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Abstract 
Rating agencies claim to look through the cycle when assigning corporate credit 
ratings, which entails that they are able to separate trend components of default 
risk from transitory ones. To test whether agencies possess this competence, I take 
market-based estimates of one-year default probabilities of corporate bond issuers 
and estimate their long-run trend using the Hodrick-Prescott filter, local 
regression, or centered moving averages. I find that ratings help identify the 
current split into trend and cycle. In addition, rating stability is similar to the one 
of hypothetical ratings based on long-term trends. The results are robust to the use 
of different filter techniques. They are confirmed by a model-free analysis, which 
shows that ratings predict future changes in market-based default probability 
estimates. Since the examined trends are forward-looking in the sense that the 
trend filtering algorithms use future data, agency ratings exhibit important 
characteristics one would expect from ratings that see through the cycle. 
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1   Introduction 
 
A key characteristic of corporate credit ratings produced by the major rating 
agencies is that they are meant to look through the cycle.1 The agencies’ aim is to 
base rating assignments on the expected long-term credit quality, and not respond 
to transitory fluctuations in credit quality (Basel Committee on Banking 
Supervision 2000; Cantor 2001; Standard and Poor’s 2003). In justification of this 
approach, agencies cite investor preferences for stable ratings (Fons 2002). Such 
preferences can arise, for example, from rating-based portfolio governance rules 
which lead to high transaction cost if ratings change frequently. 
As stressed by the agencies themselves, looking through the cycle is difficult.2 
This seems to be one of the reasons banks usually do not employ the through-the-
cycle approach when assigning internal credit ratings for their borrowers (Treacy 
and Carey 1998). Academic research, too, is beset by complications in detecting 
long-term trends. It is difficult to identify and disentangle the transitory and 
permanent components of stock prices, for example, even when fifty years of 
data, or more, are available; and the evolution of the literature shows that the 
choice of appropriate statistical techniques is not obvious.3 
The ability to rate through the cycle thus seems to be a core competence of rating 
agencies, even though there has not, until now, been an empirical study that 
examines whether agencies actually possess this competence. The lack of research 
is even more surprising since a skeptic might contend that rating through the cycle 
is nothing more than a marketing story contrived to cover a low-cost policy of 
reviewing ratings only infrequently. By classifying new information as transitory, 
agencies could avert frequent criticism for reacting too slowly to new information. 
The view that major rating agencies are too slow to change their ratings is held by 
a number of investors (Baker and Mansi 2002), academics (Daníelsson et al. 
2001), and competitors (Egan and Jones 2002). 
In this paper, I document that agency ratings exhibit key characteristics one would 
expect from through-the-cycle ratings. Before elaborating on this statement, I 
clarify the terminology because different terminologies and usages can give rise to 
confusion. The following terminologies are equivalent for the purpose of this 
paper: 
Time series =   trend component +   cycle component 

Time series =   permanent component +   transitory component 

Another word for trend would be permanent component; the analogous term for 
cycle is transitory. An example is a series composed of a random walk plus an 
autoregressive process of order 1, AR(1); in this example, the stochastic trend of 
the random walk constitutes the trend of the aggregate series. How does the 
distinction between systematic and non-systematic risk components relate to this? 

                                                 
1  Note that this paper deals with corporate credit ratings. Structured finance ratings, which feature 
prominently in the discussion of the subprime crisis, are assigned by different rating units based on 
a different rating approach. An assessment of rating quality should therefore be conducted 
separately for the two types of ratings. The methodology for sovereign ratings is more similar. Due 
to significant differences in the determinants of corporate and sovereign defaults, however, the 
conclusions of the paper should not be translated to sovereign ratings. 
2  Cf. Standard and Poor’s (2003), pp.41-43. 
3  Cf. Campbell, Lo and MacKinlay (1997), pp. 78-80. 
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Cycles can be both systematic and non-systematic, the same holds for trends.4  
One might first think of macroeconomic or aggregate stock market cycles. 
However, the major part of a typical firm’s risk is non-systematic (Campbell et al. 
2001); consistent with this finding, the default risk series used in this paper are 
largely driven by non-systematic cycles and trends, too. I therefore refrain from 
using the distinction in the estimation and analysis of the series. 
I start the empirical analysis with a robust, model-free analysis.  I examine 
whether ratings are useful for predicting changes in EDFs, which are market-
based estimates of one-year default probabilities. The results – ratings predict 
changes in EDFs over a horizon of up to 3 years – already indicate that ratings are 
forward-looking. Then, I set out to provide a more direct test of the agencies’ 
ability to look through the cycle. Although the rating agencies do not give a 
precise, formal definition of what they aim to do when looking through the cycle, 
a characterization that captures its essence is to say that ratings are based on the 
trend component of a firm’s short-term default risk (cf. Löffler 2004).5  
The research strategy is as follows:  I take EDFs and estimate their trend 
component using the Hodrick-Prescott filter (Hodrick and Prescott 1997), 
centered moving averages, or local regressions (Cleveland 1979). These three 
filter methods use both past and future data to identify the trend at a given date, 
thus seeing through the cycle. Irrespective of the filtering method, I find that 
agency ratings help predict the current state of the EDF trend. Also, the low 
variability of ratings is largely in line with the low variability of long-term trends. 
Summing up, ratings are not a crystal ball but they exhibit important 
characteristics one would expect from ratings that see through the cycle. 
The remainder of this paper is structured as follows. The relevant literature is 
summarized in section 2. After a description of the data in section 3, section 4 
examines whether ratings predict future changes in EDFs. Section 5 analyses the 
relationship between trends, cycles and ratings from different perspectives. 
Section 6 concludes.  
 

