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Abstract

Classes of multivariate and cone valued infinitely divisible Gamma distributions are introduced. Par-
ticular emphasis is put on the cone-valued case, due to the relevance of infinitely divisible distributions
on the positive semi-definite matrices in applications. The cone-valued class of generalised Gamma
convolutions is studied. In particular, a characterisation in terms of an Itô-Wiener integral with respect
to an infinitely divisible random measure associated to the jumps of a Lévy process is established.

A new example of an infinitely divisible positive definite Gamma random matrix is introduced.
It has properties which make it appealing for modelling under an infinite divisibility framework. An
interesting relation of the moments of the Lévy measure and the Wishart distribution is highlighted
which we suppose to be important when considering the limiting distribution of the eigenvalues.
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1. Introduction

The classical examples of multivariate and matrix Gamma distributions in the probability and
statistics literature are not necessarily infinitely divisible [14], [19], [40]. These examples are analo-
gous to one-dimensional Gamma distributions and are obtained by a direct generalisation of the one-
dimensional probability densities; see for example [15], [23], [24]. Working in the domain of Fourier
transforms, some infinitely divisible matrix Gamma distributions have recently been considered in
[5], [27]. Their Lévy measures are direct generalisations of the one-dimensional Gamma distribution.
The work of [27] arose in the context of random matrix models relating classical and free infinitely
divisible distributions.

The study of infinitely divisible random elements in cones has been considered in [4], [25], [26],
[31] and references therein. They are important in the construction and modeling of cone increasing
Lévy processes. In the particular case of infinitely divisible positive-definite random matrices, their
importance in applications has been recently highlighted in [7], [8], [28] and [29]. This is due to
the fact that infinite divisibility allows modelling by matrix Lévy and Ornstein-Uhlenbeck processes,
which are in those papers used to model the time dynamics of a d× d covariance matrix to obtain a
so-called stochastic volatility model (for observed series of financial data).

Generalized Gamma Convolutions (GGC) is a rich and interesting class of one-dimensional in-
finitely divisible distributions on the cone R+ = [0,∞). It is the smallest class of infinitely divisible
distributions on R+ that contains all Gamma distributions and that is closed under classical convolu-
tion and weak convergence. This class was introduced by O. Thorin in a series of papers and further
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studied by L. Bondesson in his book [10]. The book of Steutel and Van Harn [39] contains also many
results and examples about GGC. Several well known and important distributions on R+ are GGC.
The recent survey paper by James, Roynette and Yor [16] contains a number of classical results and
old and new examples of GGC. The multivariate case was considered in Barndorff-Nielsen, Maejima
and Sato [3].

There are three main purposes in this paper. We formulate and study multivariate and cone val-
ued Gamma distributions which are infinitely divisible. Second, we consider and characterise the
corresponding class GGC(K) of Generalised Gamma Convolutions on a finite dimensional cone K.
Finally, we introduce a new example of a positive definite random matrix with infinitely divisible
Gamma distribution and with explicit Lévy measure.

The main results and organisation of the paper are as follows. Section 2 briefly presents prelim-
inaries on notation and results about one-dimensional GGC on R+ as well as some matrix notation.
Section 3 introduces a class of infinitely divisible d-variate Gamma distributions Γd(α,β ), whose
Lévy measures are analogous to the Lévy measure of the one-dimensional Gamma distribution. The
parameters α and β are measures and functions on S (the unit sphere with respect to a prescribed
norm), respectively. It is shown that the distribution does not depend on the particular norm under
consideration. The characteristic function is derived and it is shown that the Fourier-Laplace trans-
form on Cd exists if β is bounded away from zero α− almost everywhere. Furthermore, the finiteness
of moments of all orders is studied and some interesting examples exhibiting essential differences to
univariate Gamma distributions are given.

Section 4 considers cone valued Gamma distributions and their corresponding class GGC(K) of
Generalised Gamma Convolutions on a cone K, defined as the smallest class of distributions on K
which is closed under convolution and weak convergence and contains all the so-called elementary
Gamma variables in K (and also all Gamma random variables in K in our new definition). This class is
characterised as the stochastic integral of a non-random function with respect to the Poisson random
measure of the jumps of a Gamma Lévy process on the cone. This is a new representation in the
multivariate case extending the Wiener-Gamma integral characterization of one-dimensional GGC on
R+ = [0,∞), as considered, for example, in [16].

Section 5 considers the special cone valued case of infinitely divisible positive-semidefinite d×d
matrix Gamma distributions. New examples are introduced via an explicit form of their Lévy measure.
They include as particular cases the examples considered in [5], [27]. A detailed study is done of the
new two parameter positive definite matrix distribution AΓ(η ,Σ), where η > (d−1)/2 and Σ is a d×d
positive definite matrix. This special infinitely divisible Gamma matrix distribution has several mod-
eling features similar to the classical (but non-infinitely divisible) matrix Gamma distribution defined
through a density, in particular the Wishart distribution. Namely, moments of all orders exist, the ma-
trix mean is proportional to Σ and the matrix of covariances equals the second moment of the Wishart
distribution. When Σ is the d× d identity matrix Id , the distribution is invariant under orthogonal
conjugations and the trace of a random matrix M with distribution AΓ(η , Id) has a one-dimensional
Gamma distribution. A relation of the moments of the Marchenko-Pastur distribution with the asymp-
totic moments of the Lévy measure is exhibited. Hence, this matrix Gamma distribution has a special
role when dealing with a random covariance matrix and its time dynamics, e.g. by specifying it as a
matrix Lévy or Ornstein-Uhlenbeck process. As an application, the matrix Normal-Gamma distribu-
tion is introduced, which is a matrix extension of the one-dimensional variance Gamma distribution
of [22] which is popular in finance.
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2. Preliminaries

For the general background in infinitely divisible distributions and Lévy processes we refer to the
standard references, e.g. [36].

2.1. One-dimensional GGC

A positive random variable Y with law µ = L (Y ) belongs to the class of Generalised Gamma
Convolutions (GGC) on R+ = [0,∞), denoted by T (R+), if and only if there exists a positive Radon
measure υµ on (0,∞) and a > 0 such that its Laplace transform is given by:

Lµ(z) = Ee−zY = exp
(
−az−

∫
∞

0
ln
(

1+
z
s

)
υµ(ds)

)
(2.1)

with ∫ 1

0
| logx|υµ(dx)< ∞,

∫
∞

1

υµ(dx)
x

< ∞. (2.2)

For convenience we shall work without the translation term, i.e. with a = 0. The measure υµ is called
the Thorin measure of µ . Its Lévy measure is concentrated on (0,∞) and is such that:

νµ(dx) = x−1lµ(x)dx, (2.3)

where lµ is a completely monotone function in x > 0 given by

lµ(dx) =
∫

∞

0
e−xs

υµ(ds). (2.4)

The class T (R+) can be characterized by Wiener-Gamma representations. Specifically, a positive
random variable Y belongs to T (R+) if and only if there is a Borel function h : R+→ R+ with∫

∞

0
ln(1+h(t))dt < ∞, (2.5)

such that Y L
= Y h has the Wiener-Gamma integral representation

Y h L
=
∫

∞

0
h(u)dγu, (2.6)

where (γt ; t ≥ 0) is the standard Gamma process with Lévy measure ν(dx) = e−x dx
x . The relation

between the Thorin function h and the Thorin measure υµ is as follows: υµ is the image of the
Lebesgue measure on (0,∞) under the application : s→ 1/h(s). That is,∫

∞

0
e−

x
h(s) ds =

∫
∞

0
e−xz

υµ(dz), x > 0. (2.7)

On the other hand, if Fυµ
(x) =

∫ x
0 υµ(dy) for x≥ 0 and F−1

υµ
(s) is the the right continuous generalised

inverse of Fυµ
(s), that is F−1

υµ
(s) = inf{t > 0;Fυµ

(t)≥ s} for s≥ 0, then, h(s) = 1/F−1
υµ

(s) for s≥ 0.
Many well known distributions belong to T (R+). The positive α-stable distributions, 0 < α < 1,

are GGC with h(s) = {sθΓ(α + 1)}− 1
α for a θ > 0. In particular, for the 1/2−stable distribution,

h(s) = 4
(
s2π
)−1

. Beta distribution of the second kind, lognormal and Pareto are also GGC, see [16].
For more details on univariate GGCs we refer to [10, 16]

3



2.2. Notation
Md(R) is the linear space of d× d matrices with real entries and Sd its subspace of symmetric

matrices. By S+d and S+d we denote the open (in Sd) and closed cones of positive and nonnegative
definite matrices in Md(R). SRd ,‖·‖ is the unit sphere on Rd with respect to the norm ‖ · ‖.

The Fourier transform µ̂ of a measure µ on M= Rd or M=Md(R) is given by

µ̂(z) =
∫
M

ei〈z,x〉
µ(dx) z ∈M

where we use 〈A,B〉 = tr(A>B) as the scalar product in the matrix case, where A> denotes the trans-
posed on Md(R). By Id we denote the d× d identity matrix and by |A| the determinant of a square
matrix A. For a matrix A in the linear group G L d(R) we write A−> =

(
A>
)−1

.
We say that the distribution of a symmetric random d×d matrix M is invariant under orthogonal

conjugations if the distribution of OMO> equals the distribution of M for any non-random matrix O
in the orthogonal group O(d). Note that M→ OMO> with O ∈ O(d) are all linear orthogonal maps
on S+d (or Md) preserving S+d .

