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The first jump approximation of a pure jump Lévy process, which converges to the
Lévy process in the Skorokhod topology in probability, is generalised to a multivariate
setting and an infinite time horizon. It is shown that it can generally be used to obtain “first
jump approximations” of Lévy-driven stochastic differential equations, by establishing
that it has uniformly controlled variations.

Applying this general result to multivariate exponential continuous time GARCH(1,1)
processes, it is shown that there exists a sequence of piecewise constant processes deter-
mined by multivariate exponential GARCH(1,1) processes in discrete time which con-
verge in probability in the Skorokhod topology to the continuous time process.
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1 Introduction

Stochastic Differential Equations (SDEs) driven by Lévy processes are widely used for stochastic
modelling in various areas of applications. For simulations and analysing discretely observed data
(discrete time) approximations are usually called for. Such approximations are e.g. the Euler scheme
(see [6, 7, 17]), methods based on series representations ([18]) or normal approximations ([2, 21]).
Recently, Szimayer and Maller [22] suggested a new approximation scheme for pure jump Lévy
processes, the first jump approximation. The idea is to approximate the Lévy process on a given
time grid by considering only the first jump of size greater than some minimal size and shifting
this jump to the next grid point. Provided the grid size and minimal jump size converge to zero at
suitable rates, the corresponding first jump approximations converge to the Lévy process in probability
in the Skorokhod topology. Szimayer and Maller [22] considered this approximation scheme for
univariate Lévy processes over a finite time horizon and used it to construct an approximation scheme
for American option pricing. Recently the first jump approximation was used in [15] to show that for
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a COGARCH(1,1) process, as introduced in [10], there exists a sequence of GARCH(1,1) processes
converging to it in probability in the Skorokhod topology.

In this paper we extend the first jump approximation to multivariate Lévy processes and an infinite
time horizon. Thereafter we show that it has uniformly controlled variations in the sense of [11,
13]. This property is in our context equivalent to uniform tightness and implies that one obtains an
approximation of the solution of a pure jump Lévy driven SDE when replacing the Lévy process
with its first jump approximation. The solutions of the approximating SDEs again converge in the
Skorokhod topology in probability.

Furthermore, we use the first jump approximation of Lévy driven SDEs to derive an interesting
property of a concrete model, viz. multivariate exponential continuous time GARCH(1,1) (henceforth
ECOGARCH(1,1)) processes (see [4, 5]). These processes form a multivariate stochastic volatility
model and are thus of particular interest regarding the modelling of financial data. We show that
for a multivariate ECOGARCH(1,1) process there exists a sequence of piecewise constant processes
determined by multivariate exponential GARCH(1,1) (henceforth EGARCH(1,1)) processes which
converge to the ECOGARCH(1,1) process in the Skorokhod topology in probability. The importance
of this result is that it provides a link between discrete and continuous time modelling and a possibility
for the estimation of ECOGARCH(1,1) processes like for COGARCH(1,1) processes in [15], where a
similar convergence result for COGARCH(1,1) processes was obtained using a tailor-made approach
instead of general results on SDEs.

This paper is organised as follows. In the next Section 2 we summarise notation and some prelimi-
naries regarding Lévy processes and convergence in the Skorokhod topology. Section 3 discusses the
first jump approximation of Lévy driven SDEs. Finally, in Section 4 we first review discrete time mul-
tivariate EGARCH(1,1) processes and multivariate ECOGARCH(1,1) processes briefly. Thereafter it
is shown that an ECOGARCH(1,1) process can be approximated arbitrarily well in the Skorokhod
topology in probability by piece-wise constant processes determined by discrete time EGARCH(1,1)
processes.

2 Preliminaries

Before presenting our results we summarise below the notation to be used and some basic facts on
Lévy processes and convergence in the Skorokhod space.

2.1 Notation

Throughout this paper we write R+ for the positive real numbers including zero, R++ when zero is
excluded. Moreover, we denote the set of real d×m matrices by Md,m(R), the d× d matrices by
Md(R), the group of invertible d×d matrices by GLd(R), the linear subspace of symmetric matrices
by Sd , the (closed) positive semi-definite cone by S+

d and the open (in Sd) positive definite cone by
S++

d . Id stands for the d× d identity matrix, det(A) for the determinant and σ(A) for the spectrum
(the set of all eigenvalues) of a matrix A ∈ Md(R). Moreover, vech : Sd → Rd(d+1)/2 denotes the
“vector-half” operator that stacks the columns of the lower triangular part of a symmetric matrix
below another. Finally, A∗ is the adjoint of a matrix A ∈Md(R).

Norms of vectors and matrices are denoted by ‖ · ‖. If the norm is not specified then it is irrelevant
which particular norm is used.

The exponential of a matrix A is denoted by exp(A) or eA and the unique positive semi-definite
square root of a matrix A ∈ S+

d by A1/2.
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For a matrix A we denote by Ai j the element in the i-th row and j-th column and this notation is
extended to processes in a natural way.

Regarding all random variables and processes we assume that they are defined on a given appropri-
ate filtered probability space (Ω,F ,P,(Ft)t∈R+) satisfying the usual hypotheses (complete and right
continuous filtration). Lp denotes as usual the space of all random variables with a finite p-th moment,
i.e. all random variables X with E(‖X‖p) < ∞ in a multivariate setting.

The indicator function of some set A is denoted by 1A.

2.2 Multivariate Lévy processes

Now we state some elementary properties of multivariate Lévy processes that will be needed. For a
more general treatment and proofs we refer to [1, 16, 20].

We consider a pure jump Lévy process L = (Lt)t∈R+ (where L0 = 0 a.s.) in Rd determined by its
characteristic function E

[
ei〈u,Lt〉] = exp{tψL(u)}, t ≥ 0, in the Lévy-Khintchine form where

ψL(u) =i〈γL,u〉+
∫

Rd

(
ei〈u,x〉−1− i〈u,x〉1[0,1](‖x‖)

)
νL(dx) for u ∈ Rd (2.1)

with γL ∈ Rd and νL being a measure on (Rd,B(Rd)) that satisfies νL({0}) = 0 and
∫
Rd (‖x‖2 ∧

1)νL(dx) < ∞. The measure νL is referred to as the Lévy measure of L. Here ‖ · ‖ may be any fixed
norm. Different norms simply correspond to different truncation functions and thus for a given Lévy
process γL changes when the norm is changed. Implicitly we presume throughout this paper that given
a Lévy process γL is set to the value such that (2.1) holds with the currently employed norm.

It is a well-known fact that to every càdlàg Lévy process L on Rd one can associate a random
measure NL onR+×Rd \{0} describing the jumps of L (see e.g. [8, Section II.1]). For any measurable
set B⊂ R+×Rd \{0},

NL(B) = ]{s≥ 0 : (s,Ls−Ls−) ∈ B}.
The jump measure NL is an extended Poisson random measure (as defined in [8, Definition II.1.20])
on R+×Rd \{0} with intensity measure nL(ds,dx) = dsνL(dx). By the Lévy-Itô decomposition we
can rewrite L almost surely as

Lt = γLt +
∫

‖x‖≥1

∫ t

0
xNL(ds,dx)+ lim

ε↓0

∫

ε≤‖x‖≤1

∫ t

0
xÑL(ds,dx). (2.2)

for every t ≥ 0. Here ÑL(ds,dx) = NL(ds,dx)−dsνL(dx) is the compensated jump measure, the terms
in (2.2) are independent and the convergence in the last term is a.s. and locally uniform in t ≥ 0.