2   Relevant literature  
Conceptual aspects of the through-the-cycle methodology have been explored by 
Carey and Hrycay (2001) and Löffler (2004). Simulations in Löffler (2004) 
already suggest that key empirical characteristics of ratings, such as their low 
variability, could stem from a through-the-cycle approach. In a similar vein, 
Altman and Rijken (2004) quantify the potential effects of a through-the-cycle 
policy by benchmarking it against quantitative scoring models. The present paper 
documents the empirical relevance and validity of the possibility results derived 
by Löffler (2004) and Altman and Rijken (2004). 

                                                 
4  Let me give an example for each combination: a change in the cyclical component of a firm’s 
default risk would be systematic if it is associated with aggregate changes in profitability over the 
business cycle; a change in the trend component would be systematic if it is part of a permanent, 
market-wide increase in leverage. Non-systematic cycles can arise if firms respond to firm-specific 
shocks by rebalancing their capital structure (cf. Graham and Harvey 2001; Fama and French 
2002; Flannery and Rangan 2006; Leary and Roberts 2005). If a firm decides to increase its 
leverage permanently without the average firm doing this at the same time, there would be a non-
systematic change in the firm’s trend component. 
5 One could argue that this statement is incomplete because it misses the stress scenario approach 
described in the literature. I discuss this aspect in section 5.2. 
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Over long horizons the default prediction power of ratings is higher than the one 
of common quantitative prediction models (Altman and Rijken 2006; Löffler 
2007). Agency ratings therefore appear to provide added value, which is in 
contrast to evidence on the added value of another source of qualitative 
information, namely auditors’ assessments (Sun 2006; Yip 2006). The fact that 
the performance of ratings increases with the horizon could reflect an ability to 
look through the cycle, but it could also be due to backward-looking smoothing. 
Similarly, findings that rating actions are procyclical (Nickell, Perraudin and 
Varotto 2000; Bangia et al. 2002; Amato and Furfine 2004) do not establish that 
agencies do not look or rate through the cycle. Business cycle fluctuations that 
coincide with permanent changes in credit quality could provide one explanation 
for such a pattern.6 An example would be a recession that is sparked by increased 
international competition, which can permanently lower the profit margins of 
some firms even after the economy has adjusted to it and overcome the recession. 
While rating agencies employ a through-the-cycle architecture, extant quantitative 
default prediction models can be described as following a point-in-time, or 
current-condition approach. They estimate the probability of default over a fixed 
horizon, which is usually one year, based on today’s information. There are two 
main types of default prediction models: (i) statistical, or reduced-form 
approaches exemplified in the models of Bharath and Shumway (2008), 
Campbell, Hilscher and Szilagyi (2008) and Trustorff, Konrad and Leker (2011), 
and (ii) option-theoretic, or structural models based on Merton (1974). In 
statistical models, historical data are used to estimate the link between 
determinants of default risk and default probabilities. Typical candidates include 
accounting ratios such as leverage and profitability but also stock return volatility 
and stock prices. The second approach is based on the following insight: In a 
limited liability company, equity holders have a walk-away option, which will be 
exercised if the value of equity becomes negative. The walk-away option can be 
priced as a put-option on the firm’s assets; the default probability is the 
probability that equity holders exercise this option. The classical Merton (1974) 
analysis has been generalized in many directions. For example, Geske (1977) and 
Geske and Johnson (1984) generalize the simplified structure of debt assumed in 
Merton (1974); Longstaff and Schwartz (1995) introduce stochastic interest rates; 
Leland and Toft (1996) endogenize capital structure decisions. Recent studies on 
the performance of structural default prediction models include Leland (2004), 
Bharath and Shumway (2008) and Campbell, Hilscher and Szilagyi (2008). A 
commercial implementation is the Expected Default Frequency (EDF) by 
Moody’s KMV, which is an estimate of a firm’s one-year probability of default 
based on a generalized Merton model. Details on the approach are given in 
Crosbie and Bohn (2003) and Kealhofer (2003). A key difference between EDFs 
and models implemented in academic papers is that Moody’s KMV calibrates the 
model-based default probabilities to actual default frequencies.  
The structure imposed in the implementation of Merton models can help to find 
the correct functional relationships and to limit estimation error present in 
statistical models. Inevitably, however, model assumptions will not be literally 
correct. Ultimately, it is therefore an empirical question how the forecasts from a 
given structural model compare to alternatives. EDFs have been shown to provide 
powerful default predictions relative to ratings and the Z-Score, a standard 
                                                 
