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We consider strictly stationary infinitely divisible processes and first extend the mixing
conditions given in Maruyama [18] and Rosiński and Żak [23] from the univariate to the
d-dimensional case.

Thereafter, we show that multivariate Lévy-driven mixed moving average processes
satisfy these conditions and hence a wide range of well-known processes such as super-
positions of Ornstein-Uhlenbeck (supOU) processes or (fractionally integrated) continu-
ous time autoregressive moving average (CARMA) processes are always mixing. Finally,
mixing of the log-returns and the integrated volatility process of a multivariate supOU
type stochastic volatility model, recently introduced in Barndorff-Nielsen and Stelzer [5],
is established.
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1 Introduction

Lévy-driven continuous-time moving averages, i.e. processes (Xt)t∈R of the form Xt =
∫
R f (t− s)dLs

with f a deterministic function and L a Lévy process, are frequently used in applications. Partic-
ularly popular examples include, for instance, multivariate CARMA processes (see [7, 17]) or the
increments of fractionally integrated Lévy processes (see [6, 16]). By allowing f to depend on an
additional parameter and replacing the Lévy process by a Lévy basis one arrives at so-called mixed
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moving averages. One example are the supOU processes of [2, 4, 11]. They are particularly interest-
ing, as they constitute a continuous-time time series model capable of exhibiting both jumps and long
memory. For applications it is of high importance to understand the dependence structure of these
processes. In this paper we consider conditions implying mixing of multivariate infinitely divisible
processes and show that Lévy-driven mixed moving average processes are always mixing when they
exist. This has important implications for the statistical inference on the parameters of such processes.
For moment based estimation methods, like the GMM approach of [13], it implies that the estimators
are consistent. This is used for supOU processes in [27], but also seems to be important for non-causal
CARMA processes, since the proof of the strong mixing property of causal CARMA processes (see
[17, Proposition 3.34]) requires Markovianity which is not given in the general case.

Furthermore, financial data typically call for models allowing for jumps and rather slowly decay-
ing autocovariance functions of the squared log-returns, sometimes even for long memory. These
properties are both part of the so-called “stylized facts” of financial data (see, e.g., [9, 12]). One
possible model with these features is the supOU stochastic volatility model of [5], where a latent
stochastic volatility (covariance matrix) process is modelled as a supOU process. We establish that
the log-returns over an equidistant time grid, the only quantity typically observed, are mixing. Thus
our results allow e.g. establishing consistency of estimators for this model as well.

Let (Xt)t∈R be an Rd-valued strictly stationary process defined on the canonical probability space(
(Rd)R,F ,P

)
with F = B

(
(Rd)R

)
. Then (Xt)t∈R is said to be ergodic if 1

T

∫ T
0 P(A∩ StB)dt T→∞→

P(A)P(B), weakly mixing if 1
T

∫ T
0 |P(A∩StB)−P(A)P(B)|dt T→∞→ 0 and mixing if

P(A∩StB) t→∞→ P(A)P(B) (1.1)

where (St)t∈R is the induced group of shift transformations on (Rd)R (i.e. St(xs)s∈R = (xs−t)s∈R for
any (xs)s∈R ∈ (Rd)R and t ∈ R) and A, B ∈F . It is obvious that mixing implies weakly mixing and
weakly mixing implies ergodic, respectively. However, the inverse implications are not true in general,
since in ergodic theory there are examples of flows (St)t∈R that are weakly mixing, but not mixing
and ergodic, but not weakly mixing, respectively (cf. [10], [20]). Usually, the weak mixing property
is much closer to mixing than to ergodicity (cf. [24, Proposition 1]). However, Rosiński and Żak [24,
Theorem 1] have proven the equivalence of weak mixing and ergodicity for real-valued stationary
infinitely divisible processes.

Recall that a stochastic process is said to be infinitely divisible (i.d.) if all its finite dimensional
margins are i.d. The description of the mixing property for univariate real-valued strictly stationary
i.d. processes can be characterized in terms of their Lévy characteristics. More precisely, in the fun-
damental paper [18], Maruyama showed that such a process (Xt)t∈R is mixing if and only if

(M1) the covariance function r(t) of its Gaussian part tends to 0 as t→ ∞,

(M2) lim
t→∞

ν0t(|xy|> δ ) = 0 for every δ > 0 and

(M3) lim
t→∞

∫
{0<x2+y2≤1} xyν0t(dx,dy) = 0

where ν0t is the Lévy measure of the distribution of (X0,Xt). This result has been essentially improved
by [15], where the implication (M2)⇒(M3) has been established. However, condition (M2) is not very
easy to verify even for symmetric stable processes as mentioned in [23]. Therefore, [23, Theorem 1]
provides another useful criterion for mixing of i.d. processes: if ν0, the Lévy measure of L (X0), has
no atoms in 2πZ, then (Xt)t∈R is mixing if and only if lim

t→∞
E[ei(Xt−X0)] =

∣∣E[eiX0 ]
∣∣2.

2



The outline of this paper is as follows. Below we briefly summarize some notation before we then
generalize Maruyama’s mixing condition and the condition of Rosiński and Żak to the multivariate
case in Section 2. Interestingly, a multivariate i.d. process is mixing if and only if all bivariate marginal
processes are mixing. An alternative formulation of the mixing condition in terms of the codifference
for i.d. processes concludes that part. In the third section we briefly recall the definition of Lévy bases
and Lévy-driven mixed moving average processes, then show that these processes are always mixing
and finish with supOU processes as an example. The last section considers the multivariate supOU
type stochastic volatility model, recently introduced in [5], and mixing of the log-returns and the
integrated volatility process over an equally spaced time grid of that model, is established.

Notation

Given the real numbers R we use the convention R+ := (0,∞). For the minimum of two real numbers
a,b ∈ R we write shortly a∧b and for the maximum a∨b. The real and imaginary part of a complex
number z ∈ C is written as Re(z) and Im(z), respectively. The collection of n× d matrices over the
field R is denoted by Mn×d(R). We set Md(R) := Md×d(R) and define Sd(R) as the linear subspace
of symmetric matrices. The positive semidefinite cone is denoted by S+d (R), the transpose of A ∈
Mn×d(R) is written as A′ and the identity matrix in Md(R) shall be denoted by Id .

On K∈ {R,C} the Euclidean norm is denoted by | · |whereas on Kd it will be written as ‖ ·‖. Recall
the fact that two norms on a finite dimensional linear space are always equivalent which is why our
results remain true if we replace the Euclidean norm by any other norm. A scalar product on linear
spaces is written as 〈 · , · 〉; in Rd and Cd , we again take the Euclidean one. If X and Y are normed
linear spaces, let B(X ,Y ) be the set of bounded linear operators from X into Y and in particular we
equip Mn×d(R) = B(Rd ,Rn) with the corresponding operator norm if not stated otherwise. If X is a
topological space, we denote by B(X) the Borel σ -algebra on X .