Assuming that νL satisfies additionally
∫
‖x‖>1 ‖x‖2 νL(dx) < ∞, L has finite mean and covariance

matrix ΣL given by ΣL = CL +
∫
Rd xx∗νL(dx).

For the theory of stochastic integration and SDEs (with respect to Lévy processes and/or random
measures) we refer to any of the standard texts, e.g. [1, 8, 16].

2.3 Convergence in the Skorokhod topology

For a complete and separable normed space (E,‖·‖E) denote by DE the set of all functions f :R+→E
that are right continuous and have left limits. Let further Λ be the set of all time change functions, i.e.
all continuous and strictly increasing functions λ :R+ →R+ that satisfy λ (0) = 0 and limt→∞ λ (t) =
∞. Denote by eR+ the function R+ → R+, t 7→ t and by ‖x‖E,[a,b) := supt∈[a,b) ‖x(t)‖E for x ∈ DE . A
sequence (xn)n∈N in DE converges to x ∈ DE in the Skorokhod topology if there exists a sequence
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(λn)n∈N in Λ such that (λn)n∈N converges uniformly to eR+ , i.e. limn→∞ ‖λn− eR+‖R+,[0,∞) = 0, and
(xn ◦λn)n∈N converges uniformly on compacts to x, i.e. limn→∞ ‖xn ◦λn− x‖E,[0,N] = 0 for all N ∈ N.
A separable (yet not complete) metric inducing the Skorokhod topology is given by

dE(x,y) = inf
λ∈Λ

dλ ,E(x,y) for x,y ∈ DE (2.3)

where

dλ ,E(x,y) = ‖λ − eR+‖R+,[0,∞) +
∞

∑
n=1

1
2n min

(
1,sup

t≤n
‖x(min(n,λ (t)))− y(min(n, t))‖E

)
,

see e.g. [13]. For equivalent norms on E the above definition leads to equivalent metrics on DE .
Convergence of a sequence (X (n))n∈N of E-valued càdlàg random processes, i.e. random variables
in DE , in probability in the Skorokhod topology to a càdlàg random process X means for us in the
following that plimn→∞dE(X (n),X) = 0 with plim denoting the limit in probability. Moreover, we
note that uniform convergence on compacts in probability (ucp convergence, cf. [16, Chapter II.4])
obviously implies convergence in the Skorokhod topology in probability and that in a metric space
convergence in probability is metrisable (follows e.g. by replacing the absolute value with the metric
in [14, p. 160 (3), p.175 9.]).

For a more comprehensive introduction to the Skorokhod topology we refer the reader to [3] or [8,
Chapter VI], for instance.

3 First jump approximation of Lévy driven SDEs

In this section we present our main result, the first jump approximation of Lévy driven SDEs. We
start by giving a d-dimensional and infinite time extension of the first jump approximation for a Lévy
process presented in [22] and an interesting refinement of it for a Lévy process with zero mean. Below
the infimum over an empty set is taken to be ∞ as usual.

Theorem 3.1. Let L be a d-dimensional pure jump Lévy process with drift γL and Lévy measure νL.
Further let (m(n))n∈N be a positive sequence, which is bounded by 1 and monotonically decreases to
0, and (t(n)

i )i∈N0 be for each n ∈ N a strictly increasing sequence with t(n)
0 = 0 and limi→∞ t(n)

i = ∞.

Setting δ (n) := supi∈N
{

t(n)
i − t(n)

i−1

}
, assume further that limn→∞ δ (n) = 0 and

lim
n→∞

δ (n)
(

νL

(
J(n)

))2
= 0 , (3.1)

where J(n) := {x ∈ Rd : ‖x‖> m(n)}.
(a) Define for all n ∈ N

γ(n) := γL−
∫

J(n)∩{‖x‖≤1}
xνL(dx),

τ(n)
i := inf{t : t(n)

i−1 < t ≤ t(n)
i ,‖∆Lt‖ ∈ J(n)} for all i ∈ N,

L̃(n)
t := γ(n)t + ∑

i∈N: τ(n)
i ≤t

∆Lτ(n)
i

for t ∈ R+, L̃(n) := (L̃(n)
t )t∈R+ ,

L̄(n)
t := L̃(n)

t(n)
i−1

, for all t ∈ [t(n)
i−1, t

(n)
i ), i ∈ N, L̄(n) := (L̄(n)

t )t∈R+ .
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Then it holds that
L̃(n) → L in ucp as n→ ∞ (3.2)

and
plimn→∞dRd (L̄(n),L) = 0. (3.3)

(b) If L has finite expectation and E(L1) = 0, define L(n) := (L(n)
t )t∈R+ by setting

L(n)
t := ∑

i∈N: t(n)
i ≤t


1(0,∞)(τ

(n)
i )∆Lτ(n)

i
− 1− e−νL(J(n))

(
t(n)
i −t(n)

i−1

)

νL
(
J(n)

)
∫

J(n)
xνL(dx)


 .

Then
plimn→∞dRd (L(n),L) = 0. (3.4)

and E
(

L(n)
t

)
= 0 for all t ∈ R+ as well as E

(
∆L(n)

t(n)
i

)
= 0 for all i ∈ N and each n ∈ N.

(c) Provided E(‖L1‖2) < ∞, it holds that E(‖L̃(n)
t ‖2), E(‖L̄(n)

t ‖2), E(‖L(n)
t ‖2) and E(‖∆L̃(n)

t ‖2),
E(‖∆L̄(n)

t ‖2), E(‖∆L(n)
t ‖2) are finite for all t ∈ R+ and n ∈ N.

The definition of τ(n)
i above means that it is the first time in the grid interval (t(n)

i−1, t
(n)
i ] at which

L has a jump bigger than m(n) in norm. If there is no such jump, τ(n)
i = ∞. L̃(n) approximates the

Lévy process L by a drift and the first jumps of size greater than m(n) in the grid intervals. Since
the jumps are left at their original time, we obtain ucp convergence. In the approximation L̄(n) both
these jumps and the increment caused by the drift are shifted to the grid points, so that L̄(n) is constant
in between the grid times. Due to shifting the jumps we obtain only convergence in the Skorokhod
topology. Finally, the approximation L(n) is a modification of L̄(n) when L has a finite and vanishing
first moment. It ensures that also the approximation has a vanishing mean, as it will often be desirable
to reproduce this property of L.

Proof. (a) An inspection of the proof of [22, Theorem 3.1] shows that it immediately generalises to
our multivariate set-up with no upper bound on the jump sizes and no binning of the jump sizes. This
proves (3.2) which implies

plimn→∞dRd (L̃(n),L) = 0.

Using the time change λ which is the obvious extension to [0,∞) of the time change employed in the
proof of [22, Theorem 3.2] and arguments analogous to theirs give dRd (L̃(n), L̄(n))≤ dλ ,Rd (L̃(n), L̄(n))≤
δ (n) +o(

√
δ (n))→ 0 as n→ ∞ a.s. The triangle inequality thus establishes (3.3).

(b) Assume now E(L1) = 0. Then E
(

L(n)
t

)
= 0 for all t ∈ R+ as well as E

(
∆L(n)

t(n)
i

)
= 0 for all

i ∈ N and each n ∈ N follows from

E
(

1(0,∞)(τ
(n)
i )∆Lτ(n)

i

)
=

1− e−νL(J(n))
(

t(n)
i −t(n)

i−1

)

νL
(
J(n)

)
∫

J(n)
xνL(dx).