6  “In any case, purely cyclical factors are difficult to differentiate from coincident secular changes 
in industry fundamentals, such as the emergence of new competitors, changes in technology, or 
shifts in customer preferences” (Standard and Poor’s 2003,  p. 42). 
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statistical measure of default risk (Bohn, Arora and Korablev 2005). Bharath and 
Shumway (2008) and Campbell, Hilscher and Szilagyi (2008) conclude that the 
Merton model underlying the EDF is inferior to reduced-form statistical models. 
However, they do not test EDFs produced by Moody’s KMV but standard Merton 
model implementations. The latter have been shown to underperform the former 
by Bohn, Arora and Korablev (2005). For the purpose of the present paper, what 
is needed are reliable measures of short-term default risk. Based on the evidence 
summarized above, state-of-the-art statistical models and EDFs both seem to 
serve the purpose well. For reasons of data availability, I conduct the analysis 
with Moody’s KMV EDFs.  
In the analysis of the next sections, the time series of a company’s EDF will be 
detrended in order to separate permanent and transitory components. The 
literature on detrending is wide. Several contributions indicate problems with the 
Hodrick-Prescott filter, which is widely used in empirical macroeconomics. The 
studies document that detrending results are sensitive to the choice of filter, and 
that the Hodrick-Prescott filter can identify spurious trends (Harvey and Jaeger 
1993; King and Rebelo 1993; Cogley and Nason 1995). Ehlgen (1998) and 
Pedersen (2001) give new support to the use of the Hodrick-Prescott filter by 
showing that even optimal (in the mean-squared error sense) filters can give rise 
to distortions, and that the Hodrick-Prescott filter is less distorting than other 
filters.  
For the purpose of the present paper, the issue of statistically spurious trends does 
not seem critical, for the following reasons: (i) the reported results are robust to 
the use of different filter techniques; (ii) statistical tests typically have low power 
in identifying long-term cyclical patterns, while rating agencies might have used 
information beyond the time series data examined by the statistician. Rating 
agencies could be able to exploit predictability in circumstances where statistical 
tests do not find significant cyclical patterns and thus classify filtered trends as 
spurious. In such a situation, forward-looking trends also serve their purpose for 
the present paper. A forward-looking trend that is classified as spurious will 
nevertheless have the property that the difference between the trend and the 
current value of the series predicts subsequent movements of the series. In other 
words, it is not evident that a rating that looks through a possibly spurious cycle is 
less valuable to rating users than a rating that is assigned for a firm whose cycle 
withstands statistical tests. 
Kisgen (2006) finds that firms’ capital structure decisions are affected by their 
desire to meet rating targets. This may raise concerns about the interpretation of 
the results from the present paper. Firms that change their capital structure to 
maintain a rating tend to confirm the current rating assessment. If ratings are 
found to predict future default probabilities, some part should perhaps be credited 
to this self-fulfilling prophecy character of ratings rather than to a genuine 
forecasting ability. A look at the empirical findings indicates that this part is not 
likely to dominate. In Kisgen (2006, Table IX), ratings and contemporaneous 
control variables explain less than 3% of the variance of one-year capital structure 
changes. If there were a 100% correlation between capital structure changes and 
default probabilities, the fit from those regressions could thus explain 3% of the 
variation in default probabilities. In the present paper (Table 2), however, ratings 
and control variables explain 7% of the variance of one-year changes in default 
probabilities. The part that can be attributed to self-fulfilling prophecies is likely 
to be significantly less than 3/7 because (i) the correlation between capital 
structure and default risk is not 100%; (ii) Kisgen uses contemporaneous control 
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variables which I do not; (iii) some of the capital structure changes explained in 
the Kisgen regressions are motivated by a desire to change the current rating, not 
to maintain it. 
 

3   Data  
The analyses use monthly data on Moody's long-term senior ratings and Moody’s 
KMV Expected Default Frequencies (EDFs) for US and non-US corporate bond 
issuers. Issuers contained in the database are made up of the intersection of issuers 
which have a Moody’s rating and traded equity. The data covers the period from 
1980 to 2005, but because Moody's refined its rating system in 1982, I start the 
regression analyses in December 1982. Ratings enter the analysis as cardinal 
numbers from 1 (Aaa) to 21 (C). Empirical default rates rise exponentially with 
deteriorating grades (cf. Hamilton 2004, Exhibit 31) which is why I use 
logarithmic EDFs for the entire analysis. (When mentioning specific EDF values, 
the simple probabilities will nevertheless be used.)  
Table 1 shows descriptive statistics on EDFs and ratings. Skewness and kurtosis 
of the two variables are fairly close. The simple conversion of ratings to numbers 
from 1 to 21 has been used by Warga and Welch (1993), Stohs and Mauer (1996) 
and Kisgen (2006). In the present paper, EDF information is explained through 
ratings. Therefore, the conversion is adequate if the relationship between ratings 
and log EDFs is (approximately) linear.  To check the appropriateness of this 
assumption, I consider the following alternatives for modeling the relationship 
between log EDFs and ratings: 
 

(i) Use a fifth order polynomial in the simple rating conversion. This is a 
data-driven approach to capture nonlinearities. 

(ii) As in Stohs and Mauer (1996), two dummy variables are included along 
with the simple rating conversion: A dummy that is one if the rating is 
better than A1, and a dummy that is one if the rating is worse than B3. 
This is a parsimonious way of allowing for nonlinearities in the tails of 
the rating distribution. 

(iii) A conversion of ratings to default probabilities. Specifically, I take 
Moody’s idealized default probabilities from Yoshizawa (2003). As 
Yoshizawa does not specify default probabilities for rating grades Ca and 
C, I estimate them through a quadratic extrapolation. This leads to default 
probabilities of 59% and 79% for rating grades Ca and C, respectively. 