For a random variable X defined on some probability space (Ω,F ,P) the image measure X(P)
(distribution of X) is written as L (X). For two random variables X and Y the notation X D

= Y means
equality in distribution. If we consider a sequence of random variables (Xn)n∈N, we shall denote con-
vergence in distribution (weak convergence) of the sequence to some random variable X by Xn

w→ X .

2 Mixing of Multivariate Infinitely Divisible Processes

We denote the j-th component of an Rd-valued stochastic process (Xt)t∈R by
(
X ( j)

t
)

t∈R. Generalizing
[23, Theorem 1] we show the following:

Theorem 2.1. Let (Xt)t∈R be an Rd-valued strictly stationary i.d. process such that ν0, the Lévy mea-
sure of L (X0), satisfies ν0

({
x = (x1, . . . ,xd)

′ ∈ Rd : ∃ j ∈ {1, . . . ,d} , x j ∈ 2πZ
})

= 0. Then (Xt)t∈R
is mixing if and only if

lim
t→∞

E
[

ei
(

X ( j)
t −X (k)

0

)]
= E

[
eiX ( j)

0

]
·E
[
e−iX (k)

0

]
(2.1)

for any j,k = 1, . . . ,d.

Proof. We extend the proof of [23, Theorem 1] to the multivariate set-up.
“⇒”: Let (Xt)t∈R be mixing which implies

E
[
ei〈θ1,X0〉+i〈θ2,Xt〉

]
t→∞→ E

[
ei〈θ1,X0〉

]
·E
[
ei〈θ2,X0〉

]
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for any θ1,θ2 ∈ Rd (see e.g. [10], [14] or [20]) and in particular, setting (θ1,θ2) = (−ek,e j), j,k =
1, . . . ,d, with e j the j-th unit vector in Rd , (2.1) holds.
“⇐”: Assume that (2.1) holds for every j,k = 1, . . . ,d. Note first that then

E
[

ei
(

X ( j)
t +X (k)

0

)]
t→∞→ E

[
eiX ( j)

0

]
·E
[
eiX (k)

0

]
(2.2)

holds for every j,k = 1, . . . ,d as well (cf. [23, Theorem 1, Step 1]).
We now prove that (2.1) and (2.2) imply:

(M1) the covariance matrix function Σ(t) of the Gaussian part of (Xt)t∈R tends to 0 as t→ ∞ and

(M2) lim
t→∞

ν0t(‖x‖ · ‖y‖> δ ) = 0 for every δ > 0

where ν0t is the Lévy measure of L (X0,Xt) on (R2d ,B(R2d)). Having established (M1) and (M2), we
will conclude with the upcoming Theorem 2.3 which shows that these two conditions imply mixing.

As to (M1), since (X0,Xt) has a 2d-dimensional i.d. distribution, its characteristic function can be
written, due to the Lévy-Khintchine formula, for every (θ1,θ2) ∈ Rd×Rd , as

E
[
ei〈θ1,X0〉+i〈θ2,Xt〉

]
= exp

{
i〈
(

θ1
θ2

)
,

(
γ1
γ2

)
〉− 1

2
〈
(

θ1
θ2

)
,Σ

(
θ1
θ2

)
〉

+
∫
R2d

ei〈θ1,x〉+i〈θ2,y〉−1− (i〈θ1,x〉+ i〈θ2,y〉)1[0,1]
(∥∥(x′,y′)′∥∥)ν0t(d(x,y))

}
(2.3)

where γ1,γ2 ∈ Rd , Σ ∈ S+2d(R) and ν0t is the Lévy measure of L (X0,Xt) on (R2d ,B(R2d)). Since
L (X0) = L (Xt), we observe that

Σ =

(
Σ(0) Σ(t)
Σ(t)′ Σ(0)

)
(2.4)

with Σ(t) being the covariance matrix function of the Gaussian part of (Xt)t∈R. If we denote the
generating triplet of L (X0) by (γ,Σ(0),ν0), we can use [25, Proposition 11.10] in order to deduce

γ1 = γ−
∫
R2d

x
(
1[0,1] (‖x‖)−1[0,1]

(∥∥(x′,y′)′∥∥))ν0t(d(x,y)) and (2.5)

γ2 = γ−
∫
R2d

y
(
1[0,1] (‖y‖)−1[0,1]

(∥∥(x′,y′)′∥∥))ν0t(d(x,y)). (2.6)

Putting (2.3)-(2.6) together, the characteristic function of (X0,Xt) at the point (θ1,θ2) ∈ Rd×Rd can
be written as

E
[
ei〈θ1,X0〉+i〈θ2,Xt〉

]
= exp

{
i〈θ1 +θ2,γ〉−

1
2

(
〈θ1,Σ(0)θ1〉+2〈θ1,Σ(t)θ2〉+ 〈θ2,Σ(0)θ2〉

)
+
∫
R2d

ei〈θ1,x〉+i〈θ2,y〉−1− i〈θ1,x〉1[0,1](‖x‖)− i〈θ2,y〉1[0,1](‖y‖)ν0t(d(x,y))
}
. (2.7)

By substituting (−ek,e j), (0,e j) and (−ek,0), j,k = 1, . . . ,d, for (θ1,θ2) in (2.7) we get the descrip-
tion of (2.1) in terms of the covariance matrix function of the Gaussian part and the Lévy measure ν0t ,
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namely

lim
t→∞

E
[

ei
(

X ( j)
t −X (k)

0

)]
·
(
E
[
eiX ( j)

t

]
·E
[
e−iX (k)

0

])−1

= lim
t→∞

exp
{

σ jk(t)+
∫
R2d

(
ei(y( j)−x(k))− eiy( j)− e−ix(k) +1

)
ν0t(d(x,y))

}
= 1

for arbitrary j,k = 1, . . . ,d, where σ jk(t) is the (k, j)-th element of Σ(t). Next, taking logarithms on
both sides and using the identity Re

(
ei(y−x)− eiy− e−ix +1

)
= (cosx− 1)(cosy− 1)+ sinxsiny we

obtain
lim
t→∞

σ jk(t)+
∫
R2d

(
(cosx(k)−1)(cosy( j)−1)+ sinx(k) siny( j))

ν0t(d(x,y)) = 0 (2.8)

for any j,k = 1, . . . ,d.
Likewise, we get

lim
t→∞
−σ jk(t)+

∫
R2d

(
(cosx(k)−1)(cosy( j)−1)− sinx(k) siny( j))

ν0t(d(x,y)) = 0 (2.9)

for every j,k = 1, . . . ,d.
Adding (2.8) and (2.9) yields, due to the consistency of Lévy measures (see again [25, Proposition

11.10]),

lim
t→∞

∫
R2d

(cosx(k)−1)(cosy( j)−1)ν0t(d(x,y)) = lim
t→∞

∫
R2
(cosx−1)(cosy−1)ν

( jk)
0t (dx,dy) = 0

(2.10)

for every j,k = 1, . . . ,d, where ν
( jk)
0t denotes the Lévy measure of L

(
X (k)

0 ,X ( j)
t
)

on (R2,B(R2)).