Since E(L1) = 0, we have γL = −∫
‖x‖>1 xνL(dx). Hence, straightforward calculations give for all

t ∈ R+

‖L̄(n)
t −L(n)

t ‖=

∥∥∥∥∥∥ ∑
i∈N: t(n)

i ≤t


1− e−νL(J(n))

(
t(n)
i −t(n)

i−1

)

νL
(
J(n)

)
∫

J(n)
xνL(dx)−

(
t(n)
i − t(n)

i−1

)∫

J(n)
xνL(dx)




∥∥∥∥∥∥
≤ tC(n) ,
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where C(n) =
√

δ (n)
∫

J(n) ‖x‖νL(dx)∑∞
k=1

(νL(J(n))
√

δ (n))k
(δ (n))(k−1)/2

k+1! .

Since (3.1) and E(‖L1‖) < ∞ imply that
√

δ (n)
∫

J(n) ‖x‖νL(dx) and νL(J(n))
√

δ (n) converge to zero
as n → ∞, we have limn→∞C(n) = 0 and hence limn→∞ ‖L̄(n)−L(n)‖Rd ,[0,T ] = 0 a.s. for all T ∈ R+.
Combining this with (3.3) shows (3.4).

Finally, (c) is easily seen using

E
(

1(0,∞)(τi)∆Lτ(n)
i

(
∆Lτ(n)

i

)∗)
=

1− e−νL(J(n))
(

t(n)
i −t(n)

i−1

)

νL
(
J(n)

)
∫

J(n)

xx∗νL(dx),

as E(‖L1‖2) < ∞ is equivalent to the finiteness of
∫
Rd ‖x‖2νL(dx) or of all elements of

∫
Rd xx∗νL(dx).

The next Lemma shows that when one of the sequences (δ (n))n∈N or (m(n))n∈N is given one can
always choose the other one such that (3.1) holds.

Lemma 3.2. Let L be a Lévy process in Rd . Assume that (δ (n))n∈N is a monotonically decreasing
sequence in R++ with limn→∞ δ (n) = 0 or (m(n))n∈N is a monotonically decreasing sequence in R++

with limn→∞m(n) = 0 and m(n) ≤ 1∀n ∈ N, respectively. Then a monotonically decreasing sequence
(m(n))n∈N in R++ with limn→∞m(n) = 0 and m(n) ≤ 1∀n ∈N or a monotonically decreasing sequence
(δ (n))n∈N in R++ with limn→∞ δ (n) = 0, respectively, can be chosen such that (3.1) is satisfied for all
norms ‖ · ‖.

Proof. We have that
∫
Rd min(‖x‖2,1)νL(dx) < ∞ for all norms ‖ · ‖, because νL is a Lévy measure.

Thus limn→∞ δ (n)νL(J(n)\U1(0)) = 0 for all norms where U1(0) denotes the open ball around zero
with radius 1 and J(n) = {x ∈ Rd : ‖x‖> m(n)}. Moreover,

m(n)2νL(J(n)∩U1(0))≤
∫

J(n)∩U1(0)
‖x‖2νL(dx)≤

∫

U1(0)
‖x‖2νL(dx) < ∞.

This implies that (3.1) holds if δ (n) = o
((

m(n)
)4

)
. Hence, the lemma is shown by choosing for

instance m(n) = (δ (n))1/5∧1 or δ (n) = (m(n))5, respectively, for all n ∈ N.

Remark 3.3. As an inspection of our proofs shows, the sets J(n) need not be of the form {x : ‖x‖ >
m(n)}. All our results remain valid for arbitrary increasing sequences (J(n))n∈N of measurable sets
with ∪∞

n=1J(n) = Rd\{0}, inf{‖x‖ : x ∈ J(n)}> 0 for all n ∈ N and limn→∞ inf{‖x‖ : x ∈ J(n)}= 0.

Next we show that the first jump approximation of a Lévy process has uniformly controlled vari-
ations (UCV) which is an important property regarding the convergence of stochastic integrals and
solutions to stochastic differential equations (cf. [11, 13]). Equivalently one could use a condition
called “uniform tightness” (cf. [8, Section VI.6] or [11, 13]).

In the following we need to transform any semi-martingale to one with bounded jumps in a suitable
way. To this end we define for a semi-martingale Z and κ ∈ R++∪{∞} the semi-martingale Z[κ ] by
setting Z[κ]

t = Zt−∑0<s≤t rκ(∆Zs) with rκ(z) := max(0,1−κ/‖z‖)z for finite κ and Z[∞] = Z. Further-
more, for a finite variation process A we denote by (TV (A)t)t∈R+ the process giving the total variation
of A over the interval [0, t] for t ∈ R+ and for a d-dimensional martingale M = (M1,M2, . . . ,Md)∗ the
quadratic variation [M,M] is understood to be defined by [M,M]t = ∑d

i=1[Mi,Mi]t .
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Definition 3.4 (Kurtz and Protter [11]). Let (Z(n))n∈N be a sequence of semi-martingales in Rd each
defined on its own filtered probability space (Ω(n),F (n),P(n),(F (n)

t )t∈R+) satisfying the usual hy-
pothesis. If there exists a κ ∈R++∪{∞} such that for each α > 0 and n ∈N there exist (F (n)

t )-local
martingales M(n), (F (n)

t )-adapted finite variation processes A(n) in Rd and (F (n)
t )-stopping times

T (n,α) satisfying (Z(n))[κ] = M(n) +A(n), P(n)(T (n,α) ≤ α)≤ (1/α) and

sup
n∈N

EP(n)

(
[M(n),M(n)]min(t,T (n,α)) +TV (A(n))min(t,T (n,α))

)
< ∞

for all t ∈ R+ then the sequence (Z(n))n∈N is said to have uniformly controlled variations (UCV).

In the following our processes are defined on the same probability space, but the filtrations are
different.

Theorem 3.5. Let L be a d-dimensional Lévy process without a Brownian part and (L̄(n))n∈N the
first jump approximation of Theorem 3.1 (a). Let (F (n)

t )t∈R be for each n ∈N the completed filtration
generated by L̄(n). Then the usual conditions are satisfied and L̄(n) is for each n∈N a semi-martingale
on (Ω,F ,P,(F (n)

t )t∈R). Moreover, (L̄(n))n∈N has UCV.
If L has finite mean and E(L1) = 0, let L(n) be the first jump approximation of Theorem 3.1 (b).

Then L(n) is for each n ∈ N a martingale on (Ω,F ,P,(F (n)
t )t∈R) and (L(n))n∈N has UCV.

Proof. (i) Since L̄(n) is piecewise constant, it is clear that (F (n)
t )t∈R is right continuous. Thus the

usual conditions are satisfied. The semi-martingale property is also immediate. To see that also L(n) is
a semi-martingale with respect to this filtration, provided E(L1) = 0, it suffices to note that L(n)− L̄(n)

is a deterministic process of finite variation on compacts. That L(n) is even a martingale is then
straightforward as the jumps have zero expectation and are independent of the past.

(ii) We now show UCV for (L̄(n))n∈N.
Choose κ ∈ (2,∞) such that κ/2 > supn∈N

{
δ (n)‖γ(n)‖}+1 and

κ/2 > sup
i,n∈N





∥∥∥∥∥∥
1− e−νL(J(n))

(
t(n)
i −t(n)

i−1

)

νL
(
J(n)

)
∫

J(n)
0

xνL(dx)

∥∥∥∥∥∥





where J(n)
0 := J(n)∩{x : ‖x‖ ≤ 1}.