 
Results reported in Table 1 show that the default probability conversion leads to a 
worse fit of EDFs (as measured by the adjusted R²) than the simple numerical 
representation. Allowing nonlinearities in the latter does not greatly improve the 
fit. With a fifth-order polynomial, the R² rises only from 44.4% to 46.6%, and the 
predicted fit is non-monotonic for high EDF levels, which indicates overfitting. 
Adding the two dummy variables also increases the fit but the gain in the R² is 
only 1.2 percentage points. The simple conversion therefore appears to work 
relatively well. Nevertheless, I have also run the analyses of the next two sections 
based on approaches (ii) and (iii), respectively. Selected results for these 
alternative approaches will be presented. 
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4   Do rating agencies predict future changes in 
default probabilities? 
Consider a process xt+1 that is made up of a random walk zt+1 = zt + vt+1   plus an 
AR(1) that follows yt+1=ρ yt+ ut+1, 0 < ρ < 1. With such a process, knowing the 
current zt and xt helps explain future changes in x:   
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with 111 +++ += ttt u νε . In the regression 12101 ++ +++=− ttttt zxxx εγγγ ,  we 
would therefore have γ1 =  − γ2 = (ρ − 1). If the zt is only observed with error, the 
estimated γ  coefficients will be biased away from (ρ − 1), but the xt and zt will 
still explain future changes in x. The example illustrates that the ability to look 
through the cycle—i.e. the ability to identify the z —implies the ability to forecast 
the original series. This motivates a first, model-free test of whether rating 
agencies can look through the cycle, namely, check whether they can predict 
changes in future default probabilities. The correspondences to the example from 
above are that the EDF corresponds to x, and that the rating contains information 
about z.  
As additional explanatory variable, I include the lagged change in EDFs. 
Including the lagged change is a simple way of capturing time series 
dependencies; we would expect the rating to add something to it. Specifically, I 
run the following regressions of changes in EDFs on ratings, EDFs, and EDF 
momentum: 

itatiititititati uEDFEDFEDFRatingEDFEDF +−+++=− −+ )( ,3210, ββββ         (2) 

itatiitititatiati uEDFEDFEDFRatingEDFEDF +−+++=− −−++ )( ,32101,, ββββ    (3) 

An assumption implicit in these regressions is that the relation between the EDF 
trend (zt) and ratings is linear; it is motivated by the analysis of the previous 
section, which has found that the relation between ratings and EDFs is 
approximately linear.  
In the first regression, the dependent variable is the cumulative EDF change over 
a months. In the second it is the one-month change which is a months ahead. To 
make the statistical inference robust, I use in (2) only non-overlapping forecast 
horizons starting in December; forecast horizons in (3) are non-overlapping by 
construction. I also de-mean all variables by their cross-sectional means in order 
to reduce cross-sectional dependence and to bring the forecasting test closer to the 
meaning of a rating.7 Ratings are assigned on a relative scale and meant to be 
stable on average (cf. Cantor  2001). They are not intended to vary with aggregate 
default risk, so they should not be expected to predict the average trend in EDFs. 
Finally, I correct the standard errors for clustering within a given forecast horizon 

                                                 
7  If the stock market declines, for example, the EDFs will on average go up, resulting in the error 
terms being correlated across firms. Running the regressions without de-meaning does not change 
the conclusions. Note that de-meaning also purges the data of the effects of aggregate stock market 
fluctuations.  
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as well as within issuers.8 An open question is how to deal with firms that default 
within the prediction horizon. I examine the following two approaches: (i) use the 
EDF recorded in the database or set it to the maximum of 20% used by Moody’s 
KMV in case there is no EDF in the database (ii) set the EDF to 100% in case of a 
default.  
Table 2 shows the results for approach (i).  Ratings significantly predict EDFs 
over up to 36 months. The positive coefficient is consistent with the example in 
equation (1), as rating information corresponds to z, and −(ρ − 1) > 0 for ρ<1. As 
for answering the question of how far agencies look into the future it is important 
to note that this observation holds for cumulative changes as well as for one-
month changes. (One might well be able to predict 36-month cumulative changes 
just on the basis of predicting the next 6 months.) The predictive quality seems to 
fade, but relatively slowly. For the sake of brevity, I do not report results for 
approach (ii) because coefficients and t-statistics for the rating variable are 
consistently higher, strengthening the conclusions drawn from approach (i). The 
negative coefficient on EDFs is consistent with the analysis in equation (1), as 
EDFs correspond to x, and (ρ − 1)< 0 for ρ<1. The coefficient on the twelve-
month EDF difference varies with the horizon. It indicates that there is short-run 
momentum but long-run mean reversion in EDFs, which is consistent with the 
behavior of stock returns. In order to check whether results are robust to the use of 
the simple rating conversion (Aaa=1, C=21) I run the analysis with the default 
probability conversion described in the previous section. For the regressions from 
Panel A of Table 2, results are reported in Appendix A. The predictive power of 
ratings is marginally smaller; apart from that, there are no major differences. 
Further analysis shows that adding the dummy variables for very good grades 
(better than A1) as well as for very bad grades (worse than B3) improves the fit, 
but only slightly; the maximum increase in the R² is 0.5 percentage points. 
A possible concern is that the results could be influenced by Moody’s acquisition 
of KMV in April 2002. Though Moody’sKMV was run as a separate business 
segment throughout the sample period of this paper, there might have been some 
alignment of information usage. In a sensitivity analysis, I limit the data used in 
the regressions to observations before January 2002.9 As is evident from 
Appendix B, which reports selected results, the predictive power in the pre-2002 
period does not differ noticeably from the entire sample period. In another 
variation reported in Appendix B, I replace Moody’s ratings by long-term credit 
ratings from Standard and Poor’s.10 Again, there is almost no change in the 
results, suggesting that the results do not depend on the choice of rating agency. I 
also re-run Table 2 using only Moody’s ratings for non-US issuers. Again, there 
are no conspicuous changes in coefficients. 
How do the results compare to findings that rating changes can be predicted by 
market-based information (e.g. by a measure that is close to EDFs as in 
Delianedis and Geske, 2003)? Moody’s claims that it deliberately slows down the 
adjustment of ratings to new information in order to increase rating stability 
(Cantor 2001).  This can lead to a lagged response to public information and will 
tend to reduce any predictive content that the ratings have, but it need not reduce 
the latter to zero.  