Now fix j,k ∈ {1, . . . ,d} and observe that the family
{
L
(
X (k)

0 ,X ( j)
t
)}

t∈R is tight. Indeed, letting

Br :=
{
(x,y) ∈ R2 : x2 + y2 ≤ r2

}
, we have by stationarity P

((
X (k)

0 ,X ( j)
t
)
/∈ Br

)
≤P

(∣∣X (k)
0

∣∣2 > r2

2

)
+

P
(∣∣X ( j)

0

∣∣2 > r2

2

)
and hence lim

r→∞
sup
t∈R

P
((

X (k)
0 ,X ( j)

t
)
/∈ Br

)
= 0. Thus, due to Prohorov’s Theorem, the

family is relatively compact (in the topology of weak convergence). Choose any sequence τn →
∞, τn ∈ R, and let Fjk be an accumulation point of

{
L
(
X (k)

0 ,X ( j)
τn

)}
n∈N. Then Fjk is an i.d. distri-

bution on R2 with some Lévy measure ν jk (cf. [25, Lemma 7.8]). Now let (tn)n∈N be a subsequence
of (τn)n∈N such that

L
(

X (k)
0 ,X ( j)

tn

)
w→ Fjk as n→ ∞. (2.11)

Then, for every δ > 0 with ν jk(∂Bδ ) = 0,

ν
( jk)
0tn

∣∣∣
Bc

δ

w→ ν jk
∣∣
Bc

δ

as n→ ∞ (2.12)

which is an immediate consequence of [25, Theorem 8.7]. Since (cosx−1)(cosy−1)≥ 0, we deduce

0≤
∫

Bc
δ

(cosx−1)(cosy−1)ν jk(dx,dy)
(2.12)
= lim

n→∞

∫
Bc

δ

(cosx−1)(cosy−1)ν
( jk)
0tn (dx,dy)

≤ lim
n→∞

∫
R2
(cosx−1)(cosy−1)ν

( jk)
0tn (dx,dy)

(2.10)
= 0.
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Since δ can be taken arbitrarily small we infer that every Lévy measure ν jk is concentrated on{
(x,y) ∈ R2 : x ∈ 2πZ or y ∈ 2πZ

}
.

By the stationarity of the process and (2.11), the projection of ν jk onto the first and second axis
coincides with ν

(k)
0 and ν

( j)
0 , respectively, on the complement of every neighborhood of zero. Hence,

by our assumption on ν0, we have for every m ∈ Z, m 6= 0,

ν jk ({2πm}×R) = ν
(k)
0 ({2πm}) = ν0(R× . . .×R︸ ︷︷ ︸

k−1

×{2πm}×R× . . .×R︸ ︷︷ ︸
d−k

)

≤ ν0

({
x ∈ Rd : ∃l ∈ {1, . . . ,d} , xl ∈ 2πZ

})
= 0

and similarly ν jk (R×{2πm}) = 0. This shows that every ν jk, j,k = 1, . . . ,d, is actually concentrated
on the axes of R2 and on each of them coincides with ν

(k)
0 and ν

( j)
0 , respectively.

Now, observe that, for every t ∈ R,∫
Bδ

|xy|ν( jk)
0t (dx,dy)≤ 1

2

∫
{|x|≤δ}

x2
ν
(k)
0 (dx)+

1
2

∫
{|y|≤δ}

y2
ν
( j)
0 (dy)< ε (2.13)

for any positive ε and any j,k = 1, . . . ,d, if only δ is small enough. Then (2.13) yields, for every j,k =
1, . . . ,d and any n,

∫
Bδ
|sinxsiny|ν( jk)

0tn (dx,dy)≤
∫

Bδ
|xy|ν( jk)

0tn (dx,dy)< ε for sufficiently small δ > 0.

Since every ν jk is concentrated on the axes of R2, (2.12) implies limn→∞

∫
Bc

δ

sinxsinyν
( jk)
0tn (dx,dy)= 0.

Thus
lim
n→∞

∫
R2

sinxsinyν
( jk)
0tn (dx,dy) = 0 (2.14)

for every j,k = 1, . . . ,d.
From (2.8), (2.10) and (2.14) we infer that σ jk(tn)→ 0 as n→ ∞ for all j,k = 1, . . . ,d. Since (tn) is

a subsequence of an arbitrary sequence τn→∞, it follows that σ jk(t)→ 0 as t→∞ and thus Σ(t)→ 0
as t→ ∞, i.e. (M1) holds.

To prove (M2), observe that, for any n ∈ N,

ν0tn
(
‖x‖2 · ‖y‖2︸ ︷︷ ︸

=∑
d
j,k=1(x(k)y( j))

2

> δ
2)≤ d

∑
j,k=1

ν
( jk)
0tn

(∣∣∣x(k)y( j)
∣∣∣≥ δ

d

)
.

By virtue of (2.12), we have limsupn→∞ ν
( jk)
0tn

(∣∣x(k)y( j)
∣∣≥ δ/d

)
≤ ν jk

(∣∣x(k)y( j)
∣∣≥ δ/d

)
= 0 for every

j,k = 1, . . . ,d and thus limn→∞ ν0tn (‖x‖ · ‖y‖> δ ) = 0 for every δ > 0. Again, since (tn) is a subse-
quence of any arbitrary sequence τn→∞, it follows that limt→∞ ν0t (‖x‖ · ‖y‖> δ ) = 0 for any δ > 0,
i.e. (M2) is shown.

We can now conclude with the upcoming Theorem 2.3.

To establish Theorem 2.3 we need the following multivariate generalization of [15, Lemma 1].

Lemma 2.2.
Assume that limt→∞ ν0t (‖x‖ · ‖y‖> δ ) = 0 for every δ > 0. Then one has

(M3) lim
t→∞

∫
{0<‖x‖2+‖y‖2≤1} ‖x‖ · ‖y‖ν0t(d(x,y)) = 0.
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Proof. Fix ε > 0 and define for any δ ∈ (0,1) the sets Bδ :=
{
(x,y) ∈ Rd×Rd : ‖x‖2 +‖y‖2 ≤ δ 2

}
and Rδ := B1\Bδ . Then, for every δ ∈ (0,1),∫

{0<‖x‖2+‖y‖2≤1}
‖x‖ · ‖y‖ν0t(d(x,y)) =

∫
Bδ

‖x‖ · ‖y‖ν0t(d(x,y))+
∫

Rδ

‖x‖ · ‖y‖ν0t(d(x,y))

=: I1 + I2.

Taking advantage of stationarity of (Xt)t∈R, we obtain

|I1| ≤
1
2

∫
Bδ

‖x‖2 +‖y‖2
ν0t(d(x,y)) =

∫
{‖x‖≤δ}

‖x‖2
ν0(dx)≤ ε

2

for every δ sufficiently small.
We fix such a δ and set l := min{δ/2,ε/8q} with q := ν0

({
‖x‖2 > δ 2/2

})
< ∞ and C := Rδ ∩

{‖x‖ · ‖y‖> l}. Then

|I2|=
∫

C
‖x‖ · ‖y‖ν0t(d(x,y))+

∫
Rδ \C
‖x‖ · ‖y‖ν0t(d(x,y))≤

1
2

ν0t(C)+
ε

8q
ν0t(Rδ\C)

≤ 1
2

ν0t(C)+
ε

8q

[
ν0t

(
‖x‖2 >

δ 2

2

)
+ν0t

(
‖y‖2 >

δ 2

2

)]
≤ 1

2
ν0t (‖x‖ · ‖y‖> l)+

ε

4
.