The finiteness of the first supremum is a consequence of (3.1) and the finiteness of the second one
follows from

∥∥∥∥∥∥
1− e−νL(J(n))

(
t(n)
i −t(n)

i−1

)

νL
(
J(n)

)
∫

J(n)
0

xνL(dx)

∥∥∥∥∥∥
≤

√
δ (n)νL(J

(n)
0 )

∞

∑
k=0

(√
δ (n)νL(J(n))

)k
(δ (n))(k+1)/2

k +1!

for all i,n ∈ N, since the right hand side goes to zero as n→ ∞.
Define (M(n))t∈R+ by

M(n)
t = ∑

i∈N: t(n)
i ≤t


1(0,∞)(τ

(n)
i )1(0,1](‖∆Lτ(n)

i
‖)∆Lτ(n)

i
− 1− e−νL(J(n))

(
t(n)
i −t(n)

i−1

)

νL
(
J(n)

)
∫

J(n)
0

xνL(dx)



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and (A(n))t∈R+ by

A(n)
t = ∑

i∈N: t(n)
i ≤t

(
r̃κ

(
1(0,∞)(τ

(n)
i )1(1,∞)(‖∆Lτ(n)

i
‖)∆Lτ(n)

i
+ γ(n)

(
t(n)
i − t(n)

i−1

))

+
1− e−νL(J(n))

(
t(n)
i −t(n)

i−1

)

νL
(
J(n)

)
∫

J(n)
0

xνL(dx)
)

,

where r̃κ(x) = x− rκ(x). Then M(n) is a (F (n)
t )-martingale with expectation zero and A(n) an (F (n)

t )-
adapted finite variation process for all n ∈ N. By the choice of κ we have

(L(n))[κ ] = M(n) +A(n).

Since [M(n),M(n)]t = ∑i∈N: t(n)
i ≤t

(
∆M(n)

t(n)
i

)∗
∆M(n)

t(n)
i

, it follows that

E
(
[M(n),M(n)]t

)
= ∑

i∈N: t(n)
i ≤t

E
(

1(0,∞)(τ
(n)
i )1(0,1](‖∆Lτ(n)

i
‖)(∆Lτ(n)

i
)∗∆Lτ(n)

i

)

− ∑
i∈N: t(n)

i ≤t


1− e−νL(J(n))

(
t(n)
i −t(n)

i−1

)

νL
(
J(n)

)



2 ∫

J(n)
0

x∗νL(dx)
∫

J(n)
0

xνL(dx)

≤ ∑
i∈N: t(n)

i ≤t

E
(

1(0,∞)(τ
(n)
i )1(0,1](‖∆Lτ(n)

i
‖)(∆Lτ(n)

i
)∗∆Lτ(n)

i

)

= ∑
i∈N: t(n)

i ≤t

1− e−νL(J(n))
(

t(n)
i −t(n)

i−1

)

νL
(
J(n)

)
∫

J(n)
0

x∗xνL(dx).

Denoting by ‖ ·‖2 the Euclidean norm and using the elementary inequality 1−e−x ≤ x for all x ∈R+,
this implies

sup
n∈N

E([M(n),M(n)]t)≤ t
∫

‖x‖≤1
‖x‖2

2νL(dx) < ∞ (3.5)

for all t ∈ R.
Turning to A(n) we have that

‖∆A(n)

t(n)
i

‖ ≤3
∥∥∥r̃κ

(
1(0,∞)(τ

(n)
i )1(1,∞)(‖∆Lτ(n)

i
‖)∆Lτ(n)

i

)∥∥∥+‖γL‖
(

t(n)
i − t(n)

i−1

)

+

∥∥∥∥∥∥


1− e−νL(J(n))

(
t(n)
i −t(n)

i−1

)

νL
(
J(n)

) −
(

t(n)
i − t(n)

i−1

)



∫

J(n)
0

xνL(dx)

∥∥∥∥∥∥

for all i,n ∈ N. The inequality is immediate provided
∥∥∥1(0,∞)(τ

(n)
i )1(1,∞)(‖∆Lτ(n)

i
‖)∆Lτ(n)

i
+ γ(n)

(
t(n)
i − t(n)

i−1

)∥∥∥≤ κ and
∥∥∥1(0,∞)(τ

(n)
i )1(1,∞)(‖∆Lτ(n)

i
‖)∆Lτ(n)

i

∥∥∥≤ κ.
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Otherwise the choice of κ ensures
∥∥∥1(0,∞)(τ

(n)
i )1(1,∞)(‖∆Lτ(n)

i
‖)∆Lτ(n)

i

∥∥∥ > κ/2 and that
∥∥∥∥∆A(n)

t(n)
i

∥∥∥∥ ≤
(3/2)κ which implies the validity of the inequality. We have

∥∥∥∥∥∥


1− e−νL(J(n))

(
t(n)
i −t(n)

i−1

)

νL
(
J(n)

) −
(

t(n)
i − t(n)

i−1

)



∫

J(n)
0

xνL(dx)

∥∥∥∥∥∥
≤C(n)

A

(
t(n)
i − t(n)

i−1

)

with C(n)
A :=

√
δ (n)νL(J

(n)
0 )∑∞

k=1
(νL(J(n))

√
δ (n))k

(δ (n))(k−1)/2

k+1! , which converges to zero as n→ ∞. Hence,

TV (A(n))t ≤ 3
∫ t

0

∫

‖x‖>1
min(‖x‖,κ)NL(ds,dx)+ t

(
‖γL‖+ sup

n∈N

{
C(n)

A

})

and thus

sup
n∈N

E
(

TV (A(n))t

)
≤t

(
3

∫

‖x‖>1
min(‖x‖,κ)νL(dx)+‖γL‖+ sup

n∈N

{
C(n)

A

})
< ∞∀ t ∈ R+. (3.6)

Combining (3.5) and (3.6) and choosing T (n,α) = α + 1 for all n ∈ N and α ∈ R++ shows that
(L̄(n))n∈N has UCV.

(iii) It remains to verify that (L(n))n∈N has UCV, provided L has a finite expectation and E(L1) = 0.
The arguments presented in the proof of Theorem 3.1 (b) imply that

TV (L(n)− L̄(n))t ≤C(n)t.

for all n∈N and t ∈R+ with limn→∞C(n) = 0. This immediately shows that (L(n)− L̄(n))n∈N has UCV.
As (L(n)− L̄(n))n∈N and (L̄(n))n∈N converge in probability in the Skorokhod topology, [13, Theorem
7.6] ensures that both sequences are uniformly tight. Property 6.4 on page 377 of [8] therefore implies
that (L(n))n∈N is uniformly tight and so [13, Theorem 7.6] shows that it has UCV.

The UCV property has far reaching implications regarding the convergence of sequences of stochas-
tic differential equations and of stochastic integrals in the Skorokhod topology in probability or
weakly. These follow from the general results to be found in [11, 13] or [8, Sections VI.6, IX.6].
To avoid very lengthy technical statements we consider only the following simple setting, since in the
general case one only allows for more general coefficients (e.g. locally Lipschitz ones or functional
Lipschitz ones depending on the whole past) in the SDEs which necessitates very technical conditions
for them, whereas the main condition on the driving processes remains that they have UCV. Note,
however, that the generalisation to more general coefficients is straightforward.