3. Multivariate Gamma Distributions

3.1. Definition
Definition 3.1. Let µ be an infinitely divisible probability distribution on Rd . If there exists a finite
measure α on the unit sphere SRd ,‖·‖ with respect to the norm ‖ · ‖ equipped with the Borel σ -algebra
and a Borel-measurable function β : SRd ,‖·‖→ R+ such that

µ̂(z) = exp

(∫
SRd ,‖·‖

∫
R+

(
eirv>z−1

) e−β (v)r

r
drα(dv)

)
(3.1)

for all z ∈Rd , then µ is called a d-dimensional Gamma distribution with parameters α and β , abbre-
viated Γd(α,β )-distribution.

If β is constant, we call µ a ‖ · ‖-homogeneous Γd(α,β )-distribution.

Observe that the notation Γd(α,β ) implicitly also specifies which norm we use, because α is a
measure on the unit sphere with respect to the norm employed and β is a function on it. The parameters
α and β play a comparable role as shape and scale parameters as in the usual positive univariate case.

Remark 3.2. (i) Obviously the Lévy measure νµ of µ is given by

νµ(E) =
∫

SRd ,‖·‖

∫
R+

1E(rv)
e−β (v)r

r
drα(dv) (3.2)

for all E ∈B(Rd). This expression is equivalent to

νµ(dx) =
e−β (x/‖x‖)‖x‖

‖x‖
α̃(dx), x ∈ Rd (3.3)

where α̃ is a measure on Rd given by

α̃(E) =
∫

SRd ,‖·‖

∫
∞

0
1E(rv)drα(dv), E ∈B(Rd). (3.4)
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(ii) Likewise we define Md(R) and Sd-valued Gamma distributions with parameters α and β (ab-
breviated ΓMd (α,β ) and ΓSd (α,β ), respectively) by replacing Rd with Md(R) and Sd , respectively,
and the Euclidean scalar product with 〈Z,X〉=tr(X>Z). All upcoming results immediately generalise
to this matrix-variate setting. We provide further details in Section 5.

If d = 1 and α({−1}) = 0, then we have the usual one-dimensional Γ(α({1}),β (1))-distribution.

In general it is elementary to see that for d = 1 a random variable X ∼ Γ1(α,β ) if and only if X D
= X1−

X2 with X1 ∼ Γ(α({1}),β (1)) and X2 ∼ Γ(α({−1},β (−1)) being two independent usual Gamma
random variables, i.e. X has a bilateral Gamma distribution as analysed in [17, 18] and introduced in
[11, 22] under the name variance Gamma distribution. If α({1}) = α({−1}) and β (1) = β (−1), it
indeed can be represented as the variance mixture of a normal random variable with an independent
positive Gamma one (a comprehensive summary of this case can be found in [39] where it is called
sym-Gamma distribution).

Now we address the question which α,β we can take to obtain a Gamma distribution.

Proposition 3.3. Let α be a finite measure on SRd ,‖·‖ and β : SRd ,‖·‖ → R+ a measurable function.
Then (3.2) defines a Lévy measure νµ and thus there exists a Γd(α,β ) probability distribution µ if
and only if ∫

SRd ,‖·‖

ln
(

1+
1

β (v)

)
α(dv)< ∞. (3.5)

Moreover,
∫
Rd (‖x‖∧1)νµ(dx)< ∞ holds true.

The condition (3.5) is trivially satisfied, if β is bounded away from zero α-almost everywhere.
Proof:∫

‖x‖≤1
‖x‖νµ(dx) =

∫
SRd ,‖·‖

∫ 1

0
e−β (v)rdrα(dv) =

∫
SRd ,‖·‖

1− e−β (v)

β (v)
α(dv)≤ α(SRd ,‖·‖)< ∞

using the elementary inequality 1−e−x ≤ x, for each x ∈R+. Denoting by E1 the exponential integral
function given by E1(z) =

∫
∞

z
e−t

t dt for z ∈ R+, we get

∫
‖x‖>1

νµ(dx) =
∫

SRd ,‖·‖

∫
∞

1

e−β (v)r

r
drα(dv) =

∫
SRd ,‖·‖

E1(β (v))α(dv) (3.6)

=
∫

∞

0
E1(z)τ(dz), (3.7)

where we made the substitution z = β (v) and τ(E) = α(β−1(E)) for all Borel sets E in R+. Since τ

is a finite measure and 0≤ E1(z)≤ e−z ln(1+1/z)∀z ∈ R+ (see [1, p. 229]),∫
∞

1/2
E1(z)τ(dz)< ∞.

The series representation E1(z) =−γ− ln(z)−∑
∞
i=1

(−1)izi

n·n! with γ being the Euler-Mascheroni constant
([1, p. 229]) implies that limz↓0 E1(z)/(− ln(z)) = 1. Hence,∫ 1/2

0
E1(z)τ(dz)< ∞⇔

∫ 1/2

0
| ln(z)|τ(dz)< ∞⇔

∫ 1/2

0
ln(1+1/z)τ(dz)< ∞
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using ln(1+1/z) = ln(1+ z)− ln(z) and the finiteness of τ in the second equivalence. Appealing to
the finiteness of τ once more, the above conditions are equivalent to∫

∞

0
ln(1+1/z)τ(dz) =

∫
SRd ,‖·‖

ln(1+1/β (v))α(dv)< ∞.

The next proposition shows that the definition of a Gamma distribution does not depend on the
norm, only the parametrisation changes when using different norms.

Proposition 3.4. Let ‖ · ‖a be a norm on Rd and µ be a Γd(α,β ) distribution with α being a finite
measure on SRd ,‖·‖a

and β : SRd ,‖·‖a
→ R+ measurable. If ‖ · ‖b is another norm on Rd , then µ is a

Γd(αb,βb) distribution with αb being a finite measure on SRd ,‖·‖b
and βb : SRd ,‖·‖b

→ R+ measurable.
Moreover, it holds that

αb(E) =
∫

SRd ,‖·‖a

1E

(
v
‖v‖b

)
α(dv) ∀E ∈B(SRd ,‖·‖b

) (3.8)

βb(vb) = β

(
vb

‖vb‖a

)
‖vb‖a ∀vb ∈ SRd ,‖·‖b

. (3.9)

The above formulae show that the mass in the different directions, which is given by α , does not
change, and β only needs to be adapted for the scale changes implied by the change of the norm.
Proof: Substituting first vb = v/‖v‖b and then s = r/‖vb‖a gives:

exp

(∫
SRd ,‖·‖a

∫
R+

(
eirv>z−1

) e−β (v)r

r
drα(dv)

)

= exp

∫
SRd ,‖·‖b

∫
R+

(
ei r
‖vb‖a

v>b z−1
) e−β

(
vb
‖vb‖a

)
r

r
drαb(dvb)


= exp

∫
SRd ,‖·‖b

∫
R+

(
eisv>b z−1

) e−β

(
vb
‖vb‖a

)
‖vb‖as

s
dsαb(dvb)

 .

3.2. Properties

In this section we study several fundamental properties of our Gamma distributions.

Proposition 3.5. Any Γd(α,β )-distribution is self-decomposable.

Proof: This follows immediately from the definition and [36, Th. 15.10].
Later on we will considerably improve this result by showing that we are in a very special subset

of the self-decomposable distributions. This result has important implications for applications where
one likes to work with distributions having densities, i.e. distributions which are absolutely continuous
(with respect to the Lebesgue measure).

Proposition 3.6. Assume that suppα is of full dimension, i.e. that it contains d linearly independent
vectors in Rd . Then the Γd(α,β )-distribution is absolutely continuous.
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Proof: It is immediate that the support of Γd(α,β ) is the closed convex cone generated by suppα .
Hence, the support of Γd(α,β ) is of full dimension and so the distribution is non-degenerate. Thus
[35] concludes.

It follows along the same lines that in the degenerate case the Γd(α,β )-distribution is absolutely
continuous with respect to the Lebesgue measure on the subspace generated by suppα . If suppα con-
sists of exactly d linearly independent vectors, Γd(α,β ) equals the distribution of a linear transforma-
tion of a vector of d independent univariate Gamma random variables with appropriate parameters and
thus the density can be calculated easily using the density transformation theorem with an invertible
linear map. If suppα is a finite set of full dimension, one can calculate the density from the density
of independent univariate Gamma random variables by using the density transformation theorem with
an invertible linear map and integrating out the non-relevant dimensions. In general the density can be
determined via solving a partial integro-differential equation (see [37]). Moreover, criteria for qual-
itative properties of the density like continuity and continuous differentiability can be deduced from
the results of [33, 34], but looking at the simple case of a vector of independent univariate Gamma
distributions one immediately sees that the sufficient conditions given there are far from being sharp.
Therefore we refrain from giving more details.

Next we show that our d-dimensional Gamma distribution has the same closedness properties
regarding scaling and convolution as the usual univariate one.

Proposition 3.7. (i) Let X ∼ Γd(α,β ) and c > 0. Then cX ∼ Γd(α,β/c).
(ii) Let X1 ∼ Γd(α1,β ) and X2 ∼ Γd(α2,β ) be two independent d-dimensional Gamma variables.

Then X1 +X2 ∼ Γd(α1 +α2,β ).