Since ν0t (‖x‖ · ‖y‖> l)≤ ε/2 if only t is large enough, we obtain∫
{0<‖x‖2+‖y‖2≤1}

‖x‖ · ‖y‖ν0t(d(x,y))≤ ε

for sufficiently large t. Letting ε ↘ 0 yields the desired result.

The next theorem, which is a multivariate generalization of Maruyama’s mixing condition [18, Theo-
rem 6], shows that conditions (M1) and (M2) together imply mixing and thus concludes the proof of
Theorem 2.1.

Theorem 2.3.
Let (Xt)t∈R be an Rd-valued strictly stationary i.d. process. Then (Xt)t∈R is mixing if and only if

(M1) the covariance matrix function Σ(t) of its Gaussian part tends to 0 as t→ ∞ and

(M2) lim
t→∞

ν0t (‖x‖ · ‖y‖> δ ) = 0 for every δ > 0.

Proof. We have already shown in the proof of Theorem 2.1 that mixing implies (M1) and (M2).
Conversely, assume that (M1) and (M2) hold and note that, due to Lemma 2.2, also condition (M3)
must hold. We now generalize the proof of [18, Theorem 6] to a multivariate setting. We shall denote
Xτ = (X ′s1

, . . . ,X ′sm
)′ for any τ = (s1, . . . ,sm)

′ ∈Rm. Then (cf. [18, (5.13)]) it is sufficient for (Xt)t∈R to
be mixing that for all τ = (s1, . . . ,sm)

′, µ = (u1, . . . ,um)
′ ∈ Rm and z1,z2 ∈ Rmd ,

lim
t→∞

E
[
ei〈z1,Xτ 〉+i〈z2,Xµ+t〉

]
= E

[
ei〈z1,Xτ 〉

]
·E
[
ei〈z2,Xµ 〉

]
(2.15)

where µ + t := (u1 + t, . . . ,um + t)′.
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The family of R2md-valued i.d. random vectors
{
(Xτ ,Xµ+t)

}
t∈R is tight since

P
(
(Xτ ,Xµ+t) /∈ B√2mr

)
≤

m

∑
j=1

P
(∥∥Xs j

∥∥> r
)
+P

(∥∥Xu j+t
∥∥> r

)
= 2m ·P(‖X0‖> r)→ 0

as r→ ∞, where Br :=
{

x ∈ R2md : ‖x‖2 ≤ r2
}

. Hence the family is relatively compact with respect
to the weak topology (i.e. the topology generated by weak convergence).

Let (γ1,Σ1,ν1) and (γ2,Σ2,ν2) be the characteristic triplets of L (Xτ) and L (Xµ), respectively.
Consider an arbitrary sequence ηn ∈ R, ηn → ∞ and an accumulation point F of the associated
sequence

{
L (Xτ ,Xµ+ηn)

}
n∈N as n→ ∞, i.e. there is a subsequence (tn)n∈N of (ηn)n∈N such that

L (Xτ ,Xµ+tn)
w→ F as n→ ∞ where the accumulation point F is obviously (see [25, Lemma 7.8]) an

i.d. distribution on R2md with some generating triplet (γ,Σ,ν). We denote by (γn,Σn,νn) the charac-
teristic triplet of L (Xτ ,Xµ+tn) for any n ∈ N and by Φn(z1,z2) its characteristic function at the point
(z1,z2) ∈ Rmd×Rmd . The logarithm of Φn can be written (cf. proof of Theorem 2.1) as

logΦn(z1,z2) = i〈
(

z1
z2

)
,

(
γ1

γ2

)
〉− 1

2
〈
(

z1
z2

)
,Σn

(
z1
z2

)
〉

+
∫
{‖x‖<δ ,‖y‖<δ}

ei〈z1,x〉+i〈z2,y〉−1− i〈z1,x〉1[0,1](‖x‖)− i〈z2,y〉1[0,1](‖y‖)νn(d(x,y))

+
∫
{‖x‖≥δ or ‖y‖≥δ}

ei〈z1,x〉+i〈z2,y〉−1− i〈z1,x〉1[0,1](‖x‖)− i〈z2,y〉1[0,1](‖y‖)νn(d(x,y))

=: I1 + I2 + I3 + I4.

We shall prove that logΦn(z1,z2)→ logΦ1(z1)+ logΦ2(z2) as n→ ∞ for all z1,z2 ∈ Rmd where Φ1
and Φ2 are the characteristic functions of Xτ and Xµ , respectively.

Obviously I1 = i〈z1,γ
1〉+ i〈z2,γ

2〉 and due to the assumption (M1) the second term I2 converges to
−1/2〈z1,Σ

1z1〉−1/2〈z2,Σ
2z2〉 as n→ ∞.

As to I4, we have (cf. (2.12))

I4
n→∞→

∫
{‖x‖≥δ or ‖y‖≥δ}

ei〈z1,x〉+i〈z2,y〉−1− i〈z1,x〉1[0,1](‖x‖)− i〈z2,y〉1[0,1](‖y‖)ν(d(x,y))

=
∫
{‖x‖≥δ}

ei〈z1,x〉−1− i〈z1,x〉1[0,1](‖x‖)ν
1(dx)+

∫
{‖y‖≥δ}

ei〈z2,y〉−1− i〈z2,y〉1[0,1](‖y‖)ν
2(dy)

since, letting x =
(

x(1)
′
, . . . ,x(m)′

)′
∈
(
Rd
)m and y =

(
y(1)
′
, . . . ,y(m)′

)′
∈
(
Rd
)m,

ν (‖x‖ · ‖y‖> δ )≤ liminf
n→∞

νn (‖x‖ · ‖y‖> δ )≤ liminf
n→∞

m

∑
j,k=1

ν0,uk−s j+tn

(∥∥∥x( j)
∥∥∥ ·∥∥∥y(k)

∥∥∥> δ

m

)
(M2)
= 0

for any δ > 0 which shows in particular that ν(‖x‖ · ‖y‖> 0) = 0.
Analogously to x and y we denote the j-th Rd-component of z1 and z2 by z( j)

1 and z( j)
2 , respectively.
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Concerning I3, a simple Taylor expansion yields for any δ > 0 small enough

I3 =−
1
2

[∫
{‖x‖<δ ,‖y‖<δ}

(
m

∑
j=1
〈z( j)

1 ,x( j)〉

)2

+

(
m

∑
j=1
〈z( j)

2 ,y( j)〉

)2

νn(d(x,y))