Theorem 3.6. (a) Let L be a d-dimensional pure jump Lévy process, L̄(n) its first jump approximation
given in Theorem 3.1 (a) and f :Rm→Mm,d(R) a globally Lipschitz function. Moreover, assume given
a sequence of m-dimensional càdlàg processes Z(n) adapted to (F (n)

t )t∈R+ and an m-dimensional
càdlàg process Z adapted to (Ft)t∈R+ such that

plimn→∞dRd+m

((
L̄(n)

Z(n)

)
,

(
L̄
Z

))
= 0.

Denote by X (n) for each n ∈ N the unique càdlàg solution to

X (n)
t = Z(n)

t +
∫ t

0
f (X (n)

s− )dL̄(n)
s (3.7)

9
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and by X the unique càdlàg solution to

Xt = Zt +
∫ t

0
f (Xs−)dLs. (3.8)

Then plimn→∞dRm(X (n),X) = 0.
(b) If the Lévy process L has finite first moments and E(L1) = 0, then L̄(n) can be replaced by the

first jump approximation L(n) given in Theorem 3.1 (b).

Proof. Combine Theorem 3.5 with [11, Corollary 5.6] or [8, Theorem IX.6.9].

Remark 3.7. Our above theorems remain valid when replacing for all n∈N the filtrations (F (n)
t )t∈R+

with the completed filtrations generated by the original initial information F0 and (L(n)
t )t∈R+ .

Moreover, obvious analogues of all our convergence theorems hold when one replaces convergence
in the Skorokhod topology in probability by the weaker notion of convergence in the Skorokhod topol-
ogy in distribution.

Usually Z(n) will simply be constant over time and equal the initial value of the SDE under consid-
eration. Then (3.7) gives for fixed n ∈ N an approximation of the solution to (3.8) which is piecewise
constant and thus an essentially discrete approximation on the time grid (t(n)

i )i∈N. Provided one com-
ponent of L simply is the time our above approximation equals the Euler scheme for this component.
However, in general our approximation scheme is different from the Euler approach. In particular, in
our case one needs to be able to draw from the “first jump distributions” of the Lévy process in order
to obtain simulations, whereas in the Euler scheme one needs to be able to draw from the distribution
of the increments. Thus, the first jump approximation may be considerably easier to simulate than the
Euler scheme in some cases (cf. Remark 4.2).

A natural question arising now are convergence rates for the first jump approximation of Lévy
driven SDEs. Unfortunately, this seems to be a very intricate issue beyond the scope of the present
paper. So far mainly convergence rates for Euler schemes and/or compound Poisson approximations
have been obtained in the literature (see [6, 7, 17, 19]). There are two main ways to obtain convergence
rates. One is to look at the error of E(g(XT )) for a fixed (terminal) time T and suitable functions g
(see [6, 17]). This is very relevant in applications, as often the aim of simulating the solution of
an SDE is simply to obtain an approximation of E(g(XT )) for a certain function. The other is of a
“functional central limit type” (see [7, 12, 19]) and especially relevant when one is interested in path
functionals. Here one is seeking for convergence rates ρn such that ρn(X (n)−X) has a non-trivial
limit in the Skorokhod topology. The latter approach seems to fit well with our results at a first glance.
Yet, as a first step one would need to obtain a “functional central limit type” result for the first jump
approximation of a Lévy process similar to [19, Theorem 3.1].

The existing results on convergence rates for approximations of SDEs are not applicable to our
setting nor seem the methods used to obtain them adaptable to our setting without considerable further
work, because the shift in the jump times and the fact that both the time grid size and the minimal jump
size have to go to zero at connected rates make the first jump approximation markedly different from
the previously studied approximations. Moreover, severe technical conditions, e.g. differentiability
conditions for the function f which we demand only to be Lipschitz above, will be needed to obtain
convergence rates. However, it is clearly intended to study functional central limit type results and
convergence rates of the first jump approximation in future work.

Note also that [22] provides convergence rates for the first jump approximation of a Lévy process
directly in terms of the Skorokhod metric by considering explicit expressions for the error. As far as
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we know, this cannot be translated into convergence rates for our SDE approximations, because no
appropriate stability results for SDEs are available.

4 Approximation of ECOGARCH(1,1) processes by EGARCH(1,1)
processes

The first jump approximation can be used to obtain very interesting convergence results. In the follow-
ing we use it to show that a multivariate ECOGARCH(1,1) process is the limit of piece-wise constant
processes which are determined by discrete time EGARCH(1,1) processes.

Before we show this, we briefly review multivariate EGARCH(1,1) and ECOGARCH(1,1) pro-
cesses referring to [4, 5] for more details and a discussion of the relevance in applications.

4.1 Multivariate EGARCH(1,1) processes

Multivariate EGARCH processes have been introduced recently in [9] and the following more general
definition can be found in [5].

Let d ∈N,µ ∈ Sd , α,β ∈Mm(R)\{0}with m = d(d+1)
2 , ε = (εn)n∈Z an i.i.d. sequence ofRd-valued

random variables with E(ε1) = 0 and var(ε1) = Id and f : Rd → Rm a measurable function such that
f (ε1) ∈ L2. If σ(α)⊂ (−1,1)+ iR, then the process Y = (Yt)t∈Z, where

Yt = exp((µ +Ht)/2)εt

and the vectorised log volatility X = vech(H) with initial value X0 is given by

Xt = αXt−1 +β f (εt−1)

for all t ∈ N, is called an EGARCH(1,1) process.
Above we have considered a general transformation f of the noise sequence ε . Concrete specifica-

tions (incorporating the “leverage effect”) are to be found in [5, 9].

4.2 Multivariate ECOGARCH(1,1) processes

In the EGARCH(1,1) processes the log volatility process H is an autoregressive process of order one
in the symmetric d×d matrices. Likewise, the ECOGARCH(1,1) process is defined by specifying the
log-volatility process as an autoregressive process of order one in continuous time (i.e. an Ornstein-
Uhlenbeck type process) taking values in Sd . Moreover, the i.i.d. noise sequence ε is replaced by the
increments of a Lévy process.

Let L = (Lt)t≥0 be a d-dimensional zero-mean Lévy process with Lévy measure νL such that∫
‖x‖≥1 ‖x‖2νL(dx) < ∞ and associated jump measure NL. Furthermore, let h : Rd → Rm with m =

d(d+1)
2 be a measurable function satisfying

∫

Rd
‖h(x)‖2νL(dx) < ∞, (4.1)

and A ∈ GLd(R), β ∈Mm(R)\{0} such that all eigenvalues of A have strictly negative real part.
Then we define the d-dimensional ECOGARCH(1,1) process G as the stochastic process satisfy-

ing,
dGt := exp((µ +Ht−)/2)dLt , t > 0, G0 = 0,

11
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where µ ∈ Sd and the vectorised log-volatility process X = (Xt)t≥0 = (vech(H)t)t≥0 is the process in
Sd satisfying

dXt = AXt−dt +βdMt , t > 0, (4.2)

with the initial value X0 = vech(H0) ∈ Rqm being independent of the driving Lévy process L and

Mt :=
∫ t

0

∫

Rd\{0}
h(x)ÑL(ds,dx) , t ≥ 0,

being a Lévy process. Note that the mean of M is automatically zero due to the use of the compensated
jump measure above. The solution of (4.2) is given by

Xt = eAtX0 +
∫ t

0
eA(t−s)βdMs. (4.3)

In a financial context G is understood to be the log price process of d stocks with volatility (in-
stantaneous covariance matrix) process exp(µ +Ht). Moreover, the log returns over a time interval of
length r > 0 ending at time t, which are especially relevant in a financial context, are described by the
increments of G

Y (r)
t := Gt −Gt−r =

∫

(t−r,t]
exp((µ +Hs−)/2)dLs , t ≥ r > 0 . (4.4)

An equidistant sequence of such non-overlapping returns of length r given by (Y (r)
ir )i∈N corresponds

to a discrete time multivariate EGARCH(1,1) process Y .

