t)y
φy(t, y)

φ(t, y)
(1 + ζ)γ−1 − 1

2

σC(t)y(γ − 1)(φy(t, y))2

(φ(t, y))2(1 + ζ)γ−2
− 1

2

σ2
C(t)y2φyy(t, y)

φ(t, y)
(1 + ζ)γ−1

}
.

We can rewrite the expression above by collecting the coefficients of the powers of (1 + ζ),
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obtaining

ξ(t)(φ(t, y))γ ·

{
(1 + ζ)γ

=0︷ ︸︸ ︷[
K

γ
− θ2

1− γ
− r
]

(1 + ζ)γ−1

[
r − φt(t, y)

φ(t, y)
+
φy(t, y)

φ(t, y)
θρσC(t)y − y

φ(t, y)
− φy(t, y)

φ(t, y)
µC(t)y − 1

2

φyy(t, y)

φ(t, y)
σ2
C(t)y2

]
(1 + ζ)γ−2

[
1

2

(φy(t, y))2

φ(t, y)2
(1− ρ2)(1− γ)σ2

C(t)y2

]
︸ ︷︷ ︸

≥0

}
.

From this representation it is then easy to see that, if φ(t, y) = ϕ(t)y and ϕ is a solution of (3.1),

the function g will be a supersolution to (2.2), which concludes.

Remark 3.2. Another possible way to prove the estimates in (3.2) is to use financial arguments

and notice that

• the lower bound corresponds to the value function of the problem without random endow-

ments, and can therefore be improved when random endowments are paid

• an alternative upper bound can be found by comparing the problem to the one of an artificial

market model where the endowment can also be traded.

Also notice that the lower bound for the value function in the proposition above holds without any

extra assumption.

Corollary 3.3. For y > 0 fixed and x→ +∞ it holds

v(t, x, y) ∼ exp{K(T − t)}U(x). (3.3)

As a consequence of the previous theorem, extending again to the parabolic case the arguments

in Duffie et al. (1997), we can get some asymptotics for the reduced function u, as stated in the

following.

Proposition 3.4. It holds that

(i) For z →∞, u(t, z) ∼ exp{K(T − t)} z
γ

γ .

(ii) The function h defined as in (2.11) is such that, out of a negligible set, for x/y →∞

h(t, x, y) ∼ θ

σ(1− γ)
,

if this is in A, i.e. it converges to the Merton ratio.

Proof. (i) This is an immediate consequence of Theorem 3.3.
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(ii) For λ > 0, define

w(λ)(t, z) := e−K(T−t)λ−γu(t, λz).

First notice that, due to Theorem (3.3), it holds for λ→∞

w(λ)(t, z)→ zγ

γ
,

locally uniformly. Moreover, w(λ) is concave in z, which implies (see Rockafellar (1997),

Theorem 25.7) that the partial derivatives with respect to z will also converge

w(λ)
z → zγ−1.

From (3.1) it follows also that

w
(λ)
t → 0,

being the convergence of the functions w(λ) and their derivatives uniform in t.

Now, since u solves (2.4) for almost every (t, z), for w(t, z) := e−K(T−t)u(t, z), it will hold

a.e.

wt −Kw +

(
µC(t)γ − 1

2
σC(t)2γ(1− γ)

)
w +

(
(1− γ)σC(t)2 − µC(t)

)
zwz+

1

λ
wz +

1

2
σC(t)2z2wzz+

sup
π∈A

{
(πσθ + r)zwz +

1

2
(πσ)2z2wzz − ρσC(t)σπ(1− γ)zwz − ρσC(t)σπz2wzz

}
= 0,

If we now define by

`(z) := lim
z→∞

wzz
zγ−2

= lim
z→∞

uzz
eK(T−t)zγ−2

,

and take the limit for z → ∞ in the above equation, we obtain a second degree polynomial

for `(z) (
µCγ −K −

1

2
σ2
Cγ(1− γ)

)
1

γ
+
(
r − µC + (1− γ)(1− ρ2)σ2

C + θρσ̃C
)

+
1

2
(1− ρ2)σ2

C`(z)−
1

2
(θ − ρσC(1− γ))2 1

`(z)
= 0.

By the concavity of the function w in z, we know that we will have to select the negative
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root, which is given as

`(z) =
1

(1− ρ2)σ2
C(t)

{
− 1

2

1

1− γ
(k0(t, z)− k1(t, z))

−

√
1

4

1

(1− γ)2
(k0(t, z)− k1(t, z))2 +

1

(1− γ)2
k0(t, z)k1(t, z)

}
=

1

(1− ρ2)σ2
C(t)

{
−1

2

1

1− γ
(k0(t, z)− k1(t, z))−

√
1

4

1

(1− γ)2
(k0(t, z) + k1(t, z))2

}

=
1

(1− ρ2)σ2
C(t)

{
−1

2

1

1− γ
(k0(t, z)− k1(t, z))− 1

2

1

1− γ
(k0(t, z) + k1(t, z))

}
=

1

(1− ρ2)σ2
C(t)

{
− 1

1− γ
k0(t, z))

}
= γ − 1,

where the coefficients k0 and k1 are defined as

k0(t, z) := σC(t)(1− γ)2(1− ρ2) ≥ 0,

k1(t, z) := (θ − ρ(1− γ)σC(t))2 ≥ 0.

This implies that

lim
z→∞

wzz(t, z) = (γ − 1)zγ−2.

and therefore

lim
z→∞

uz
zuzz

=
1

γ − 1
,

which, substituted in (2.10), yields the claim.

4 Conclusion

We consider an optimal asset allocation problem in an incomplete market, where exogenous stochas-

tic endowments flow continuously into the portfolio according to a time-inhomogeneous geometric

Brownian motion. We analyze the viscosity solution of the HJB PDE, reduce its dimension, and

prove that the optimal strategy can be recovered from the optimal policy of a reduced problem.

We are also able to describe the asymptotic behavior of the value function, and the strategy when

the initial wealth goes to infinity.
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A Appendix

We show here that Theorem 4.4.5 of Pham (2009) can be still applied if the coefficient of the

function u in the HJB equation is not assumed to be constant anymore. The arguments in the

proof stay true in the case where its coefficient is time dependent.

Let −c(t) = −c(t, y) be this coefficient. In our case we would have that c(t) = −γµC(t) +
1
2σ

2
C(t)γ(1− γ), but it suffices to have a locally integrable coefficient c for our argument to work.

Define a transformed function w(t, z) := e
∫ t
0
c(s) dsu(t, z). Then

∂tw = e
∫ t
0
c(s) ds∂tu(t, z) + e

∫ t
0
c(s) dsc(t)u(t, z);

∂zw = e
∫ t
0
c(s) ds∂zu(t, z);

∂zzw = e
∫ t
0
c(s) ds∂zzu(t, z).

Hence, since u satisfies Equation (2.5), which is of the type

ut = −c(t)u+G(uz, uzz),

where G is a positive homogeneous function (of degree 1) in the two variables, we have that

e
∫ t
0
c(s) dsut = −e

∫ t
0
c(s) dsc(t)u+G(e

∫ t
0
c(s) dsuz, e

∫ t
0
c(s) dsuzz),

and the transformed function w satisfies

wt = e
∫ t
0
c(s) dsut + e

∫ t
0
c(s) dsc(t)u = G(e

∫ t
0
c(s) dsuz, e

∫ t
0
c(s) dsuzz) = G(wz, wzz).
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