Proof: Follows immediately from considering the characteristic functions.
Likewise it is immediate to see the following distributional properties of the induced Lévy process.

Proposition 3.8. Let L be a Γd(α,β ) Lévy process, i.e. L1 ∼ Γd(α,β ). Then Lt ∼ Γd(tα,β ) for all
t ∈ R+.

Of high importance for applications is that the class of Γd distributions is invariant under invertible
linear transformations.

Proposition 3.9. Let X ∼ Γd(α,β ) (with respect to the norm ‖·‖) and A be an invertible d×d matrix.
Then AX ∼ Γd(αA,βA) with respect to the norm ‖ · ‖A = ‖A−1 · ‖ and

αA(E) =
∫

SRd ,‖·‖

1E (Av)α(dv) = α(A−1E) ∀E ∈B(SRd ,‖·‖A
) (3.10)

βA(v) = β
(
A−1v

)
∀v ∈ SRd ,‖·‖A

. (3.11)

Proof: We have for all z ∈ Rd

E
(
ei<z,AX>

)
=
∫
Rd

ei<z,Ax>
µ(dx) =

∫
SRd ,‖·‖

∫
R+

(
eirv>A>z−1

) e−β (v)r

r
drα(dv)

=
∫

SRd ,‖·‖A

∫
R+

(
eiru>z−1

) e−β (A−1u)r

r
drα(A−1du)

=
∫

SRd ,‖·‖A

∫
R+

(
eiru>z−1

) e−βA(u)r

r
drαA(du)
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where we substituted u = Av.
It is easy to see that the above proposition can be extended to m× d matrices of full rank with

m> d. Obviously, such a result cannot hold in general for a linear transformation A with ker(A) 6= {0},
since combinations of one dimensional Gamma distributions are in general not univariate Gamma
distributions.

Next we present an alternative representation of the characteristic function.

Proposition 3.10. Let µ be Γd(α,β ) distributed. Then the characteristic function is given by

µ̂(z) = exp

(∫
SRd ,‖·‖

ln
(

β (v)
β (v)− iv>z

)
α(dv)

)
for all z ∈ Rd (3.12)

where ln is the main branch of the complex logarithm.

Proof: Follows from the definition and the well known fact∫
∞

0

(
e−r(−iv>)z−1

) e−β (v)r

r
dr = ln

(
β (v)

β (v)− iv>z

)
.

Note that if α has countable support {v j} j∈N, then

µ̂(z) = ∏
j∈N

(
β (v j)

β (v j)− iv>j z

)α({v j})

.

We now show that the Fourier-Laplace transform of a Gamma distribution exists if and to a certain
extent only if β is bounded away from zero α almost everywhere.

Theorem 3.11. (i) The Fourier-Laplace transform µ̂ of a Γd(α,β ) distribution µ exists for all z in a
neighborhood U ⊆ Cd of zero, if β (v) ≥ κ for v ∈ SRd ,‖·‖ α-a.e. with κ > 0. µ̂ is analytic there and
given by formula (3.12).

(ii) If there exists a sequence (vn)n∈N in SRd ,‖·‖ with limn→∞ β (vn) = 0 and α({vn}) > 0 for all
n ∈ N, then the Fourier-Laplace transform µ̂ exists in no neighborhood U ⊆ Cd of zero.

Proof: Using Proposition 3.4 we can assume w.l.o.g. that the Euclidean norm ‖ · ‖2 is used for the
definition of the Γd(α,β ) distribution.

(i) We will now show (i) for U = Bκ(0) ⊆ Cd , where Bκ(0) := {x ∈ Cd : ‖x‖2 < κ}. From
Proposition 3.10 it is clear that µ̂(z) exists for all z ∈ Bκ(0)⊆ Cd , if and only if∫

SRd ,‖·|2

ln
(

β (v)
β (v)− iv>z

)
α(dv) =−

∫
SRd ,‖·‖2

ln
(

1− iv>z
β (v)

)
α(dv)

exists for all z ∈ Bκ(0). Consider now an arbitrary δ ∈ (0,1) and z ∈ Bδκ(0). Then the Cauchy-
Schwarz inequality implies |iv>z| ≤ ‖z‖2 ≤ δκ and hence |(iv>z)/β (v)| ≤ δ . Therefore ln

(
1− iv>z

β (v)

)
exists and is bounded on Bδκ(0) α-a.e. This implies that

−
∫

SRd ,‖·‖2

ln
(

1− iv>z
β (v)

)
α(dv)
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exists on Bδκ(0). Since δ ∈ (0,1) was arbitrary, this concludes the proof of (i), since the analyticity
follows immediately from the appendix of [12].

(ii) W.l.o.g. assume β (vn)< 1/n. For n ∈ N set zn =−iβ (vn)vn. Then ‖zn‖2 = β (vn)< 1/n and
1− (iv>n zn)/β (vn) = 0. Hence,∫

{vn}
ln
(

1− iv>zn

β (v)

)
α(dv) and thereby

∫
SRd ,‖·‖2

ln
(

1− iv>zn

β (v)

)
α(dv)

do not exist. This implies that µ̂ is not defined on B1/n(0). Since n ∈ N was arbitrary, this shows (ii).

Proposition 3.12. A Γd(α,β ) distribution µ has a finite moment of order k > 0, i.e.
∫
Rd ‖x‖kµ(dx)<

∞, if and only if ∫
SRd ,‖·‖

β (v)−k
α(dv)< ∞. (3.13)

Moreover, if m is the mean vector and Σ = (σi j)i, j=1,...,d is the covariance matrix of Γd(α,β )

m =
∫

SRd ,‖·‖

β (v)−1vα(dv). (3.14)

and
Σ =

∫
SRd ,‖·‖

β (v)−2vv>α(dv) (3.15)

Proof: If β is bounded away from zero, (3.13) holds trivially and Theorem 3.11 implies that µ has
finite moments of all orders k > 0. So w.l.o.g. assume that β is not bounded away from zero in the
following. By [36, p. 162] µ has a finite moment of order k, if and only if∫

SRd ,‖·‖

∫
∞

1
rk e−β (v)r

r
drα(dv)< ∞.

Substituting s = rβ (v) this is equivalent to∫
SRd ,‖·‖

β (v)−k
∫

∞

β (v)
sk−1e−sdsα(dv)< ∞. (3.16)

Assuming without loss of generality that β (v)≤ 1 for all v ∈ SRd ,‖·‖, we have that

0 <C(k) :=
∫

∞

1
sk−1e−sds≤

∫
∞

β (v)
sk−1e−sds≤ Γ(k).

Hence, (3.16) is equivalent to (3.13). Finally, (3.14) and (3.15) follow from Example 25.12 in [36]
and observing that that the infinitely divisible distribution Γd(α,β ) with Fourier transform (3.1) has
Lévy triplet (ζ ,0,νµ), where ζ =

∫
‖x‖≤1 xνµ(dx).

Corollary 3.13. A ‖ · ‖-homogeneous Γd(α,β ) distribution has an analytic Fourier-Laplace trans-
form in Bβ (0) and finite moments of all orders.

Hence, any homogeneous Gamma distribution behaves like one would expect it from the univari-
ate case. However, the behaviour in the non-homogeneous case may be drastically different, as the
following examples illustrate.
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Example 3.14. Consider d = 2. Let α be concentrated on {vn}n∈N with

vn = (sin(n−1),cos(n−1))

and set α({vn}) = e−n and β (vn) = 1/n for all n ∈N. Then by Theorem 3.11 (ii) the Fourier-Laplace
transform exists in no neighbourhood of zero.∫

SRd ,‖·‖2
β (v)−kα(dv) = ∑n∈N nke−n is finite for all k > 0 using the quotient criterion, because

lim
n→∞

(n+1)ke−(n+1)

nke−n = e−1 < 1.

Thus, we have moments of all orders, but the Fourier-Laplace transform exists in no complex
neighbourhood of zero.

Example 3.15. Consider the set-up of Example 3.14, but set now α({vn}) = 1/n1+m for some real
m > 0.

∫
SRd ,‖·‖2

β (v)−kα(dv) = ∑n∈N
nk

n1+m is finite if and only if k < m.

It is easy to see that condition (3.5) is satisfied if condition (3.13) holds for some k > 0. Hence,
the Γ2(α,β ) distribution exists indeed, but only moments of orders smaller than m are finite.

Example 3.16. Consider again the set-up of Example 3.14. Set now α({vn}) = (ln(1+n)3(n+1))−1.
Then

∫
SRd ,‖·‖2

ln
(

1+ 1
β (v)

)
α(dv) = ∑n∈N

1
ln(1+n)2(1+n) < ∞ (see [32, Theorem 3.29] and thus the

Γ2(α,β ) distribution is well-defined.
Yet,

∫
SRd ,‖·‖2

β (v)−kα(dv) = ∑n∈N
nk

ln(1+n)3(1+n) = ∞ for all real k > 0 and so the Γ2(α,β ) distribu-

tion has no finite moments of positive orders at all.