4.3 The Approximation

Now we show that for any multivariate ECOGARCH(1,1) process there exists a sequence of piece-
wise constant processes determined by discrete time multivariate EGARCH(1,1) processes which
converges in probability in the Skorokhod topology to the ECOGARCH(1,1) process. This result is
also new in the univariate case and should be especially useful for statistical purposes (cp. [15]). Our
main theorem of this section is the following where again m := d(d +1)/2.

Theorem 4.1. Let (G,X) in Rd ×Rm be a d-dimensional ECOGARCH(1,1) process G and its as-
sociated vectorised log-volatility process X = vech(H) with initial value (G0,X0). Let (t(n)

i )i∈N0 for
each n ∈ N be a strictly increasing sequence in R+ with t(n)

0 = 0 and limi→∞ t(n)
i = ∞. Defining

δ (n) = supi∈N
{

t(n)
i − t(n)

i−1

}
assume that limn→∞ δ (n) = 0.

Then there exists for each n ∈ N a function hn : Rd ×R+ → Rm and a sequence of indepen-
dent random variables (ε(n)

i )i∈N in Rd with finite variance and E(ε(n)
i ) = 0 ∀ i,n ∈ N such that

hn

(
ε(n)

i , t(n)
i − t(n)

i−1

)
has finite variance, E

(
hn

(
ε(n)

i , t(n)
i − t(n)

i−1

))
= 0 and

plimn→∞dRd×Rm

(
(G(n),X (n)),(G,X)

)
= 0 ,

where for each n ∈ N the process (G(n),X (n)) in Rd ×Rm is defined by

(G(n)
0 ,X (n)

0 ) = (G0,X0),

G(n)

t(n)
i

= G(n)

t(n)
i−1

+ exp
((

µ +vech−1
(

X (n)

t(n)
i−1

))
/2

)
ε(n)

i ,

X (n)

t(n)
i

= eA
(

t(n)
i −t(n)

i−1

)
X (n)

t(n)
i−1

+βhn

(
ε(n)

i , t(n)
i − t(n)

i−1

)
for all i ∈ N and (4.5)
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(G(n)
t ,X (n)

t ) =
(

G(n)

t(n)
i−1

,X (n)

t(n)
i−1

)
for t ∈ (t(n)

i−1, t
(n)
i ), i ∈ N.

The sequence (ε(n)
i )i∈N can be chosen to be i.i.d. provided t(n)

i − t(n)
i−1 = δ (n) for all i ∈ N.

If h is continuous hn can be chosen such that the sequence of functions hn :Rd×R+ →Rm satisfies

lim
n→∞

(
sup
z∈K

sup
i∈N

{∥∥∥hn

(
z, t(n)

i − t(n)
i−1

)
−h(z)

∥∥∥
})

= 0 (4.6)

for all compact K ⊂ Rd . If h is uniformly continuous, hn can be chosen such that (4.6) holds with Rd

instead of K.

When the time grids are equidistant, i.e. t(n)
i − t(n)

i−1 = δ (n) for all i ∈ N, and (ε(n)
i )i∈N is chosen

i.i.d., then the increments
(

G(n)

t(n)
i

−G(n)

t(n)
i−1

)

i∈N
of G(n) are a discrete time multivariate EGARCH(1,1)

process with associated vectorised log-volatility process
(

X (n)

t(n)
i−1

)

i∈N
=:

(
vech(H(n)

i )
)

i∈N
(apart from

the fact that var(ε(n)
i ) = Id will usually not be satisfied). We allow for a non-equidistant grid as this

may be useful when having irregularly spaced data (cf. [15]). It should be noted that there is an
immediate extension to ECOGARCH(p,q) processes with orders p,q ∈ N, p ≤ q, (see [4, 5]) where
q > 1. However, the approximating piecewise constant processes are no longer essentially discrete
time EGARCH processes. Furthermore, it is clear that the result remains valid when considering the
processes only on a finite time interval [0,T ] and looking at partitions (t(n)

i )i∈{1,2,...,N(n)} of this interval
with N(n) ∈ N.

Proof of Theorem 4.1: Let ‖ · ‖ be a norm on Rd+m. We have that the joint process L = (L∗t ,M∗
t )∗t∈R+

is a Lévy process in Rd+m with

Lt =
(

γL

γM

)
t +

∫ t

0

∫

‖(x∗,h(x)∗)∗‖≤1

(
x

h(x)

)
ÑL(ds,dx)+

∫ t

0

∫

‖(x∗,h(x)∗)∗‖>1

(
x

h(x)

)
NL(ds,dx)

for all t ∈R+ with γL =−∫
‖(x∗,h(x)∗)∗‖>1 xνL(dx) and γM =−∫

‖(x∗,h(x)∗)∗‖>1 h(x)νL(dx). Here we used
that νL(W ) = νL( f−1(W )) and NL(ds,W ) = NL(ds, f−1(W )) for all Borel sets W ⊂ Rd+m where
f : Rd → Rd+m, x 7→ (x∗,h(x)∗)∗. It is clear that L has finite expectation and E(L1) = 0.

First Step: Choice of noise sequences ε(n) and functions hn

Choose a sequence (m(n))n∈N such that (3.1) is satisfied for νL noting that the existence is ensured
by Lemma 3.2. Let (L(n))n∈N =

(
(L(n))∗,(M(n))∗

)∗
n∈N be the first jump approximation to L as given

in Theorem 3.1 (b). Hence, plimn→∞dRd+m(L(n),L) = 0 and due to Theorem 3.5 (L(n))n∈N has UCV.
Set

ε(n)
i = ∆L(n)

t(n)
i

= 1(0,∞)(τ
(n)
i )∆Lτ(n)

i
+ γ(n)

L,i for all i,n ∈ N
with

γ(n)
L,i =−1− e−νL(J(n))

(
t(n)
i −t(n)

i−1

)

νL
(
J(n)

)
∫

J(n)
xνL(dx) ,

where J(n) =
{

x ∈ Rd : ‖(x∗,h(x)∗)∗‖> m(n)
}

. Then by construction (ε(n)
i )i∈N is for each n ∈ N a

sequence of independent random variables having finite variance and zero expectation (cf. Theorem
3.1 (b), (c)). If t(n)

i − t(n)
i−1 = δ (n) for all i ∈ N then γ(n)

L,i does not depend on i ∈ N and (ε(n)
i )i∈N is i.i.d.
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Moreover,
∆M(n)

t(n)
i

= h
(

1(0,∞)(τ
(n)
i )∆Lτ(n)

i

)
+ γ(n)

M,i = hn

(
ε(n)

i , t(n)
i − t(n)

i−1

)

for all i,n ∈ N, with γ(n)
M,i =−1−e

−νL(J(n))
(

t(n)
i −t(n)

i−1

)

νL(J(n))
∫

J(n) h(x)νL(dx) and hn : Rd ×R+ → Rm,

(z, t) 7→ h

(
z+

1− e−νL(J(n))t

νL
(
J(n)

)
∫

J(n)
xνL(dx)

)
− 1− e−νL(J(n))t

νL
(
J(n)

)
∫

J(n)
h(x)νL(dx).