+2
∫
{‖x‖<δ ,‖y‖<δ}

(
m

∑
j,k=1
〈z( j)

1 ,x( j)〉〈z(k)2 ,y(k)〉

)
νn(d(x,y))

]
+R

with

6 |R| ≤
∫
{‖x‖<δ ,‖y‖<δ}

|〈z1,x〉+ 〈z2,y〉|3 +o
((
‖x‖2 +‖y‖2

)3/2
)

νn(d(x,y))

≤ 2
∥∥∥∥(z1

z2

)∥∥∥∥3

·
∫
{‖x‖<δ ,‖y‖<δ}

∥∥∥∥(x
y

)∥∥∥∥3

νn(d(x,y))

≤ 2
∥∥∥∥(z1

z2

)∥∥∥∥3

·
√

2δ ·
(∫
{0<‖x‖<δ}

‖x‖2
ν

1(dx)+
∫
{0<‖y‖<δ}

‖y‖2
ν

2(dy)
)

and thus 6 |R| < ε for any positive ε if only δ is sufficiently small. Moreover, we obtain for every
j,k = 1, . . . ,m and any δ ∈ (0, 1

2

√
2)∫

{‖x‖<δ ,‖y‖<δ}

∣∣∣〈z( j)
1 ,x( j)〉〈z(k)2 ,y(k)〉

∣∣∣νn(d(x,y))

≤
∥∥z( j)

1

∥∥ ·∥∥z(k)2

∥∥ ·∫
{‖x‖<δ ,‖y‖<δ}

∥∥x( j)
∥∥ ·∥∥y(k)

∥∥νn(d(x,y))

≤
∥∥z( j)

1

∥∥ ·∥∥z(k)2

∥∥ ·∫
{0<‖x( j)‖2+‖y(k)‖2≤1}

∥∥x( j)
∥∥ ·∥∥y(k)

∥∥ν0,uk−s j+tn
(
d
(
x( j),y(k)

)) n→∞→ 0

by virtue of (M3). Finally∣∣∣∣∣12
∫
{‖x‖<δ ,‖y‖<δ}

〈z1,x〉2 νn(d(x,y))+
∫
{0<‖x‖<δ}

ei〈z1,x〉−1− i〈z1,x〉1[0,1](‖x‖)ν
1(dx)

∣∣∣∣∣≤ J1 + J2

with

J1 =

∣∣∣∣12
∫
{0<‖x‖<δ ,‖y‖<δ}

〈z1,x〉2 νn(d(x,y))−
1
2

∫
{0<‖x‖<δ}

〈z1,x〉2 νn(d(x,y))
∣∣∣∣

≤
∫
{0<‖x‖<δ}

〈z1,x〉2 νn(d(x,y))≤ ‖z1‖2 ·
∫
{0<‖x‖<δ}

‖x‖2
ν

1(dx)

and

J2 =

∣∣∣∣∫{0<‖x‖<δ}

1
2
〈z1,x〉2 + ei〈z1,x〉−1− i〈z1,x〉1[0,1](‖x‖)ν

1(dx)
∣∣∣∣

≤ ‖z1‖3
δ ·
∫
{0<‖x‖<δ}

‖x‖2
ν

1(dx).

An analogous result is obviously true for the second addend of the first term of I3.
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Putting all this together we obtain

lim
n→∞

logΦn(z1,z2) = logΦ1(z1)+ logΦ2(z2) for all z1,z2 ∈ Rmd

and thus the desired result in (2.15) which completes the proof.

From Theorem 2.1 we can immediately derive the following corollary:

Corollary 2.4. A d-dimensional strictly stationary i.d. process X = (Xt)t∈R with

ν0
({

x = (x1, . . . ,xd)
′ ∈ Rd : ∃ j ∈ {1, . . . ,d} , x j ∈ 2πZ

})
= 0 (2.16)

is mixing if and only if the bivariate processes (X ( j),X (k)), j,k ∈ {1, . . . ,d}, j < k, are all mixing.

If we use the asymptotic independence of X0 and Xt as a natural interpretation of the mixing prop-
erty, Corollary 2.4 means that pairwise asymptotic independence yields asymptotic independence for
strictly stationary i.d. processes which satisfy the technical assumption (2.16). This is in a way consis-
tent to the well-known fact that pairwise independence and independence are equivalent for random
vectors with i.d. distribution (cf. [25, Exercises 12.9 and 12.10]).

The next corollary can be seen as the multivariate generalization of [23, Corollary 3].

Corollary 2.5. Let (Xt)t∈R be an Rd-valued strictly stationary i.d. process. Then, with the previous
notation, (Xt)t∈R is mixing if and only if

lim
t→∞

{
‖Σ(t)‖+

∫
R2d

(1∧‖x‖ · ‖y‖)ν0t(d(x,y))
}
= 0. (2.17)

Proof. Obviously (2.17) implies (M1) and (M2) and thus, due to Theorem 2.3, also mixing.
Conversely if (Xt)t∈R is mixing, then (M1) holds (cf. Theorem 2.3). Moreover (cf. (2.12))

ν
( jk)
0t

∣∣∣
Bc

δ

w→ ν jk
∣∣
Bc

δ

as t→ ∞ (2.18)

for every δ > 0 s.t. ν jk(∂Bδ ) = 0 and any j,k = 1, . . . ,d. From the proof of Theorem 2.1 we further
know that the Lévy measures ν jk are concentrated on the axes of R2. Now choose δ > 0 s.t. (2.13)
and (2.18) hold, then we have

limsup
t→∞

∫
R2

(1∧|xy|)ν
( jk)
0t (dx,dy)≤ ε + limsup

t→∞

∫
Bc

δ

(1∧|xy|)ν
( jk)
0t (dx,dy) = ε.

Letting ε ↘ 0 we deduce limt→∞

∫
R2 (1∧|xy|)ν

( jk)
0t (dx,dy) = 0 for any j,k = 1, . . . ,d. Finally

∫
R2d

(
1∧

d

∑
k=1
|xk| ·

d

∑
j=1

∣∣y j
∣∣)ν0t(d(x,y))≤

d

∑
j,k=1

∫
R2d

(
1∧
∣∣xky j

∣∣)ν0t(d(x,y))

=
d

∑
j,k=1

∫
R2

(1∧|xy|)ν
( jk)
0t (dx,dy) t→∞→ 0.

This clearly implies limt→∞

∫
R2d (1∧‖x‖ · ‖y‖)ν0t(d(x,y)) = 0 as well and hence (2.17) is shown.
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Let us conclude this section with an alternative formulation of Theorem 2.1. Therefore recall that
the codifference τ(X1,X2) of an i.d. real bivariate random vector (X1,X2) is defined as follows

τ(X1,X2) := logE
[
ei(X1−X2)

]
− logE

[
eiX1
]
− logE

[
e−iX2

]
.