                                                 
8 Firm-specific clusters also take account of firm-specific serial correlation. The estimator is 
implemented using the procedure discussed and provided by Petersen (2009). 
9 For example, the last 36 month forecast horizon entering the analysis is from December 1998 to 
December 2001. 
10 Data is from S&P Compustat, for US firms only.  
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Summing up, the regressions establish that ratings meet an important requirement 
that should be met if they look through-the-cycle. The fact that their predictive 
ability extends over three years corroborates the interpretation. Since a cycle can 
cover several years, the interpretation would be questionable if we had found that 
the rating agency predicts EDFs only over a few months. Of course, the 
regressions provide an indirect test and do not formally prove that ratings actually 
look through the cycle.11 In the next section, I will use filter methods to extract 
trends and cycles from the EDF series. Relative to the reduced-form regression 
approach of this section, filtering requires assumptions on filter techniques and 
also leads to a loss of observations, because short series or series ending in default 
cannot be filtered in a meaningful way.  However, it will allow more specific tests 
of the agencies’ ability to look through the cycle.  
 

5  An analysis of ratings and EDF trends and cycles 

5.1  Trend extraction techniques and trend properties 

I use three methods for identifying a long-term EDF trend from the time series of 
EDFs: a simple moving average, local regression, and the Hodrick-Prescott filter 
(Hodrick and Prescott 1997).  My choice of techniques and parameters is meant to 
document robustness. I implement two Hodrick-Prescott filters that differ greatly 
in the intensity of smoothing; then I select a moving average (local regression) 
that is close to the Hodrick-Prescott trend with low (high) smoothing intensity. 
Hence, the results can show robustness with respect to smoothing intensity, as 
well as with respect to the technique used to achieve a given smoothing intensity. 
Applied to a series of EDFs for issuer i, the Hodrick-Prescott filter splits it into a 
trend-component HPTREND and a cyclical component HPCYCLE: 

ititit HPCYCLEHPTRENDEDF +=        (4) 

The split is determined by minimizing (separately for each issuer i, which has data 
from t0(i) to T(i)): 
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where λ is a smoothing constant. In the minimization of (5), λ determines the 
weight deviations from the trend receive relative to variation in the trend. The 
larger λ is, the smoother is the estimated trend. Results are reported for two 
alternative choices, λ=10,000 and λ=500,000. For quarterly (monthly) 
macroeconomic data, a choice commonly made in the literature is λ=1600 
                                                 
11 It cannot be ruled that the influence of the rating variable is affected by endogeneity. For 
example, if ratings and EDFs are two different measures of the underlying credit quality, errors in 
measuring this credit quality could lead to endogeneity. This would not invalidate the conclusion 
that ratings are useful for predicting EDFs. It could even be linked with a through-the-cycle 
interpretation in the sense that ratings look through error cycles in EDFs. The standard 
econometric response – instrumental variables – does not appear feasible due to the lack of 
suitable variables. 
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(λ=14,400). One reason for choosing more extreme smoothing constants than are 
typically seen in the literature is to demonstrate robustness. A further justification 
for the large value of λ=500,000 is that EDFs, driven by stock prices, are more 
volatile than the macroeconomic data on which the Hodrick-Prescott filter is 
commonly applied.12 
Smoothing EDFs by local regression involves regressing EDFs on time separately 
for each issuer-month. The subset of observations that is used for a local 
regression extends over a bandwidth that has to be specified by the researcher. It 
is centered except for the end points, where uncentered subsets are used. I choose 
to report results for a bandwidth of eight years (96 months). For firm i with 
observations from t = t0(i),…T(i), the smoothed value at time τ is the prediction 
for  t = τ  from the regression  

))(,48min(,...,))(,48max(, 010 iTittutbbEDF itit +−=++= ττ          (6) 

Finally, I report results for a centered 37-month moving average computed over 
months -18 to +18. In contrast to the local regression described above, the moving 
average is computed only if observations over the entire 37-month interval are 
available.  
The three filter techniques are all forward-looking but differ in the way future data 
is used. The Hodrick-Prescott filter uses the entire series; the local regression is 
run over a fixed interval that is truncated at the end points; the moving average is 
computed over a fixed interval that is not truncated. Unreported analyses show 
that varying the parameters does not lead to qualitatively different or unexpected 
results. With the Hodrick-Prescott filter, for example, results for λ=50,000 lie 
between those for λ=10,000 and λ=500,000. 
Several sample selection decisions are related to the identification of trends. 
Default is a special situation in which the normal trend and cycle is left; I thus 
split the time series on the occasion of default. Observations before the default 
month are treated as a separate series; observations after a default are discarded 
until the firm emerges from default. After emergence, observations are again 
treated as a separate series.13 If there are missing observations, I treat stretches of 
data interrupted by missing observations as separate series.  
Regardless of the filter methodology, the empirical analyses of the later sections 
use only observations where EDFs for the prior and future 18 months are 
available. The Hodrick-Prescott filter and the local regression smoother can be 
computed for all observations including the first and the last, but the closer one is 
to the end of a series, the less future information is available for smoothing. This 
diminishes the forward-looking character of the trend estimate, which is important 
for the purpose of this study. Requiring 18 months of future observations is meant 
to ensure a forward-looking property that is sufficient in the sense that it is not 
easy to achieve by an analyst. Finally, I disregard series shorter than 48 months in 
order to reduce situations in which the filters yield implausible results because of 
a lack of cyclical fluctuations.14 Numbers for the selection process are as follows: 
starting with 4,244 companies, split-ups due to missing observations and defaults 
                                                 