Theorem 3.1 (b), (c) ensures that hn

(
ε(n)

i , t(n)
i − t(n)

i−1

)
has a finite variance and zero expectation for all

i,n ∈ N.
We have that lim

n→∞
supi∈N

{
‖γ(n)

M,i‖
}

= 0 and lim
n→∞

supi∈N
{
‖γ(n)

L,i ‖
}

= 0. From this it is easy to see that

(4.6) holds with Rd instead of K if h is uniformly continuous. If h is only continuous (4.6) follows
along the same lines noting that any continuous function is uniformly continuous on compacts.

Second Step: Convergence to the ECOGARCH
Define the processes S in Rm by St = (1,1, . . . ,1)∗t for all t ∈ R+ and (X̃ (n)

t )t∈R+ for all n ∈ N by

X̃ (n)
0 = X0,

X̃ (n)

t(n)
i

= eA
(

t(n)
i −t(n)

i−1

)
X̃ (n)

t(n)
i−1

+βhn

(
ε(n)

i , t(n)
i − t(n)

i−1

)
for all i ∈ N and

X̃t = eA
(

t−t(n)
i−1

)
X̃ (n)

t(n)
i−1

for t ∈ (t(n)
i−1, t

(n)
i ), i ∈ N.

Below 0Rd denotes the zero in Rd .
Then the joint process (X̃ (n),L(n),M(n),S) satisfies the stochastic integral equation




X̃ (n)
t

L(n)
t

M(n)
t

St


 =




X0
0Rd

0Rm

0Rm


+

∫ t

0
F

(
X̃ (n)

s−
)

d




L(n)
s

M(n)
s

Ss


 . (4.7)

with

F : Rm →Md+3m,d+2m(R),x 7→




0Mm,d(R) β Ax
Id 0Md,m(R) 0Md,m(R)

0Mm,d(R) Im 0Mm(R)
0Mm,d(R) 0Mm(R) Im


 .

Obviously F is globally Lipschitz and hence the stochastic integral equation (4.7) has a unique global
strong solution. Here we are implicitly using the filtration (F (n)

t )t∈R for each n ∈ N as defined in
Theorem 3.5.

Likewise (X ,L,M,S) is the unique solution to the stochastic integral equation



Xt

Lt

Mt

St


 =




X0
0Rd

0Rm

0Rm


+

∫ t

0
F (Xs−)d




Ls

Ms

Ss


 .
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We have that
plimn→∞dRd+2m

((
(L(n))∗,(M(n))∗,S∗

)∗
,(L∗,M∗,S∗)∗

)
= 0

follows from plimn→∞dRd+m

(
L(n),L

)
= 0. Moreover, the fact that L(n) has UCV implies that the joint

process
(
(L(n))∗,(M(n))∗,S∗

)∗
has UCV. Hence, [11, Corollary 5.6] shows that

plimn→∞dRd+3m

((
(X̃ (n))∗,(L(n))∗,(M(n))∗,S∗

)∗
,(X∗,L∗,M∗,S∗)∗

)
= 0 ,

noting that [13, Example 8.2] ensures that F satisfies the necessary technical conditions (alternatively
one can use [8, Theorem IX.6.9]). Setting F(X̃ (n)) =

(
F(X̃ (n)

t )
)

t∈R+
a continuity argument gives that

plimn→∞dM
([

F(X̃ (n)
t ),

(
(L(n))∗,(M(n))∗,S∗

)∗]
,
[
F(X),(L∗,M∗,S∗)∗

])
= 0 ,

whereM := Md+3m,d+2m(R)×Rd+2m and therefore a combination of Theorems 7.7, 7.10, 7.11 of [13]
implies that

(
(X̃ (n))∗,(L(n))∗,(M(n))∗,S∗

)∗
n∈N has UCV. Next we observe that for all T ∈ R+

sup
t≤T

∥∥∥X (n)
t − X̃ (n)

t

∥∥∥≤ sup
s∈[0,δ (n)]

∥∥e−As− Im
∥∥
∗ sup

t≤T

∥∥∥X̃ (n)
t

∥∥∥ , (4.8)

where ‖ · ‖∗ is the operator norm induced by ‖ · ‖. Since
(
(X̃ (n))∗,(L(n))∗, (M(n))∗,S∗

)∗
n∈N has UCV

and thus (X̃ (n))n∈N is uniformly tight (use [13, Theorem 7.6] and [8, Property 6.3, p. 377]), we have
from the definition of uniform tightness (cf. [13, Definition 7.4]) that supt≤T

∥∥∥X̃ (n)
t

∥∥∥ is stochastically

bounded in n ∈ N for all T ∈ R+. Combining this with

lim
n→∞

sup
s∈[0,δ (n)]

∥∥e−As− Im
∥∥
∗ = 0

and (4.8) establishes that
X (n)− X̃ (n) → 0 in ucp as n→ ∞. (4.9)

This implies plimn→∞dRd+2m

((
(X (n))∗,(X̃ (n))∗,(L(n))∗

)∗
,(X∗,X∗,L∗)∗

)
= 0 and by a continuity

argument plimn→∞dSd×Rd+m

([
Z(n),

(
(X̃ (n))∗,(L(n))∗

)∗]
,
[
Z,(X∗,L∗)∗

])
= 0 with Z and (Z(n))n∈N de-

fined by Z(n)
t = exp

((
µ +vech−1

(
X (n)

t

))
/2

)
, Zt = exp

((
µ +vech−1 (Xt)

)
/2

)
for all t ∈ R+.

Finally, we observe that

G(n)
t = G0 +

∫ t

0
Z(n)

s− dL(n)
s , X̃ (n)

t = X0 +
∫ t

0
ImdX̃ (n)

s and

Gt = G0 +
∫ t

0
Zs−dLs, Xt = X0 +

∫ t

0
ImdXs for all t ∈ R+.

Therefore [11, Theorem 2.2] (or alternatively [8, Theorem VI.6.22]) shows that

plimn→∞dRd×Rm

(
(G(n), X̃ (n)),(G,X)

)
= 0,

since ((X̃ (n))∗,(L(n))∗)∗ has UCV. Hence, (4.9) establishes

plimn→∞dRd×Rm

(
(G(n),X (n)),(G,X)

)
= 0.
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Remark 4.2. a) We have not discretised time together with (L,M) at the beginning, because we are
thus able to recover the exponential decay of (4.3) in (4.5). If we immediately discretise t as well, we
would get A(ti− ti−1) instead of exp(A(ti− ti−1)) in (4.5).

b) When using the standard Euler scheme for simulations of ECOGARCH processes, one has to
simulate (Lti − Lti−1 ,Mti −Mti−1) jointly, as one cannot simply calculate Mti −Mti−1 from Lti − Lti−1 .
When using the first jump approximation as in Theorem 4.1, one just needs to simulate the “first
jumps” for L (i.e. one basically has to simulate a compound Poisson process) and can then calculate
the “first jumps” of M by a deterministic transformation. Hence, it will often be easier to simulate the
first jump approximation.

c) Using Remark 3.3 and Lemma 3.2 we can, for instance, also use J(n) = {‖x‖ > m(n)} with
m(n) = (δ (n))1/5, if C‖x‖ ≥ ‖h(x)‖ ≥ c‖x‖ for some C,c > 0 and all x. The latter condition is e.g.
obviously satisfied for the univariate “standard choice” h(x) = θx+γ|x| with θ ,γ ∈R,θ +γ 6= 0 and
θ − γ 6= 0. This is particularly helpful in simulations, because we then just need to simulate the first
jump approximation of L and can obtain the one of (L,M) by a simple deterministic transformation.