If we now consider a univariate strictly stationary i.d. process (Xt)t∈R, then τ(Xs,Xt) = τ(X0,Xt−s) for
any s, t ∈ R and hence we can define the function

τ(t) := τ(X0,Xt), t ∈ R,

which is positive semidefinite (see [24, Section 2]). We call τ autocodifference function of (Xt)t∈R.
Analogously to the univariate case we define the autocodifference function for an Rd-valued strictly
stationary i.d. process (Xt)t∈R by τ(t) =

(
τ( jk)(t)

)
j,k=1,...,d with τ( jk)(t) := τ

(
X (k)

0 ,X ( j)
t
)
. Hence we

have the following mixing condition in terms of the autocodifference function:

Corollary 2.6. Let (Xt)t∈R be an Rd-valued strictly stationary i.d. process such that ν0, the Lévy mea-
sure of L (X0), satisfies ν0

({
x = (x1, . . . ,xd)

′ ∈ Rd : ∃ j ∈ {1, . . . ,d} , x j ∈ 2πZ
})

= 0. Then (Xt)t∈R
is mixing if and only if τ(t)→ 0 as t→ ∞.

3 Mixed Moving Average Processes

The central result of this section shows that mixed moving average processes are always mixing.
Let us first recall the definition of Rd-valued Lévy bases, which are generalizations of Lévy pro-

cesses, and the related integration theory. For a general introduction to Lévy processes and i.d. distri-
butions see [25]. Lévy bases are also called infinitely divisible independently scattered random mea-
sures (i.d.i.s.r.m.) in the literature. For more details on Lévy bases see [22] and [19]. In the following,
S denotes a non-empty topological space, B(S) is the Borel σ -field on S and π is some probability
measure on (S,B(S)). The collection of all Borel sets in S×R with finite π⊗λ 1-measure, where λ 1

denotes the one-dimensional Lebesgue measure, is written as B0(S×R).

Definition 3.1 (Lévy Basis). A d-dimensional Lévy basis on S×R is an Rd-valued random measure
Λ = {Λ(B) : B ∈B0(S×R)} satisfying:

(i) the distribution of Λ(B) is infinitely divisible for all B ∈B0(S×R),

(ii) for arbitrary n ∈ N and pairwise disjoint sets B1, . . . , Bn ∈ B0(S×R) the random variables
Λ(B1), . . . , Λ(Bn) are independent and

(iii) for any pairwise disjoint sets B1, B2, . . .∈B0(S×R) with
⋃

n∈N Bn ∈B0(S×R) we have, almost
surely, Λ(

⋃
n∈N Bn) = ∑n∈N Λ(Bn).

In this paper we restrict ourselves to time-homogeneous and factorisable Lévy bases, i.e. Lévy
bases with characteristic function

E
[
ei〈z,Λ(B)〉]= eψ(z)Π(B) (3.1)

for all z ∈ Rd and B ∈B0(S×R), where Π = π⊗λ 1 is the product of the probability measure π on
S and the Lebesgue measure λ 1 on R and

ψ(z) = i〈γ,z〉− 1
2
〈z,Σz〉+

∫
Rd

(
ei〈z,x〉−1− i〈z,x〉1[0,1](‖x‖)

)
ν(dx)
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is the cumulant transform of an i.d. distribution with characteristic triplet (γ,Σ,ν). By L we denote
the underlying Lévy process associated with (γ,Σ,ν) and given by Lt = Λ

(
S× (0, t]

)
and L−t =

−Λ
(
S× (−t,0)

)
for t ∈ R+. The quadruple (γ,Σ,ν ,π) determines the distribution of the Lévy basis

completely and therefore it is called the generating quadruple. A definition of Sd(R)-valued Lévy
bases on S×R follows along the same lines.

Regarding the existence of integrals with respect to a Lévy basis we recall the following multivariate
extension of [22, Theorem 2.7].

Theorem 3.2. Let Λ be an Rd-valued Lévy basis with characteristic function of the form (3.1) and let
f : S×R→Mn×d(R) be a measurable function. Then f is Λ-integrable as a limit in probability in the
sense of Rajput and Rosiński [22], if and only if∫

S

∫
R

∥∥∥ f (A,s)γ +
∫
Rd

f (A,s)x
(
1[0,1](‖ f (A,s)x‖)−1[0,1](‖x‖)

)
ν(dx)

∥∥∥dsπ(dA)< ∞,

∫
S

∫
R

∥∥ f (A,s)Σ f (A,s)′
∥∥dsπ(dA)< ∞ and∫

S

∫
R

∫
Rd

(
1∧‖ f (A,s)x‖2)

ν(dx)dsπ(dA)< ∞.

If f is Λ-integrable, the distribution of
∫

S
∫
R f (A,s)Λ(dA,ds) is infinitely divisible with characteristic

triplet (γint ,Σint ,νint) given by

γint =
∫

S

∫
R

(
f (A,s)γ +

∫
Rd

f (A,s)x
(
1[0,1](‖ f (A,s)x‖)−1[0,1](‖x‖)

)
ν(dx)

)
dsπ(dA),

Σint =
∫

S

∫
R

f (A,s)Σ f (A,s)′ dsπ(dA) and

νint(B) =
∫

S

∫
R

∫
Rd
1B( f (A,s)x)ν(dx)dsπ(dA) for all Borel sets B⊆ Rn\{0}.

Before we prove that mixed moving average processes are always mixing, let us briefly recall the
definition of these processes.

Definition 3.3 (Mixed Moving Average Process). Let Λ be an Rd-valued Lévy basis on S×R and
let f : S×R→Mn×d(R) be a measurable function. If the process

Xt :=
∫

S

∫
R

f (A, t− s)Λ(dA,ds)

exists in the sense of Theorem 3.2 for all t ∈ R, it is called an n-dimensional mixed moving average
process (MMA process for short). The function f is said to be its kernel function.

MMA processes have been first introduced in [26] in the univariate stable case. Note that an MMA
process is an i.d. process and obviously always strictly stationary.

Now Corollary 2.5 immediately yields the following mixing condition for MMA processes.

Lemma 3.4. Let (Xt)t∈R
D
= (

∫
S
∫
R f (A, t− s)Λ(dA,ds))t∈R be an MMA process where Λ is an Rd-

valued Lévy basis on S×R with generating quadruple (γ,Σ,ν ,π) and f : S×R→Mn×d(R) is mea-
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surable. Then (Xt)t∈R is mixing if and only if

lim
t→∞

{∥∥∥∫
S

∫
R

f (A,−s)Σ f (A, t− s)′ dsπ(dA)
∥∥∥

+
∫

S

∫
R

∫
Rd

(1∧‖ f (A,−s)x‖ · ‖ f (A, t− s)x‖)ν(dx)dsπ(dA)
}
= 0. (3.2)

Proof. Since we can write(
X0
Xt

)
=
∫

S

∫
R

(
f (A,−s)

f (A, t− s)

)
Λ(dA,ds), t ∈ R,

we immediately obtain the covariance matrix function of the Gaussian part of (Xt)t∈R (cf. Theorem
3.2) by

Σ(t) =
∫

S

∫
R

f (A,−s)Σ f (A, t− s)′ dsπ(dA), t ∈ R.