4. Gamma and Generalised Gamma Convolutions on Cones

4.1. Cone-valued infinitely divisible random elements

We first review several facts about infinitely divisible elements with values in a cone of a finite
dimensional Euclidean space B with norm ‖·‖ and inner product 〈·, ·〉 . A nonempty convex set K of
B is said to be a cone if λ ≥ 0 and x ∈ K imply λx ∈ K. A cone is proper if x = 0 whenever xand
−xare in K. The dual cone K′ of K is defined as K′ = {y ∈ B′ : 〈y,s〉 ≥ 0 for every s ∈ K} . A proper
cone K induces a partial order on B by defining x1 ≤K x2 whenever x2−x1 ∈ K for x1 ∈ B and x2 ∈ B.
Examples of proper cones are R+, Rd

+ = [0,∞)d , S+d and S+d .
A random element X in K is infinitely divisible (ID) if and only if for each integer p≥ 1 there exist

p independent identically distributed random elements X1, ...,Xp in K such that X law
= X1 + ...+Xp. A

probability measure µ on K is ID if it is the distribution of an ID element in K. It is known (see
[38]) that such a distribution µ is concentrated on a cone K if and only if its Laplace transform
Lµ(Θ) =

∫
K exp(−〈Θ,x〉)µ(dx) is given by the regular Lévy-Khintchine representation

Lµ(Θ) = exp
{
−〈Θ,Ψ0〉−

∫
K

(
1− e−〈Θ,x〉

)
νµ(dx)

}
for all Θ ∈ K′, (4.1)

where Ψ0 ∈ K and the Lévy measure is such that νµ(Kc) = 0 and∫
K
(‖x‖∧1)νµ(dx)< ∞. (4.2)
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If X = {X(t); t ≥ 0} is the K-increasing Lévy process (K-valued subordinator) associated to µ , its
Lévy-Itô decomposition is of the form

X(t) = tΨ0 +
∫ t

0

∫
K

xN(dt,dx)

= tΨ0 +∑
s≤t

∆X(s) a.s., (4.3)

where ∆X(s) ∈ K for all s≥ 0 a.s. and N(dt,dx) is a Poisson random measure on R+×K with

E{N(dt,dx)}= νµ(dx)dt. (4.4)

4.2. Cone-valued Gamma distributions

Let S‖·‖ be the unit sphere of B with respect to the norm ‖·‖ and let K be a proper cone of B. We
write SK

‖·‖ = S‖·‖∩K and denote by B(SK
‖·‖) the Borel sets of SK

‖·‖,
Similar to Definition 3.1 we have Gamma distributions in the cone K.

Definition 4.1. Let µ be an infinitely divisible distribution on the cone K. If there exist a finite mea-
sure α on SK

‖·‖, and a measurable function β : SK
‖·‖→ R+ such that

Lµ(Θ) = exp

{
−
∫

SK
‖·‖

∫
∞

0

(
1− e−r〈Θ,U〉

) e−β (U)r

r
drα(dU)

}
(4.5)

for all Θ ∈ K′, then µ is called a K-Gamma distribution with parameters α and β , and we write
µ ∼ ΓK(α,β ). The Lévy measure νµ of µ is

νµ(E) =
∫

SK
‖·‖

∫
∞

0
1E(rU)

e−β (U)r

r
drα(dU), E ∈B(K), (4.6)

and satisfies ∫
K

min(1,‖x‖)νµ(dx)< ∞. (4.7)

The expression (4.6) is equivalent to

νµ(dX) =
e−β (X/‖X‖)‖X‖

‖X‖
1K(X)α̃(dX), (4.8)

where α̃ is a measure on K given by

α̃(E) =
∫

SK
‖·‖

∫
∞

0
1E(rU)drα(dU), E ∈B(K). (4.9)

All properties of the multivariate Gamma distribution in Section 3 are also true for the cone-valued
Gamma distribution. As in Proposition 3.3 we can in particular show that there exists a ΓK(α,β )
probability measure µ if and only if∫

SK
‖·‖

ln
(

1+
1

β (U)

)
α(dU)< ∞, (4.10)
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in which case we have (4.7). Also, as for Proposition 3.10 the Laplace transform of a ΓK(α,β )
probability measure µ is also given by

Lµ(Θ) = exp

{
−
∫

SK
‖·‖

ln
(

1+
〈Θ,U〉)
β (U)

)
α(dU)

}
, Θ ∈ K′. (4.11)

If ‖·‖b is another norm on K and if µ has distribution ΓK(α,β ), then µ has distribution ΓK(αb,βb)
where αb,βb are given as in (3.8) and (3.9) respectively. Also, ΓK(α,β ), has a finite moment of order
k > 0, if and only if ∫

SK
‖·‖

β (U)−k
α(dU)< ∞. (4.12)

In the homogeneous case, i.e. β (U) = β0 > 0 for any U ∈ SK
‖·‖, we have E‖M‖k < ∞ for any k > 0.

If M is a random element in K with distribution ΓK(α,β ) and (4.12) is satisfied with k = 1,

E(M) =
∫

SK
‖·‖

β (U)−1Uα(dU). (4.13)

4.3. Itô-Wiener-Gamma integrals
In this section we formulate an Itô-Wiener-Gamma integral for K-valued Gamma process, similar

to the Itô-Wiener-Gamma integral (2.6) with respect to the one-dimensional Gamma process.
Let γ = γ(α,β ) = (γt ; t ≥ 0) be a K-valued Gamma process. That is, γ is the K-increasing Lévy

process such that µα,β = ΓK(α,β ) is the distribution of γ1. Let Nγ(ds,dx) be the random measure
on R+ ×K associated to the K-valued jumps of γ and νµα,β

be the Lévy measure of γ1. Hence
E{N(dt,dx)}= νµα,β

(dx)dt, where

νµα,β
(E) =

∫
SK
‖·‖

∫
∞

0
1E(rU)

e−β (U)r

r
drα(dU), E ∈B(K).

Let h : R+×SK
‖·‖→ R+ be a measurable function such that∫

SK
‖·‖

∫
∞

0
ln
(

1+
h(s,U)

β (U)

)
α(dU)ds < ∞, (4.14)

in which case we say that h belongs to L(ΓK(α,β )). The last condition is the cone analogon of the
one-dimensional condition (2.5).

We prove in the next proposition that the following Itô-Wiener-Gamma integral type is well de-
fined

Y h =
∫

∞

0

∫
K

h
(

s,
x
‖x‖

)
xN(ds,dx), (4.15)

in the framework of integration with respect to infinitely divisible independently scattered random
measures (i.d.i.s.r.m.) in Rajput and Rosinski [30] (see also [9] for the special case of random matri-
ces).

Proposition 4.2. The integral (4.15) is well defined if and only if the function h : R+× SK
‖·‖ → R+

belongs to L(ΓK(α,β )).
Moreover, h ∈ L(ΓK(α,β )) if and only if∫

∞

0

∫
K

min(1,‖h(s,x/‖x‖)x‖)νµα,β
(dx)ds < ∞, (4.16)
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and (4.16) is equivalent to the following two conditions∫
SK
‖·‖

∫ 1/2

0
|ln(z)|GU(dz)α(dU)< ∞ (4.17)

and ∫
SK
‖·‖

∫
∞

1/2

1
z

GU(dz)α(dU)< ∞ (4.18)

where GU(dz) is the measure on R+ which is the image of the Lebesgue measure on R+ under the
change of variable s→ β (U)/h(s,U).

Proof: By [9, 30] the existence of the integral is equivalent to (4.16).
Since β (U)< 0 a.e. U , Fubini’s theorem and elementary computations give

I =
∫

∞

0

∫
K

min(1,‖h(s,x/‖x‖)x‖)νµα,β
(dx)ds (4.19)

=
∫

SK
‖·‖

∫
∞

0

∫
∞

0
min(1,‖h(s,U)rU‖)e−rβ (U)

r
drα(dU)ds

=
∫

SK
‖·‖

∫
∞

0

∫ 1/h(s,U)

0
h(s,U)e−rβ (U)drα(dU)

+
∫

SK
‖·‖

∫
∞

0

∫
∞

1/h(s,U)

e−rβ (U)

r
drα(dU)

z=rβ (U)
=

∫
SK
‖·‖

∫
∞

0

h(s,U)

β (U)

(
1− e−rβ (U)/h(s,U)

)
dsα(dU)

+
∫

SK
‖·‖

∫
∞

0
E1

(
h(s,U)

β (U)

)
dsα(dU) (4.20)

where E1 is the exponential integral function as in the proof of Proposition 3.3.
Using the change of variable z = β (U)/h(s,U) we have

I =
∫

SK
‖·‖

∫
∞

0

1− e−z

z
GU(dz)α(dU)

+
∫

SK
‖·‖

∫
∞

0
E1 (z)GU(dz)dsα(dU) = I1 + I2 (4.21)

We shall in the following show that I < ∞ if and only if

I3 =
∫

SK
‖·‖

∫
∞

0
ln
(

1+
1
z

)
GU(dz)α(dU)< ∞ (4.22)

if and only if (4.17) and (4.18) are satisfied. This concludes, as obviously (4.22) and h ∈ L(ΓK(α,β ))
are equivalent.