In the following we consider one of the special choices for h introduced in [5], which is able to
model the leverage effect, and thereafter give some variants of our main Theorem 4.1.

Proposition 4.3. Assume that h is given by h(η) = Θη + Γvech
(
(ηη∗)1/2

)
with Θ ∈ Mm,d(R) and

Γ ∈Mm(R). Then h is Lipschitz and thereby uniformly continuous.

Proof. To show that h as given is Lipschitz it suffices to show that Rd → Sd , η 7→ (ηη∗)1/2 =
ηη∗/‖η‖2 is Lipschitz. But this is immediate from

∣∣∣∣
ηiη j

‖η‖2
− η̃iη̃ j

‖η̃‖2

∣∣∣∣≤ |ηi− η̃i|+ |η j− η̃ j|+‖η− η̃‖2

for all η , η̃ ∈ Rd , i, j ∈ {1,2, . . . ,d}.

Theorem 4.4. Let the set-up of Theorem 4.1 be given and assume that var(L1) = Id . Then in Theorem
4.1 the function hn and the sequence of independent random variables (ε(n)

i )i∈N can for all n ∈ N be

chosen such that ε(n)
i =

(√
t(n)
i − t(n)

i−1

)
ζ (n)

i for all i,n∈N where (ζ (n)
i )i∈N is for all n∈N a sequence

of independent d-dimensional random variables with var(ζ (n)
i ) = Id for all i,n ∈ N.

Moreover, if h is continuous hn can be chosen such that the sequence of functions hn :Rd×R+→Rm

satisfies

lim
n→∞

(
sup
z∈K

sup
i∈N

{∥∥∥hn

(
z, t(n)

i − t(n)
i−1

)
−h(z)

∥∥∥
})

= 0 (4.10)

for all compact K ⊂ Rd .

Proof. Let L,L(n),M(n),γ(n)
L,i ,γ

(n)
M,i be as in the proof of Theorem 4.1. We have that

V (n)
i := var

(
1(0,∞)(τ

(n)
i )∆Lτ(n)

i

)
=

1− e−νL(J(n))(t(n)
i −t(n)

i−1)

νL(J(n))

∫

J(n)
xx∗νL(dx)

−
(

1− e−νL(J(n))(t(n)
i −t(n)

i−1)

νL(J(n))

)2 ∫

J(n)
xνL(dx)

∫

J(n)
x∗νL(dx)
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for all i,n ∈ N. A series expansion shows

lim
n→∞

sup
i∈N

∥∥∥∥∥∥∥∥




1− e−νL(J(n))(t(n)
i −t(n)

i−1)(√
t(n)
i − t(n)

i−1

)
νL(J(n))




2

∫

J(n)
xνL(dx)

∫

J(n)
x∗νL(dx)

∥∥∥∥∥∥∥∥
2

= 0. (4.11)

Combining this with

lim
n→∞

sup
i∈N

∥∥∥∥∥
1− e−νL(J(n))(t(n)

i −t(n)
i−1)

νL(J(n))(t(n)
i − t(n)

i−1)

∫

J(n)
xx∗νL(dx)− Id

∥∥∥∥∥
2

≤ lim
n→∞

∥∥∥∥
∫

J(n)
xx∗νL(dx)− Id

∥∥∥∥
2
+ lim

n→∞

(
∞

∑
k=2

(
νL(J(n))δ (n)

)k−1

k!

∫

J(n)
‖x‖2

2νL(dx)

)
= 0

establishes

lim
n→∞

sup
i∈N

∥∥∥∥∥
V (n)

i

t(n)
i − t(n)

i−1

− Id

∥∥∥∥∥ = 0. (4.12)

Hence, there exists a N ∈N such that V (n)
i ∈GLd(R) for all i∈N and n≥N. Without loss of generality

we assume N = 1. Then a continuity and compactness argument gives

lim
n→∞

sup
i∈N

∥∥∥∥
(

V (n)
i

)−1/2
√

t(n)
i − t(n)

i−1− Id

∥∥∥∥ = 0. (4.13)

Define for each n ∈ N the process (Σ(n)
t )t∈R+ by

Σ(n)
t = Id for t ∈ [0, t(n)

1 /2), Σ(n)
t =

(
V (n)

i

)−1/2
√

t(n)
i − t(n)

i−1

for t ∈
[(

t(n)
i + t(n)

i−1

)
/2,

(
t(n)
i + t(n)

i+1

)
/2

)
and i ∈ N. Since (4.13) implies that (Σ(n)

t )t∈R+ converges
uniformly to the identity, it follows that

plimn→∞dMd+m×Rd+m

(((
Σ(n) 0

0 Im

)
,L(n)

)
,(Id+m,L)

)
= 0.

Setting L̃(n)
t =

∫ t
0 Σ(n)

s−dL(n)
s and recalling that L(n) has UCV, we thus have from [11, Theorem 2.2] or

[13, Theorem 7.10] that

plimn→∞dRd+m

((
(L̃(n))∗,(M(n))∗

)
,(L∗,M∗)∗

)
= 0

and from [13, Theorem 7.11] that
(
(L̃(n))∗,(M(n))∗

)
n∈N has UCV.

Setting

ζ (n)
i =

(
V (n)

i

)−1/2 (
1(0,∞)(τ

(n)
i )∆Lτ(n)

i
+ γ(n)

L,i

)
, ε(n)

i =
(√

t(n)
i − t(n)

i−1

)
ζ (n)

i ,

Vn(t) =
1− e−νL(J(n))t

νL(J(n))

∫

J(n)

xx∗νL(dx)−
(

1− e−νL(J(n))t

νL(J(n))

)2 ∫

J(n)

xνL(dx)
∫

J(n)

x∗νL(dx),
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hn : Rd ×R+ → Rm,

(z, t) 7→ h


(Vn(t))1/2

√
t

z+
1− e−νL(J(n))t

νL
(
J(n)

)
∫

J(n)

xνL(dx)


− 1− e−νL(J(n))t

νL
(
J(n)

)
∫

J(n)

h(x)νL(dx)

for all i,n∈N it is easy to see that (ε(n)
i )i∈N, (ζ (n)

i )i∈N and hn have for all n∈N the claimed properties.
Finally, noting that

L̃(n)
t = ∑

i∈N: t(n)
i ≤t

ε(n)
i and M(n)

t = ∑
i∈N: t(n)

i ≤t

hn

(
ε(n)

i , t(n)
i − t(n)

i−1

)
for all i,n ∈ N, t ∈ R+

the proof continues now as the proof of Theorem 4.1 with L̃(n) in the place of L(n).

Note that in the proof presented above we have given a variant of the first jump approximation of a
Lévy process fixing not only the mean to zero as in Theorem 3.1 (b) but also the variance to a multiple
of the identity.

Proposition 4.5. Let the set-up of Theorem 4.1 be given and assume that h is linear. Then hn(z, t) =
h(z) can be chosen for all n ∈ N.

Proof. Obviously hn = h for hn as defined in the proof of Theorem 4.1.
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