The Lévy measure ν0t of L (X0,Xt) is given (see again Theorem 3.2) by

ν0t(B) =
∫

S

∫
R

∫
Rd
1B( f (A,−s)x, f (A, t− s)x)ν(dx)dsπ(dA)

for all Borel sets B⊆ R2n\{0}. Thus∫
R2n

(1∧‖x‖ · ‖y‖)ν0t(d(x,y)) =
∫

S

∫
R

∫
Rd

(1∧‖ f (A,−s)x‖ · ‖ f (A, t− s)x‖)ν(dx)dsπ(dA)

and Corollary 2.5 completes the proof.

The following theorem shows that the mixing condition of Lemma 3.4 is indeed always satisfied for
MMA processes. Note that in the univariate moving average and stable mixed moving average case
this result is already known from [8, Section 7, Example 1] and [26, Theorem 3], respectively. The
multivariate case is, however, considerably more involved, because norms are only submultiplicative
whereas | f (a,−s)x|= | f (a,−s)| · |x| could be used for a proof of the general univariate case.

Theorem 3.5. Let (Xt)t∈R
D
= (
∫

S
∫
R f (A, t− s)Λ(dA,ds))t∈R be an MMA process where Λ is an Rd-

valued Lévy basis on S×R with generating quadruple (γ,Σ,ν ,π) and f : S×R→Mn×d(R) is mea-
surable. Then (Xt)t∈R is mixing.

Proof. By virtue of Lemma 3.4 we have to show that

‖Σ(t)‖=
∥∥∥∫

S

∫
R

f (A,−s)Σ f (A, t− s)′ dsπ(dA)
∥∥∥ t→∞→ 0

and∫
R2n

(1∧‖x‖ · ‖y‖)ν0t(d(x,y)) =
∫

S

∫
R

∫
Rd

(1∧‖ f (A,−s)x‖ · ‖ f (A, t− s)x‖)ν(dx)dsπ(dA) t→∞→ 0.

We first prove that ‖Σ(t)‖ → 0 as t → ∞. Therefore, note that the existence of the MMA process
implies (cf. Theorem 3.2) ∫

S

∫
R

∥∥∥ f (A, t− s)Σ
1
2

∥∥∥2
dsπ(dA)< ∞
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for any t ∈R, where Σ
1
2 denotes the unique square root of Σ. Thus, for any t, the function gt : S×R→

R, (A,s) 7→
∥∥ f (A, t − s)Σ

1
2
∥∥ is an element of L2

(
S×R, B(S×R), π ⊗ λ 1; R

)
. Since the measure

π ⊗ λ 1 is σ -finite, every such L2-function can be approximated (in the L2-norm) by an elementary
function in

E :=
{

f ∈ L2(S×R, B(S×R), π⊗λ
1; R

)
: f =

n

∑
i=1

ci1Di×[ai,bi), n ∈ N,

ci ∈ R, Di ∈B(S),−∞ < ai < bi < ∞, i = 1, . . . ,n
}
.

Now fix an arbitrary ε > 0 and choose g̃ ∈ E such that

‖g0− g̃‖L2 =

(∫
S

∫
R
|g0(A,s)− g̃(A,s)|2 dsπ(dA)

) 1
2

< ε.

Then, due to the Cauchy-Schwarz Inequality,

‖Σ(t)‖=
∥∥∥∫

S

∫
R

f (A,−s)Σ
1
2

(
f (A, t− s)Σ

1
2

)′
dsπ(dA)

∥∥∥≤ ∫
S

∫
R

g0(A,s) ·gt(A,s)dsπ(dA)

≤ ε · ‖gt‖L2 +‖g̃‖L2 ·
(∫

S

∫
R
|gt(A,s)− g̃(A,s− t)|2 dsπ(dA)

) 1
2

+
∫

S

∫
R
|g̃(A,s)g̃(A,s− t)|dsπ(dA)

≤ ε · ‖g0‖L2 +(ε +‖g0‖L2) · ε

for sufficiently large t. This yields ‖Σ(t)‖→ 0 as t→ ∞.
It remains to show that

∫
R2n (1∧‖x‖ · ‖y‖)ν0t(d(x,y))→ 0 as t→∞. We fix again an arbitrary ε > 0

and set Br :=
{
(x,y) ∈ Rn×Rn : ‖x‖2 +‖y‖2 ≤ r2

}
. Note that in order to establish (2.12) we did not

use the assumption that the process is mixing. Hence there is some R > 1 and some t0 > 0 such that

sup
t≥t0

ν0t
(
R2n\BR

)
≤ ε.

Thus, for all t ≥ t0, we deduce
∫
R2n (1∧‖x‖ · ‖y‖)ν0t(d(x,y)) ≤

∫
BR
(1∧‖x‖ · ‖y‖)ν0t(d(x,y)) + ε.

Since
min{‖u‖ · ‖v‖ ,1} ≤ R ·min{‖u‖ ,1} ·min{‖v‖ ,1},

provided that max{‖u‖ ,‖v‖} ≤ R, we obtain∫
BR

(1∧‖x‖ · ‖y‖)ν0t(d(x,y))≤ R ·
∫

BR

(1∧‖x‖) · (1∧‖y‖)ν0t(d(x,y))

≤ R ·
∫

S

∫
R

∫
Rd

(1∧‖ f (A,−s)x‖) · (1∧‖ f (A, t− s)x‖)ν(dx)dsπ(dA).

Analogously to above, the existence of the MMA process shows that, for any t ∈ R, the function
ht : S×R×Rd → R, ht(A,s,x) := 1∧ ‖ f (A, t − s)x‖ is an element of L2

(
S×R×Rd , B(S×R×

Rd), π ⊗ λ 1⊗ ν ; R
)
. Since every Lévy measure is σ -finite, the product measure π ⊗ λ 1⊗ ν is σ -

finite as well and hence we can use the same approximation argument as above in order to show

14



that ∫
S

∫
R

∫
Rd

(1∧‖ f (A,−s)x‖) · (1∧‖ f (A, t− s)x‖)ν(dx)dsπ(dA) t→∞→ 0.

Consequently limt→∞

∫
R2n (1∧‖x‖ · ‖y‖)ν0t(d(x,y)) = 0 and the MMA process (Xt)t∈R is mixing.

Example 3.6 (supOU Processes). Superpositions of Ornstein-Uhlenbeck-type (supOU) processes
provide a class of continuous time processes capable of exhibiting long memory behavior. The theory
of univariate supOU processes as introduced in [2] has been extended to a multivariate setting in
[4]. Intuitively supOU processes are obtained by “adding up” (i.e., integrating) independent OU-type
processes with different mean reversion coefficients.

Given an Rd-valued Lévy basis Λ on M−d (R)×R, where M−d (R) denotes the collection of all real
d×d matrices with eigenvalues having strictly negative real part, and given that the process

Xt :=
∫

M−d (R)

∫ t

−∞

e(t−s)A
Λ(dA,ds)

exists for all t ∈ R, it is said to be a d-dimensional supOU process.
One easily verifies that supOU processes are MMA processes with special kernel function

f (A,s) = esA1[0,∞)(s).