First, ∫
SK
‖·‖

∫
∞

1/2

1− e−z

z
GU(dz)α(dU)< ∞ (4.23)

13



if and only if (4.18), if and only if

I4 =
∫

SK
‖·‖

∫
∞

1/2
ln
(

1+
1
z

)
GU(dz)α(dU)< ∞

since (1/z)/ ln(1+ z−1)→ 1 as z→ ∞.
On the other hand, ∫

SK
‖·‖

∫ 1/2

0
E1 (z)GU(dz)α(dU)< ∞

if and only if (4.17) holds (since E1(z)/(− ln(z))→ 1 as z→ 0) if and only if

I5 =
∫

SK
‖·‖

∫ 1/2

0
ln
(

1+
1
z

)
GU(dz)α(dU)< ∞

because ln(1+ z−1)/(− ln(z))→ 1 as z→ 0.
I5 < ∞ and (4.17) both imply ∫

SK
‖·‖

∫ 1/2

0
GU(dz)α(dU)< ∞.

Thus ∫
SK
‖·‖

∫ 1/2

0

1− e−z

z
GU(dz)α(dU)≤

∫
SK
‖·‖

∫ 1/2

0
GU(dz)α(dU)< ∞,

provided I5 < ∞ or (4.17) hold.
Since 0≤ E1(z)≤ e−z ln(1+1/z)∀z ∈ R+ (see [1, p. 229]), using (4.23) implies∫

SK
‖·‖

∫
∞

1/2
E1 (z)GU(dz)dsα(dU)

≤
∫

SK
‖·‖

∫
∞

1/2
e−z ln

(
1+

1
z

)
GU(dz)α(dU)≤ e−1/2I4.

Proposition 4.3. Let h ∈ L(ΓK(α,β )). Then the distribution of the K-valued random variable Y h is
infinitely divisible and has Laplace transform

LY h(Θ) = exp

(
−
∫

SK
‖·‖

∫
∞

0

∫
∞

0

(
1− e−rh(t,U)〈Θ,U〉

) e−β (U)r

r
dtdrα(dU)

)
(4.24)

= exp(−
∫

SK
‖·‖

∫
∞

0
ln
(

1+
〈Θ,U〉

z

)
GU(dz)α(dU). (4.25)

where for α-a.e. U, GU is a Thorin measure measure on R+ which is the image of Lebesgue measure
on R+ under the change of variable s→ β (U)/h(s,U). Moreover, the Lévy measure of Y h is

νY h(E) =
∫

SK
‖·‖

∫
∞

0
1E(rU)

kU(r)
r

drα(dU), E ∈B(K) (4.26)

where
kU(r) =

∫
∞

0
e−rzGU(dz). (4.27)
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Proof: Using the obvious analogue for the Laplace transform of the formulae for the characteristic
functions of the integrals with respect to i.d.i.s.r.m.s in [9, 30] we obtain

LY h(Θ) = exp
(
−
∫

K

∫
∞

0

(
1− e−

〈
Θ,h(s, x

‖x‖ )x
〉)

νµα,β
(dx)ds

)
= exp

(∫
∞

0

∫
SK
‖·‖

∫
∞

0

(
1− e−rh(s,U)〈Θ,U〉

) e−rβ (U)

r
drα(dU)ds

)
.

As in the last proposition, let GU(dz) be the measure on R+ which is the image of the Lebesgue
measure on R+ under the change of variable s→ β (U)/h(s,U) = z(U). Then

LY h(Θ) = exp

(∫
∞

0

∫
SK
‖·‖

∫
∞

0

(
1− e−r〈Θ,U〉

) e−rβ (U)/h(s,U)

r
drα(dU)ds

)

= exp

(∫
SK
‖·‖

∫
∞

0

∫
∞

0

(
1− e−r〈Θ,U〉

) e−rz

r
GU(dz)drα(dU)

)

= exp

(∫
SK
‖·‖

∫
∞

0

(
1− e−r〈Θ,U〉

) kU(r)
r

drα(dU)

)
.

Hence, combining (2.2) with the existence conditions for the integral, GU(dt) is a Thorin measure on
R+ for α-a.e. U .

4.4. Characterisation of Cone Valued GGC

In this section we define Generalized Gamma Convolutions GGC(K) in the cone K and charac-
terize this class as the distributions of the K-valued random elements represented by the stochastic
integral (4.15). The result is an extension to the cone valued case of the Wiener-Gamma integral
representation of one-dimensional generalised Gamma convolutions, see Section 1.2 in [16].

Similar to the multivariate case (see [3]), we define GGC(K) as follows

Definition 4.4. The class GGC(K) is the collection of all infinitely divisible distributions on K with
Lévy measure νµ having a polar decomposition

νµ(E) =
∫

SK
‖·‖

∫
∞

0
1E(rU)

kU(r)
r

drα(dU), E ∈B(K), (4.28)

where kU(r) is a measurable function in U and completely monotone in r for α-a.e. U.

A probabilistic interpretation of the class GGC(K) is provided by Theorem 4.6 below.
Proposition 4.3 says that the class of distributions of the Wiener-Gamma integrals Yh with h ∈

L(ΓK(α,β )) are GGC(K).
We now prove that all distributions in GGC(K) have a Wiener-Gamma integral representation. For

simplicity we consider the case without drift, that is Ψ0 = 0 in (4.1) and (4.3). Otherwise

Y h = Ψ0 +
∫

∞

0

∫
K

h
(

s,
x
‖x‖

)
xN(ds,dx).
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Theorem 4.5 (Wiener-Gamma characterization of GGC(K)). For any fixed Borel-measurable
function β : SK

‖·‖→ R+ bounded away from zero it holds that{
Y h =

∫
∞

0

∫
K

h(s,x/‖x‖)xN(ds,dx) : α a finite measure on B(SK
‖·‖),h ∈ L(ΓK(α,β ))

}
= GGC0(K)

with GGC0(K) denoting all generalized Gamma convolutions on K without drift.

The condition on β above is needed to ensure the existence of the Gamma random variables for all
finite measures α . The result implies that starting with any fixed homogeneous (or non-homogeneous
with β bounded away from 0) Gamma distribution one can obtain all generalized Gamma convolutions
as the sum of a constant and a Wiener-Itô integral with respect to the jump measure obtained from this
fixed distribution.
Proof: Let µ ∈ GGC0(K) with Lévy measure given by (4.28). Since kU(r) is completely monotone
in r for α-a.e. U , there exists a Radon measure GU such that kU(r) =

∫
∞

0 e−rzGU(dz). Moreover∫
SK
‖·‖

∫
∞

0
min(1,r)

kU(r)
r

drα(dU)< ∞. (4.29)

Let FGU (x) =
∫ x

0 GU(dz) for x ≥ 0 and F−1
GU

(s) be the right continuous generalised inverse of
FGU (s). Let h̃(s,U) = 1/F−1

GU
(s) and h(s,U) = β (U)h̃(s,U) for s ≥ 0. It follows as in the one di-

mensional case that GUµ , α-a.e. U , is a Thorin measure which is the image of Lebesgue measure on
(0,∞) under the change of variable s→ 1/h(s,U). That is,∫

∞

0
e−

β (U)x
h(s,U) ds =

∫
∞

0
e−

x
h̃(s,U) ds =

∫
∞

0
e−xzGU(dz), x > 0

and

I =
∫

SK
‖·‖

∫
∞

0

∫
∞

0

min(1,r)
r

e−rzGU(dz)drα(dU)

=
∫

SK
‖·‖

∫
∞

0

∫
∞

0

h(s,U)

β (U)

(
1− e−β (U)r/h(s,U)

)
drdsα(dU)

+
∫

SK
‖·‖

∫
∞

0
E1

(
h(s,U)

β (U)

)
dsα(dU).

Thus (4.29), Proposition 4.2 and (4.20) imply h ∈ L(ΓK(α,β )). Let N(ds,dx) be the Poisson random
measure associated to ΓK(α,β ) and Y h =

∫
∞

0
∫

K h(s,x/‖x‖)xN(ds,dx). Then Proposition 4.3 shows
that µ is the distribution of Y h which concludes the proof.

We also have another characterization of GGC(K), similar to a characterization of multivariate
GGC proved in [3, Theorem F]. This gives another probabilistic interpretation of GGC(K).

We call XV an elementary Gamma variable in K if X is a non-random non-zero vector in K and V
is a non-negative real random variable with one-dimensional Gamma distribution Γ(α,β ).

Theorem 4.6. GGC(K) is the smallest class of distributions on K closed under convolution and weak
convergence and containing the distributions of all elementary Gamma variables in K.
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Proof: The proof is along the same lines to that of Theorem F in [3, p. 27].
This implies also that GGC(K) is the smallest class of distributions closed under convolution and

weak convergence containing all K-valued Γ distributions in the sense of Definition 4.1. It is trivial to
see that GGC(K) includes all K-valued stable distribution using the spectral representation of stable
Lévy measures and maps h of the form h(s,U) = {sθ(U)Γ(α +1)}− 1

α with 0 < α < 1.

5. Positive Definite Matrix Gamma Distributions

In this section we consider the important case of non-negative definite Gamma random matrices.
This corresponds to the closed cone K = S+d of symmetric non-negative definite d×d matrices with
inner product 〈X ,Y 〉= tr(X>Y ), X ,Y ∈ S+d . When X is in the open cone S+d , we write X > 0. When
dealing with random matrices, a useful matrix norm is the trace norm defined for X ∈ Md(R) as

‖X‖= tr(
(
X>X

)1/2
). We write S+

‖·‖ = SS+d
‖·‖ = S‖·‖∩S

+
d . For X ∈ S+d , ‖X‖= tr(X) and, in particular, if

U ∈ S+
‖·‖, tr(U) = ‖U‖= 1. By Proposition 3.4 it is not important which norm we use. So we choose

the one most convenient to work with.