12  Pedersen (2001) also recommends λ >100,000 for monthly data. 
13  Conclusions do not change if defaults are ignored and trends are computed over all observations 
of a company. I define emergence from default as an upgrade to B3 or better. 
14 Consider a Hodrick-Prescott trend computed over one sinusoidal cycle. Rather than being 
horizontal, it is a downward sloping line. This trend line is as smooth as a horizontal line, but the 
squared deviations from the sinusoid are smaller. Many short series are similar in that they contain 
just one peak and one trough. 
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increase the number of series by 1,907. The requirement that series length should 
be at least 48 months reduces the number of series to 2,643. The mean length of 
the series in this sample is 120 months (median 98).  
To get an indication of the smoothing properties of the methods described above, I 
calculate for each series the variance of the trend in EDF and the variance of the 
EDF itself. The lower the ratio of these two variances, the more variability has 
been removed by the filter. As reported in Table 3 average ratios range from 32% 
to 50% and show that the Hodrick-Prescott trend with λ=10,000 is similar to the 
37-month moving average, while the Hodrick-Prescott trend with λ=500,000 is 
similar to the trend obtained through local regression.15 Table 3 also reports R²s 
from regressions of the form ittit uxbbx ++= 10 , i.e. a variable is regressed on its 
cross-sectional means. The lower the R² from such a regression the lower the 
importance of systematic, marketwide components. The R²s for ratings, EDFs and 
EDF trends are all below 10%; for EDF cycles they stay below 25%. This means 
that the data are predominantly driven by non-systematic trends and cycles. Thus, 
the identification of firm-specific trends and cycles is essential to a successful 
through-the-cycle rating. 
Figure 1 shows the time series of EDFs, ratings and the two Hodrick-Prescott 
trends (λ=10,000 or λ=500,000) for four firms. In the first chart, credit quality 
exhibits cyclical fluctuations around a slowly-moving trend. The second chart 
shows that an EDF trend can remain flat for years despite large fluctuations in 
EDFs (here between 0.25% and 3.5%). The final two charts are for two defaulting 
firms, Fruit of the Loom and Enron; they end in the month before default. The 
charts illustrate that the perfect-foresight character of the Hodrick-Prescott trend is 
reduced towards the end of the series (which justifies excluding the first and last 
18 months from the later analysis).  
Table 4 complements the visual analysis through correlations of EDFs, ratings and 
filtered EDFs; Pearson correlations (below diagonal) and Spearman rank 
correlations (above diagonal) exhibit very similar patterns. Panel A contains the 
correlation computed across all observations. Consistent with the agencies’ 
practice of following a through-the-cycle approach, ratings display larger 
correlations with the filtered EDF trends than with original EDFs. The correlation 
becomes greater with increasing smoothing intensity. When moving from pooled 
correlation to within-time correlation (Panel B), which is correlation computed 
after subtracting the variables’ cross-sectional means, the correlation between 
ratings and EDF based variables increase. This is what we expect because ratings 
give a relative ordering and are not intended to capture aggregate fluctuations in 
default risk.  For the same reason, correlations are generally lower if correlation is 
computed after subtracting the series-specific means (panel C) as this removes 
much of the relative differences in default risk from the data. In both panels B and 
C, EDF trends continue to be more strongly correlated with ratings than EDFs. I 
again check whether results are robust to the default probability transformation of 
ratings described in section 3. As is evident from Appendix A, in which the 
pooled correlations for that approach are shown, correlation patterns are the same 
as in Table 4. 

                                                 
15 Standard deviations of variance ratios are high because they reach high values (>1) in some 
cases. The reason is that the sample selection excludes observations at the start and end of the 
series. Though excluded from the final analysis they are used in the computation of trends and 
their variability. If the variability of EDFs in the middle of the series is lower than at the start and 
end one can observe low EDF variability but high trend variability. 
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To better gauge the magnitude of the differences in correlation coefficients, I 
conduct bivariate linear regressions of the type Ratingit = a + 
b·Predictive_Variableit + uit, where the predictive variable is either the EDF or 
one of the estimated trends analyzed in Table 4.16 Table 5 gives information on 
absolute prediction errors | itû |. If | itû | is smaller than 0.5, for example, a rating 
derived from OLS (if the prediction is rounded to the nearest integer) would be 
identical to the actual rating. When the predictive variable is the EDF, the 
prediction error is in 62.4% of all cases smaller or equal to two 2.5 rating grades. 
If the same is done with the HP-trend with λ=500,000, 69.3% of all predictions 
are at most 2.5 grades away from the actual rating. Such differences appear to be 
significant.  