Consequently, (multivariate) supOU processes are always mixing by virtue of Theorem 3.5.

4 The supOU Stochastic Volatility Model

The well-known Ornstein-Uhlenbeck type stochastic volatility (OU type SV) model introduced in
[3] has recently been extended to a multivariate set-up in [21]. Whereas the OU type SV model is
capable of reproducing most of the so-called stylized facts (stochastic volatility exhibiting jumps,
volatility clustering, heavy tails, ...) which are usually present in observed financial return series, it
is not capable of producing long memory in the volatility or log-returns. Therefore one could use a
(multivariate) supOU type SV model (see [5]) where the volatility or instantaneous covariance matrix
is modelled via a positive semidefinite supOU process.

Let us briefly recall the definition of positive semidefinite supOU processes. Suppose we have given
an Sd(R)-valued Lévy basis Λ on M−d (R)×R with generating quadruple (γ,0,ν ,π) with

γ0 := γ−
∫
{‖x‖≤1}

‖x‖ν(dx) ∈ S+d (R) (4.1)

and ν being a Lévy measure on Sd(R) satisfying

ν
(
Sd(R)\S+d (R)

)
= 0,

∫
{‖x‖>1}

log(‖x‖)ν(dx)< ∞ and
∫
{‖x‖≤1}

‖x‖ν(dx)< ∞. (4.2)

Moreover, assume there exist measurable functions ρ : M−d (R)→ R+ and κ : M−d (R)→ [1,∞) such
that ∥∥esA

∥∥≤ κ(A)e−ρ(A)s ∀s ∈ [0,∞), π− almost surely, and (4.3)∫
M−d (R)

κ(A)2

ρ(A)
π(dA)< ∞. (4.4)

15



Then the process (Σt)t∈R given by

Σt :=
∫

M−d (R)

∫ t

−∞

e(t−s)A
Λ(dA,ds)e(t−s)A′

is well defined for all t ∈ R and strictly stationary. Moreover, with ⊗ being the tensor (Kronecker)
product of two matrices and vec the well-known vectorization operator that maps the d×d matrices
to Rd2

by stacking the columns of a matrix below one another beginning with the left one, we have

vec(Σt) =
∫

M−d (R)

∫ t

−∞

e(t−s)(A⊗Id+Id⊗A) vec(Λ)(dA,ds) (4.5)

and Σt is positive semidefinite for all t ∈ R (see [4, Theorem 4.1]). The process (Σt)t∈R is said to be a
positive semidefinite supOU process.

We also recall the definition of a supOU type stochastic volatility model (cf. [5, Definition 3.1]):

Definition 4.1 (supOU Stochastic Volatility Model). Let W be a d-dimensional standard Brownian
motion and Λ be an Sd(R)-valued Lévy basis on M−d (R)×R, independent of W, with generating
quadruple (γ,0,ν ,π) satisfying conditions (4.1)-(4.4). Let, moreover L be the underlying Lévy process
of Λ and finally β ,ψ ∈ B

(
Sd(R),Rd

)
. Assume that X = (Xt)t≥0 is given by

dXt = (µ +βΣt−)dt + r(Σt−)dWt +ψ(dLt), X0 = 0, (4.6)

for some µ ∈ Rd , a continuous function r : S+d (R)→Md(R) such that x = r(x)r(x)′ and where

Σt =
∫

M−d (R)

∫ t

−∞

e(t−s)A
Λ(dA,ds)e(t−s)A′ ∀t ∈ [0,∞).

Then we say that X follows a multivariate supOU type stochastic volatility (SV) model with lever-
age.

When thinking about X as the log-price processes of d financial assets, it is clear that one typically
will observe neither X continuously nor the volatility process Σ, but only X at a discrete set of times.
In the following we assume that we observe X at an equally spaced time grid with given grid size
∆ > 0. Then one is typically interested in the log-returns Y = (Yn)n∈N over the grid intervals as well as
the integrated volatility V = (Vn)n∈N over them (for more background see [21]). They are defined by

Yn := Xn∆−X(n−1)∆
(4.6)
= µ∆+β

(∫ n∆

(n−1)∆
Σt− dt

)
+
∫ n∆

(n−1)∆
r(Σt−)dWt +ψ(Ln∆−L(n−1)∆) and

Vn :=
∫ n∆

(n−1)∆
Σt− dt, n ∈ N.

Of course, we have to ensure that the stochastic integrals involving Σ as integrand do indeed exist. To
this end we suppose throughout the whole section that the conditions of [4, Theorem 4.3 (ii) and (iii)],
namely ∫

M−d (R)
κ(A)2

π(dA)< ∞, (4.7)

∫
M−d (R)

(‖A‖∨1)κ(A)2

ρ(A)
π(dA)< ∞ and

∫
M−d (R)

‖A‖κ(A)2
π(dA)< ∞, (4.8)
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are satisfied.
Our central result of this section is the following theorem:

Theorem 4.2. Both processes, the log-returns Y = (Yn)n∈N over the grid intervals as well as the
integrated volatility V = (Vn)n∈N over them are mixing.

Proof. Let (εn)n∈N be an i.i.d. sequence of N(0, Id)-distributed random vectors, independent of Σ and
L. Then using the independence between Λ and W we obtain

(Yn)n∈N
D
=
(
µ∆+βVn + r(Vn)εn +ψ(Ln∆−L(n−1)∆)

)
n∈N. (4.9)

Now observe that the process G = (Gt)t≥0 given by

Gt :=
(

vec(Σt)
vec(Lt+∆−Lt)

)
(4.5)
=
∫

M−d (R)

∫
R

(
e(t−s)(A⊗Id+Id⊗A)1[0,∞)(t− s)

Id21[−∆,0)(t− s)

)
vec(Λ)(dA,ds), t ∈ [0,∞),

is a 2d2-dimensional MMA process with respect to the Rd2
-valued Lévy basis vec(Λ) = {vec(Λ(B)) :

B ∈B0(M−d (R)×R)} and hence it is mixing by virtue of Theorem 3.5. Using [1, Theorem 3.2.7] we
easily deduce that the process

(Hn)n∈N :=
(

(Σs)s∈[(n−1)∆,n∆]

(Ls+∆−Ls)s∈[(n−1)∆,n∆]

)
n∈N

is mixing as well. Since (εn)n∈N is mixing and independent of (Hn)n∈N we easily deduce from the
definition (1.1) that

(Rn)n∈N :=
(

Hn

εn

)
n∈N

is also mixing. Finally, condition (4.7) ensures that the integrated volatility Vn can be seen ω-wise as
a Lebesgue integral (cf. [4, Theorem 4.3 (ii)]), i.e. Vn is a measurable transformation of Hn for any
n ∈ N and hence mixing. In the same way the right-hand side of (4.9) is a measurable transformation
of Rn and thus the log-returns (Yn)n∈N are mixing as well.
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