5.1. General Case
The matrix Gamma distribution µ ∼ ΓS+d

(α,β ) on S+d has the Laplace transform

Lµ(Θ) = exp

{
−
∫

S+
‖·‖

∫
∞

0

(
1− e−rtr(ΘU)

) e−β (U)r

r
drα(dU)

}
,∀Θ ∈ S+d (5.1)

with alternative representation

Lµ(Θ) = exp

{
−
∫

S+
‖·‖

ln
(

1+
tr(UΘ)

β (U)

)
α(dU)

}
,∀Θ ∈ S+d . (5.2)

Additional properties of Gamma random matrices to those for the general cone valued case in
Section 4.2 are the following.

If M is a symmetric random matrix with Gamma distribution ΓS+d
(α,β ), tr(M) follows a one-

dimensional Gamma convolution law. However, in the homogeneous case β (U) = β0 > 0, tr(M) has
a one-dimensional Gamma distribution Γ(α(S+

‖·‖),β0).

Proposition 5.1. a) If M∼ΓS+d
(α,β ), tr(M) has a one-dimensional GGC law with Laplace transform

Ee−θ tr(M) = exp
{
−
∫

∞

0
ln
(

1+
θ

s

)
υα,β (ds)

}
(5.3)

where υα,β is the Thorin measure on (0,∞) induced by α(dU) on S+
‖·‖ under the transformation

U → β (U).
b) If M ∼ ΓS+d

(α,β ) with β (U) = β0, then tr(M) has the one-dimensional Gamma distribution

Γ(α(S+
‖·‖),β0).

Proof: For θ > 0, let Θ = θ Id . Since Ee−θ tr(M) = Lµ(Θ), from (4.11)

Ee−θ tr(M) = exp

{
−
∫

S+
‖·‖

ln
(

1+
θ tr(U)

β (U)

)
α(dU)

}
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= exp
{
−
∫

∞

0
ln
(

1+
θ

s

)
υα,β (ds)

}
where υα,β is the measure on (0,∞) induced by α(dU) on S+

‖·‖ under the transformation U → β (U).
Then, using (2.1) we obtain (a). For (b) we observe that from the first equality in the last expression
with β (U) = β0, we obtain Ee−θ tr(M) = (1+θ/β0)

−α(S+
‖·‖) .

Any matrix Gamma distribution ΓS+d
(α,β ) is self-decomposable and if supp(α) is of full dimen-

sion, it is absolutely continuous with respect to the Lebesgue measure on Sd (which can be identified
with Rd(d+1)/2) and so there is a density. The proof follows from the multivariate case, identifying
the cone S+d with Rd(d+1)/2. Moreover, since the Lebesgue measure of S+d \S+d is zero, the distribution
ΓS+d

(α,β ) is supported in the the open cone X > 0. In other words

Corollary 5.2. Let M be a random matrix with Gamma distribution ΓS+d
(α,β ) with supp(α) of full

dimension. Then P(M > 0) = 1.

The following result is an adaptation of Proposition 3.8 to special linear operators preserving
the cone S+d . Observe that all invertible surjective linear operators preserving S+d are of the form
X 7→CXCT with some C ∈ GLd(R) (see [20, 21]).

Proposition 5.3. Let M ∼ ΓS+d
(α,β ) with respect to the trace norm ‖·‖ and let C ∈ G L d(R). Then

Y =CMC> ∼ ΓS+
‖·‖C

(αc,βc), where S+
‖·‖C

= S‖·‖c
∩S+d for ‖B‖C =

∥∥C−1BC−>
∥∥ and

αC(E) = α(C−1EC−>), ∀E ∈B(S+
‖·‖C

), (5.4)

and
βC(U) = β (C−1EC−>), ∀U ∈ S+

‖·‖C
. (5.5)

Moreover, Y ∼ ΓS+d
(α̂C, β̂C) with respect to the trace norm ‖·‖ where

α̂C(E) =
∫

S+
d (C)

1E

(
U
‖U‖

)
αC(dU), ∀E ∈B(S+

‖·‖) (5.6)

and

β̂C(U) = βC

(
U
‖U‖C

)
‖U‖C , ∀U ∈ S+

‖·‖. (5.7)

Example 5.4. (Diagonal matrix with independent entries). As pointed out in [5], an infinitely divis-
ible non-negative definite random matrix M has independent components if and only if it is diagonal
and therefore its Lévy measure is concentrated in the diagonal matrix axes E ii ∈ S+d , i = 1, ...d. Thus,
a Gamma random matrix M ∼ ΓS+d

(α,β ) has independent components, if and only if there exist non-
negative numbers β1, ...,βd such that the Lévy measure νX is given by

νM(E) =
d

∑
i=1

α(Eii)
∫

∞

0
1E(rU)

e−rβi

r
dr E ∈B(S+d ).

Further examples are considered in the next section.
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5.2. The AΓ-distribution
We now introduce a special matrix distribution AΓd(η ,Σ) in the open cone S+d with parameters,

η > (d− 1)/2 and Σ ∈ S+d . We study several properties including a relation between cumulants of
AΓ(η ,Σ) and the moments of a Wishart distribution.

The multivariate Gamma function, denoted by Γd(η), is defined for Re(η)> (d−1)/2 as

Γd(η) =
∫

X>0
e−tr(X) |X |η−(d+1)/2 dX , (5.8)

where dX is the Lebesgue measure on S+d (identified with Rd(d+1)/2); see for example [24, p. 61]. An
alternative expression for Γd(η) is ([24, Theorem 2.1.12])

Γd(η) = π
d(d−1)/4

d

∏
i=1

Γ

(
η− 1

2
(i−1)

)
, Re(η)> (d−1)/2. (5.9)

The special infinitely divisible matrix Gamma distribution AΓd(η ,Σ) is defined as follows. For
η > (d−1)/2, consider the measure ρη(dX) = gη(X)dX on the open cone S+d where

gη(X) = cd,η
e−tr(X)

(tr(X))ηd |X |
η−(d+1)/2 , X > 0, (5.10)

and

cd,η = ωd,η
Γ(ηd)
Γd(η)

(5.11)

and ωd,η > 0 is given.

Proposition 5.5. Let η > (d− 1)/2. Then there exists a homogeneous Gamma matrix distribution
ΓS+d

(αη ,β ) with respect to the trace norm where β (U) = 1 for each U ∈ S+
‖·‖ and αη is the measure

on S+
‖·‖ given by

αη(dU) = cd,η |U |η
dU

|U |(d+1)/2 (5.12)

with αη(S+
‖·‖)=ωd,η . Moreover, the Lévy measure of ΓS+d

(αη ,β ) is ρη and has a polar decomposition

ρη(E) =
∫

E
gη(X)dX = cd,η

∫
S+
‖·‖

∫
∞

0
1E(rU)

e−r

r
dr
|U |η dU

|U |(d+1)/2 , E ∈B(S+d ). (5.13)

Proof: To show existence of the matrix distribution ΓS+d
(αη ,β ), by Proposition 3.3 it suffices to prove

that αη is a finite measure, since trivially β satisfies (4.12). The fact that ΓS+d
(αη ,β ) is concentrated

in the open cone S+d will follow by Corollary 5.2 since from (5.12) supp(αη) has full dimension.
For X > 0 make the change of variable

X = rU,r = tr(X), tr(U) = 1,dX = rd(d+1)/2−1drdU (5.14)

([23, p. 111]). Using this in (5.8) and the fact that |rU |= rd |U |

Γd(η) =
∫

∞

0

∫
S+
‖·‖

rdη−1e−rdr |U |η dU

|U |(d+1)/2

= Γ(ηd)
∫

S+
‖·‖

|U |η dU

|U |(d+1)/2 (5.15)

and hence αη(S+
‖·‖) = ωd,η . Using again the change of variable (5.14) we have (5.13).
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Definition 5.6. Let η > (d−1)/2 and Σ ∈ S+d . An infinitely divisible p× p positive definite random
matrix M is said to follow the distribution AΓd(η ,Σ) if it has Gamma distribution ΓS+d

(αη ,Σ,βΣ) with
respect to the trace norm where βΣ(U) = tr(Σ−1U) and

αη ,Σ(dU) =
1

|Σ|η tr(Σ−1U)ηd αη(dU) (5.16)

and αη is given by (5.12).

Remark 5.7. a) The distribution AΓd(η ,Σ) has also as a parameter the total mass αη(S+
‖·‖) = ωd,η .

This parameter is conjectured to be of particular importance when considering the limiting spec-
tral (eigenvalue) distribution as the dimension goes to infinity, since it may then depend on η or d.
Particularly, interesting choices of ωd,η in this connection should be dη , d or a constant.

b) The case η = (d +1)/2 was considered in Barndorff-Nielsen and Pérez-Abreu [5].
c) Note that for η ∈ ((d−1)/2,(d +1)/2) the Lévy density becomes infinity at the non-invertible

elements of S+d (i.e. the matrices which are positive semi-definite, but not strictly), whereas for η >
(d +1)/2 the Lévy density becomes zero at the non-invertible elements of S+d . For η = (d +1)/2 we
have that αη ,Id is the uniform measure on the unit sphere.

d) The Fourier-Laplace of the distribution AΓd(η , Id) is

Lµ(Θ) = exp

{
−cd,η

∫
S+
‖·‖

ln
(

1+
tr(UΘ)

β (U)

)
|U |η dU

|U |(d+1)/2

}
,∀Θ ∈ S+d .

e) This is an absolutely continuous Lévy measure. For similar alternatives with continuous singu-
lar Lévy measures, see the BΓd distributions with q < d in the next section.

f) η > (d− 1)/2 is a necessary and sufficient condition to define a proper Lévy measure. The
sufficiency is shown above. For the necessity it is enough to note that the poles of the Lévy density
different from zero need to be of an order lower than one in order to give a valid Lévy measure.