 

5.2  Empirical analysis of ratings, trends and cycles 

5.2.1 Do ratings predict trends in EDFs? 

I start with the following regression based on three-month differences: 

itittiittiitti uRatingRatingEDFEDFTRENDTREND +−+−+=− +++ )()( 3,23,103, βββ (7) 

where the dependent variable TREND is the trend in EDFs determined through 
one of the smoothing methods. The coefficient β2 shows whether ratings help 
identify the trend in EDFs after controlling for the EDF; other control variables 
can and will be added. Since the dependent variable of (7) is not the future 
realization of some variable, the regression is not a classical forecasting analysis. 
However, it examines the forecasting ability of ratings because the left-hand side 
variable is based on forward-looking trends and hence contains information about 
the future. Note that I use three-month differences instead of levels to avoid 
possible concerns about non-stationarities.17 Six-month or twelve-month 
differences do not lead to qualitative changes in results. 
To elucidate the nature and the value of the agency’s predictive ability, it seems 
important to include additional control variables. Viewed from a particular date, 
the trend is obtained by smoothing over the past and the future. If rating agencies 
simply smoothed over the past, they could help explain the current state of the 
trend without being able to `foresee’ future developments. In addition, the 
predictive quality of rating agencies could result from the exploitation of trends or 
trend reversals in the EDF series. Especially in the case of short-term trends, this 
could easily be replicated with a statistical model.  
In an extended regression, I thus control for backward-looking smoothing and 
short term trends or reversals. Specifically, I include rolling estimates of the trend, 
which use only information available at time t, denoted by TRENDt|t-, as well as 

                                                 
16 I also produced predictions based on ordered logit or ordered probit regressions. Results are very 
similar. 
17 Even though ratings and EDFs are bounded between 1 and 21 and 0.02% and 20%, respectively, 
one cannot rule out that trending behavior within the bounds affects the distribution of t-statistics. 
Regressions using levels are available upon request; they strengthen the conclusions drawn from 
the analysis using differences. 
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the twelve-month difference in EDFs.18 Following the procedure from section 4, I 
de-mean all regression variables by their cross-sectional means as this brings the 
analysis in line with the relative nature of ratings. To obtain robust standard 
errors, I use only non-overlapping quarterly data and allow for clustering within 
quarters as well as companies. 
For the Hodrick-Prescott filter, Kaiser and Maravall (1999) and Meyer and 
Winker (2005) document the possibility of spurious cross-correlations induced by 
filtering. Applied to this paper, it means that finding an influence of ratings on 
trends after controlling for EDFs could be spurious. To take possible effects of 
spurious correlations into account, I use a bootstrap study to simulate critical t-
values. The bootstrap is structured as follows: 
 

(1) For each series i contained in the analysis, randomly select (with 
replacement) another series out of those which include the time span 
covered by series i. Replace the rating values of series i by the rating 
values of the randomly picked series j.  

(2) Run the regression whose t-statistic is to be simulated and record the t-
statistic associated with the rating variable. 

(3) Repeat (1) to (2) 1,000 times.  
 

I report the 97.5% percentile of the simulated t-statistics as the simulated critical 
value.  
Regression results are reported in Table 6. Simulated critical t-statistics (5% 
significance) for the rating variable are close to the expected value of 1.96, 
indicating that the problem of spurious trends is not important in the data set here. 
Ratings contribute significantly to the explanation of EDF trend, even after 
controlling for backward-looking trends. The only exception is the extended 
regression based on the moving average trend, where the rating variable loses 
significance upon inclusion of the backward-looking trend, which is here the 
uncentered moving average computed over the preceding 18 months. This, 
however, should not come as a surprise. Viewed in t, the change in the 37-months 
moving average from t to t+3 is completely determined by months t-18 to t-16 and 
months t+19 to t+21. The case is different with the other smoothing methods, 
because their change is determined by the interplay of past, current, and future 
observations. Therefore, changes in the backward-looking moving averages do a 
relatively good job of explaining the subsequent change of the centered moving 
average, and leave less room for other variables, including ratings. In Table 6, this 
is evident in the relatively high coefficient and t-statistic of the backward-looking 
moving average trend. Results are again robust to the way in which rating 
information is coded. When ratings are coded based on a default probability 
transformation (see Appendix A), the resulting coefficients on the rating variable 
are very similar to the ones in Table 6. 
The evidence thus suggests that ratings look through the cycle as they contain 
information that is valuable for identifying the trend. Whether the predictive 
quality is economically significant is difficult to judge because there is no 
straightforward benchmark. The trends computed here are based on perfect 
foresight, so we cannot expect agencies to predict them perfectly or to a large 
extent. If a rating changes by three grades, e.g. from Aa2 to A2, the predicted 
change in the log HPI trend with λ=10.000 is 6.9% ( = coefficient × ΔRating = 
                                                 
18 If the trend is computed with the Hodrick-Prescott Filter, for example, TRENDt|t- is obtained by 
applying the Hodrick-Prescott filter (2) to observations t0(i),…t instead of t0(i),…,T(i). 
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0.023 × 3). This is not large but note that the correlation analysis from Table 4 has 
shown that most of the information contained in ratings is about relative ordering. 
When we examine three-month differences as we do here in order to increase 
statistical robustness, the bulk of this information is not used. If regressions are 
run on levels rather than on three-month differences, ratings therefore have a 
stronger impact on ratings. Unreported analyses show that in such regressions, a 
two standard-deviation difference in ratings leads to a difference in the EDF trend 
of up to 81%, which is sizeable.19  

 