Note that if M∼AΓ(η , Id), then Σ1/2MΣ1/2∼AΓd(η ,Σ). This follows from Proposition 5.3 which
also gives together with Proposition 5.5, that AΓd(η ,Σ) has Lévy measure ρη ,Σ(dX) = gη ,Σ(X)dX
where

gη ,Σ(X) =
cd,η

|Σ|η
e−tr(Σ−1X)

[tr(Σ−1X)]ηd |X |
η−(d+1)/2 , X > 0. (5.17)

The existence of moments of all orders of AΓd(η , Id) follows since (4.12) is trivially satisfied. The
same is true for AΓd(η ,Σ) since Σ1/2MΣ1/2 ∼ AΓd(η ,Σ).

In the homogeneous case the distribution AΓd(η ,σ Id) with σ ∈ R+ is invariant under orthogonal
conjugations and the trace follows a one-dimensional Gamma distribution.

Lemma 5.8. Let η > (d−1)/2 and σ > 0.
a) The distribution AΓd(η ,σ Id) is invariant under orthogonal conjugations.
b) If M ∼ AΓd(η ,σ Id), then tr(M) follows a one-dimensional Gamma distribution Γ(ωd,η ,σ).

Proof: It is well known that the measure dX/ |X |(d+1)/2 is invariant under the conjugation X→CXC>,
for X > 0 and any non-singular matrix C (see [13, Example 6.19]). The determinant and the trace norm
functions are invariant under the conjugation X → OXO>, for X > 0 and any O ∈ O(d). Thus the
Lévy measure ρη ,σ Id with density (5.17), Σ = σ Id , is invariant under orthogonal conjugations and so
the matrix distribution AΓ(η ,σ Id) is. Proposition 5.1(b) gives (b).
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The cumulants of the distribution AΓd(η ,σ Id) are related to the moments of the Wishart distri-
bution, as we prove below. Recall that a d× d positive definite random matrix W is said to have a
Wishart distribution Wd(n,d) with parameters n > d−1 and Σ ∈ S+d , if its density function is given by

fW (A) =
1

2
dn
2 Γd(

n
2) |Σ|

n
2

e−
1
2 tr(Σ−1A) |A|(n−d−1)/2 , A > 0. (5.18)

As usual we denote by A⊗B the tensor product of the matrices A and B. We recall that if A and B are
in Mn, then tr(A⊗B) = tr(A)tr(B) and |A⊗B|= |A|n |B|n.

We use the notation B(n,m)=Γ(n)Γ(m)/Γ(n+m) for the Beta function, with Re(n)> 0,Re(m)>
0, and for the multivariate Beta function, denoted by Bd(x,y),

Bd(n,m) =
Γd(n)Γd(m)

Γd(n+m)
, Re(n)> 0,Re(m)> 0. (5.19)

Proposition 5.9. Let η > (d−1)/2 and gη ,Σ(X) be the Lévy density of AΓd(η ,Σ). Let W be a random
matrix with Wishart distribution Wd(2η ,Σ). For any integer p > 0 the following three identities hold:

a) ∫
X>0

X pgη ,Σ(X)dX =
ωd,η

2p B(ηd, p)EW p. (5.20)

b) ∫
X>0

X⊗pgη ,Σ(X)dX =
ωd,η

2p B(ηd, p)E(W⊗p). (5.21)

c) ∫
X>0
|X |p gη ,Σ(X)dX =

ωd,η

2pd B(ηd, pd)E(|W |p) (5.22)

= ωd,ηΓd(p)
B(ηd, pd)
Bd(η , p)

|Σ|p . (5.23)

Proof: The existence of the integrals (5.20)-(5.22) is seen as follows. The finiteness of the p-th
moment of AΓd(η ,Σ) is equivalent to the existence of the p-th moment of its Lévy measure (away
from the origin). Then

∫
X>0 ‖X‖

p gη ,Σ(X)dX < ∞ for any p > 0 gives the existence of the integral in
(5.20). Since for X > 0 tr(X⊗p) = (tr(X))p = ‖X‖p and |X | ≤ ‖X‖d , one also obtains the existence of
the integrals in (5.21) and (5.22), respectively.

The identities in (a)-(c) are consequences of a more general result for q-homogeneous functions
which we now prove: Let h : S+d → H be a function such that h(rX) = rqh(X) for any r > 0 and
X ∈ S+d and some fixed q > 0, where H is S+d ,

(
S+d
)⊗p and (0,∞) for (a),(b) and (c) respectively. In

the cases (a) and (b) we have q = p while for (c) q = d p.
The change of variable V = Σ−1/2XΣ−1/2, the invariance of the measure |X |−(d+1)/2 dX under

non-singular linear transformations and writing hΣ(Y ) = h(Σ1/2Y Σ1/2) give:

J =
∫

X>0
h(X)gη ,Σ(X)dX = cd,η

∫
X>0

h(X)
cd,η

|Σ|η
e−tr(Σ−1X)

(tr(Σ−1X))ηd |X |
η−(d+1)/2 dX

= cd,η

∫
V>0

hΣ(V )
e−tr(V )

(tr(V ))ηd |V |
η−(d+1)/2 dV.
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Using (5.14), the definition of the Gamma function, first for Γ(q) and then for Γ(ηd +q), and (5.11)
give

J = cd,η

∫
∞

0

∫
S+
‖·‖

rq−1hΣ(U)e−rdr |U |η dU

|U |(d+1)/2

= cd,ηΓ(q)
∫

S+
‖·‖

hΣ(U) |U |η dU

|U |(d+1)/2

=
cd,ηΓ(q)

Γ(ηd +q)

∫
S+
‖·‖

∫
∞

0
rηd+q−1hΣ(U)e−rdr |U |η dU

|U |(d+1)/2

=
ωd,ηB(ηd,q)

Γd(η)

∫
V>0

hΣ(V )e−tr(V ) |V |η−(d+1)/2 dV (5.24)

=
ωd,ηB(ηd,q)

2ηdΓd(η)

∫
A

hΣ

(
1
2

A
)

e−
1
2 tr(A) |A|η dA

|A|(d+1)/2 (5.25)

= ωd,ηB(ηd,q)
∫

A
h
(

1
2

A
)

fW (A)dA = ωd,ηB(ηd,q)
(

1
2

)q

E(h(W )), (5.26)

where in (5.24) we used again (5.14), in (5.25) the change of variable A = V/2 (with dV =
(1/2)(d+1)/2dA), and for (5.26) the fact that fW is the density (5.18) of the random matrix W with
Wishart distribution Wd(2η ,Σ).

Then (a), (b) and the first equality in (5.22) are proved. The second equality in (5.22) follows
using the fact that E |W p|= |Σ|p 2d pΓd(η + p)/Γd(η) (see Muirhead [24, p. 101]).

In particular, the mean E(M) and covariance matrix Cov(M) = E(M⊗M)−E(M)⊗E(M) of
M∼AΓd(η ,Σ) are expressed in terms of the mean E(W ) and the second tensor moment E(W )⊗E(W )
of the Wishart distribution Wd(2η ,Σ). Recall that the commutation d2×d2 matrix K is defined as

K =
d

∑
i, j=1

Hi j⊗H>i j

where Hi j denotes the d×d matrix with hi j = 1 and all other elements zero. The m-th moments and
cumulants of a d× d random matrix are d2m-dimensional objects which need to be represented in a
concise and at the same time easy to handle way. As usual for random matrices we define the moments
and cumulants using the tensor product, e.g. the m-th moment of a random matrix X is understood to
be E(X⊗m). An alternative would be to use the vec-operator to transfer the matrix into an element of
Rd2

first, but typically this leads to formulae that are more cumbersome to handle. Now we have:

Corollary 5.10. The cumulants of the random matrix M ∼ AΓd(η ,Σ) are proportional to the tensor
moments of the Wishart distribution. In particular

E(M) =
ωd,η

d
Σ (5.27)

and the matrix of covariances between elements of M is given by

Cov(M) = ωd,η
η

d(nd +1)

((
1+

1
2η

)
Id2 +K

)
(Σ⊗Σ). (5.28)
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Proof: The first assertion follows from (b) in Proposition 5.9. Since the first moment of M equals its
first cumulant and its matrix of covariances equals its second cumulant, then (5.27) follows from (a)
in Proposition 5.9 with p = 1 and since E(W ) = 2ηΣ for W ∼Wd(2η ,Σ). From [24, p. 90] we have

Cov(W ) = 2η(Id2 +K)(Σ⊗Σ).

Using (b) in Proposition 5.9 with p = 2 we have

Cov(M) =
∫

X>0
X⊗2gη ,Σ(X)dX =

ωd,η

4
1

(nd +1)ηd
E(W⊗2)

=
ωd,η

4
1

(nd +1)ηd

[
Cov(W )+ [E(W )]⊗2

]
.

Hence (5.28) follows.
In particular, when ωd,η = dη , E(M) = ηΣ, as in the Wishart case. On the other hand, when

ωd,η = d, E(M) = Σ.
This result is of particular importance in applications, since it implies that the second order mo-

ment structure is explicitly known which may allow method of moments based estimation of models
using AΓd(η ,Σ) matrix subordinators as the stochastic input (e.g. [29])

The following result states an interesting relation with the so-called Marchenko-Pastur distribution
of parameter λ > 0. Recall that the moments of this distribution are given by (see [2])

µp(λ ) =
p−1

∑
j=0

1
j+1

(
p
j

)(
p−1

j

)
(λ ) j . (5.29)

Lemma 5.11. Let ε ∈ R. For any integer p > 0, as d→ ∞ and d/η → λ > 0

1
d

∫
X>0

tr
(

X
dε

)p

gη ,Id (X)dX ∼ Kp(λ )ωd,ηd−p(1+ε) (5.30)

where Kp(λ ) = Γ(p)µp(2λ ). In particular, for ε = 1

lim
d→∞

1
d

∫
X>0

[
tr
(

X
d

)p]
gη ,Id (X)dX =

{
λ , if p = 1
0, if p≥ 2

. (5.31)

Proof: If W ∼Wd(2η , Id), then

lim
d→∞

1
d
Etr
(

W
2η

)p

= µp(2λ ). (5.32)

as 2η/d→ 2λ due to the well known Marchenko-Pastur Theorem [2], for any p > 0,
By the Stirling approximation Γ(z+1)∼

√
2πz(z/e)z for z→ ∞, for η and d large

Γ(ηd)
Γ(ηd + p)

∼ (nd)−p. (5.33)

Using η/d→ λ and (5.32) in (5.20) gives:

1
d

∫
X>0

tr
(

X
dε

)p

gη ,Id (X)dX =
ωd,η

dε p+12p B(ηd, p)Etr(W p)
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=
ωd,η

dε p
Γ(ηd)Γ(p)
Γ(ηd + p)

1
d
Etr(

W
2

p
)

∼ Γ(p)ωd,η(ηd)−pd−pε

[
1
d
Etr
(

W
2

)p]
∼ Γ(p)ωd,ηd−p−pε

[
1
d
Etr
(

W
2

)p]
(5.34)

∼ Kp(λ )ωd,ηd−p(1+ε), for η ,d large, (5.35)

which proves the lemma.

Conjecture 5.12. We conjecture that the above Lemma is a first step to study the asymptotic spectral
distribution of the random matrix M ∼ AΓd(η ,Σ). More specifically, the right hand side of (5.31)
must be related to the pth-cumulant of the pth-moment of the mean spectral distribution of M, which
in turn should allow the identification of the limiting spectral distribution.

5.3. Further examples
5.3.1. BΓ-distributions

Let d ≥ 1 and q = 1, ...,d be fixed. Consider the Lévy measure on S+d given by

νq(dX) =
e−β0‖X‖

‖X‖
α̃d,q(dX), X ∈ S+d \{0} (5.36)

where β0 > 0 and

α̃d,q(E) =
∫

S+
‖·‖

∫
∞

0
1E(rU)drαd,q(dU). (5.37)

Here αd,q/d is the probability measure on the sphere S+
‖·‖ induced by the transformation V →U =

VV>, where the d×q matrix V is uniformly distributed on the unit sphere of the linear space Md×q(R)
of d×q matrices with real entries, with the Frobenius norm ‖Y‖2

2 = tr(Y>Y ).
An infinitely divisible d×d symmetric random matrix M with Lévy measure νq has the Gamma

distribution ΓS+d
(αd,q,β0), since νq has a polar decomposition

νq(E) =
∫

S+
‖·‖

∫
∞

0
1E(rU)

e−r

r
drαd,q(dU), E ∈B(S+d ).

We call this distribution the BΓd(q,β0) distribution.

Remark 5.13. a) We observe that the support of νq is concentrated in matrices of rank q in S+d . Hence
this support is of full dimension. Then, by Corollary 5.2, ΓS+d

(αd,q,β0) has support in the open cone

S+d .
b) The case q = 1 was considered in Pérez-Abreu and Sakuma [27] in the context of random

matrix models for free generalised Gamma convolutions. They considered the Hermitian case for
which working in the setup of Md×q(C) is needed, but otherwise the above steps can be carried out
in a straightforward way.

c) For Σ ∈ S+d one can consider invertible linear transformations of ΓS+d
(αd,q,β0) to obtain in-

finitely divisible positive definite matrix Gamma distributions ΓS+d
(αη ,Σ,βΣ) with Lévy measures of the

form

νq(dX) =
e−‖Σ−1X‖

‖Σ−1X‖
α̃d,q(Σ

−1/2dXΣ
−1/2)
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similar to the family Γ of matrix Gamma distributions considered in the last section.

The following properties are easily proved.

Proposition 5.14. Let M ∼ ΓS+d
(αd,q,β0) and q = 1, ...,d be fixed. Then,

a) M has an invariant distribution under orthogonal conjugations.
b) E‖M‖k < ∞ for any k > 0.
d) tr(M) has a one-dimensional Gamma distribution Γ(d,β0).

5.3.2. Matrix Gamma-Normal distribution
In the one-dimensional case, the so called variance gamma distribution is popular in applications

in finance, see [22]. This distribution is a mixture of Gaussians having a random variance following
the one-dimensional Gamma distribution. As an application of the matrix Gamma distribution, we
now present a matrix extension of the one-dimensional variance Gamma distribution.

Let Z be a d×q random matrix with independent standard Gaussian distributed entries, i.e.

Eexp(itr(Θ>Z)) = exp
(
−1

2
tr(Θ>Θ)

)
, ∀Θ ∈Md×q(R).

Let X be a random matrix with the Gamma distribution ΓS+d
(α,β ) and independent of Z. Consider

the random linear transformation Y = X1/2Z. Using a standard conditional argument we compute the
characteristic function of the d×q matrix as follows:

Eexp(itr(Θ>Y )) = EXEZ

[
exp(itr(Θ>X1/2Z))

∣∣∣X)
]

= EX

{
exp(−1

2
tr(X1/2

ΘΘ
>X1/2))

}
= EX

{
exp(−1

2
tr(ΘΘ

>X))

}
.

Then, using (4.11)

Eexp(itr(Θ>Y )) = exp

{
−
∫

S+
‖·‖

ln
(

1+
1
2

tr(UΘΘ>)

β (U)

)
α(dU)

}
, (5.38)

for each Θ ∈Md×q(R). Using the terminology in [6], we can say that Y has a MatG distribution,
which is infinitely divisible in Md×q(R).

Similar to the one-dimensional case, we call this distribution the matrix Gamma-Normal distribu-
tion with parameters α and β or more specifically the d× q-dimensional matrix ΓS+d

(α,β )-Normal

distribution. We observe that Y has a symmetric distribution in the sense that −Y law
= Y and also that Y

has a distribution invariant under orthogonal conjugations if β (U) = β0 and α(dU) is invariant under
orthogonal conjugations.

Remark 5.15. If β (U) = β0 > 0 and q = d, tr(Y ) has a one-dimensional variance Gamma distribu-
tion with the following characteristic function: for θ ∈ R, Θ = θ Id ,

Eexp(iθ tr(Y )) = exp

{
−
∫

S+
‖·‖

ln
(

1+
1

2β0
θ

2
)

α(dU)

}
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=

(
1+

1
2β0

θ
2
)−α(S+

‖·‖)

=

(
1− i

1√
2β0

θ

)−α(S+
‖·‖)
(

1+ i
1√
2β0

θ

)−α(S+
‖·‖)

..

Thus, tr(Y ) has the same distribution as V −V ,́ where V has a one-dimensional Gamma distribution
Γ(α(S+

‖·‖),
√

2β0) and V´ is an independent copy of V.

Remark 5.16. Let q = 1, i.e. the resulting matrix Gamma-normal distribution is Rd-valued. Thus for
Θ ∈ Rd , ΘΘ> has rank one.

Assume additionally that the measure α is concentrated on the rank one matrices, that is U = uu>

with u ∈ Rd (and the first non-zero component of u being positive, to make u unique given U). Let α̃

be the measure on the unit sphere SRd ,‖·‖ of Rd induced by α under this transformation. Using this
we write the integral in the right hand side of (5.38) as follows∫

S+
‖·‖

ln
(

1+
1
2

tr(UΘΘ>)

β (U)

)
α(dU)

=
∫

SRd ,‖·‖

ln

(
1+

1
2

(
Θ> u

)2
)

β (uu>)

)
α̃(du)

=
∫

SRd ,‖·‖

ln

(
1− i

Θ> u√
2β (uu>)

)
α̃(du)

+
∫

SRd ,‖·‖

ln

(
1+ i

Θ> u√
2β (uu>)

)
α̃(du). (5.39)

Interestingly, (5.39) implies that the matrix Gamma-normal random variable can be represented (in
this special case) as X1−X2 with X1,X2 ∼ Γd(α̃, β̃ ) being independent where β̃ =

√
2β (uu>).

Hence, the matrix Gamma-normal distribution with q = 1, which can indeed be regarded as a d-
dimensional generalisation of the univariate variance Gamma distribution, inherits interesting prop-
erties well-known in the univariate case.
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