5.2.2 Stability of ratings, EDFs and EDF trends 

One striking empirical characteristic of agency ratings is their considerable 
stability. On a one year time horizon, typically 80% to 90% of ratings remain 
stable, compared to 40% to 50% for categories based on EDFs (Kealhofer 2003) 
or other short-term forecasts of default probabilities (Carey and Hrycay 2001). To 
compute stability measures for the present data I choose fixed EDF cutoffs to 
assign grades based on EDFs or EDF trends. They are set in line with average 
default rates of letter-only rating classes (cf. Hamilton 2004). For example, EDFs 
larger than 0.02% (the minimum value of EDFs) and smaller or equal to 0.06% 
are assigned to one grade; stability of this grade is then compared to the stability 
of Moody’s category Aa. The same ranges are used to classify EDF trends into 
grades.  
Results are shown in Table 7. The reported stability is the number of observations 
which have grade i at the start and the end of a calendar year divided by the 
number of all observations which have grade i at the start of the year and which 
have EDF trends available at the end of the year or defaulted within the year. 
Availability of EDF trends is subject to the criteria defined in section 5.1. For 
ratings and EDFs, the figures correspond to the stylized facts cited above. The 
interesting finding is that stability of grades based on the Hodrick-Prescott trend 
with λ=500,000 or the local regression is close to the stability of ratings. From 
Table 4, these two trends have the highest correlation with ratings, suggesting that 
they provide a good approximation of what rating agencies have in mind when 
rating through the cycle. The results empirically support the findings of Löffler 
(2004), who performed simulations based on plausible parameter choices for the 
credit quality process and concluded that the through-the-cycle approach might 
explain a large part of the stability of agency ratings.  

 

5.2.3 Can ratings be described through stress scenarios?  

Carey and Hrycay (2001) and Löffler (2004) associate through-the-cycle ratings 
with a stress scenario approach. A stress scenario is an unfavorable cyclical 
deviation from the long-term trend that occurs with a low probability. The 
probability of large cyclical deviations can be approximated based on the standard 
deviation of the cyclical component. The rating can therefore be described as 
TRENDit + m · σ(CYCLEi), where TREND is an EDF trend, σ(CYCLE) is the 
                                                 
19 The regressions are of the form itititit uRatingEDFTREND +++= 210 βββ . 
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standard deviation of CYCLE = EDF – TREND, and m is a multiplier related to 
the extremeness of the stress scenario. If ratings follow EDFs for firms that are 
already in stress, this leads to the following definition of a stress scenario 
measure: 

( )[ ] .0,,max >+ mEDFCYCLEmTREND itiit σ     (8) 

Alternatively, I neglect the move towards EDFs for firms that are in stress and 
examine 

( ) .0, >+ mCYCLEmTREND iit σ        (9) 

If these two definitions provide a good description of the agencies’ rating method 
they should have a higher correlation with ratings than the underlying trend. For 
m=1.64 and m=2.33, corresponding to (nominal) stress scenario probabilities of 
5% and 1%, respectively, Table 8  shows that this is not clearly visible in the data. 
Often, correlations with ratings decrease when moving from the EDF trend to the 
stress scenario measures defined above. If they rise, the increase is small, 
especially when compared to the increase in correlation when moving from EDFs 
to EDF trends (cf. Table 4).  
Possibly, the analysis fails to capture relevant aspects of the scenario approach. 
For several reasons, however, it seems plausible that the role of stress scenarios is 
indeed limited. First, rating agencies do not ascribe particular importance to the 
stress scenario concept. In recent years, Moody’s has published several statements 
meant to clarify its rating policy (e.g. Cantor 2001; or Fons 2002). The analysis of 
stress scenarios is either not mentioned, or it is described as just one element of 
the rating process: “Fundamental credit analysis (…) seeks to predict the credit 
performance of bonds, other financial instruments, or firms across a range of 
plausible economic scenarios, some of which will include credit stress” (Fons 
2002, p. 5). Second, Löffler (2004, fn. 9) reports for his simulations that the key 
results do not depend on whether ratings are defined with or without stress 
scenarios. In the present data, finally, the standard deviation of cyclical 
components varies so little across firms that it would not strongly change rating 
assignments even if rating agencies put more weight on it. The standard deviation 
of σ(CYCLEi) averages 0.15 across the four different filters, while the average 
standard deviation of the variable TREND is 1.43. 

 

6  Summary and conclusion 
Using a broad data set, I have shown that agency ratings contribute to the 
identification of long-term trends in market-based estimates of short-term default 
probabilities. The long-term trends have been identified by Hodrick-Prescott 
filtering, local regression or by taking centered moving averages. A significant 
part of this contribution is predictive in the sense that it adds information to 
statistical filters that are merely backward-looking. The paper thus lends empirical 
support to the agencies’ claim that they follow a through-the-cycle rating concept, 
and that they have expertise in applying this concept. It also shows that the 
relatively large stability of ratings, which is often interpreted as an indicator of 
inefficient response to new information, could be due to the through-the-cycle 
methodology.  
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When assessing rating quality, an important aspect is the performance of ratings 
in the prediction of defaults. Prior literature has already documented that ratings 
provide valuable information, especially over horizons longer than one year 
(Altman and Rijken 2006; Löffler 2007). One could surmise that this is simply 
due to backward-looking smoothing, which could easily be reproduced through 
statistical models. The results of this paper indicate, however, that the 
informational value of ratings rests on a forward-looking ability.  
While these findings support the usefulness of ratings, investors should be aware 
that, by construction, through-the-cycle ratings may underperform other predictors 
when it comes to short-term default prediction (cf. Löffler 2004). For the same 
reason, the results of this paper are consistent with evidence that ratings 
underperform relative to alternative measures of default risk or are slow to adjust 
their ratings. The short-term underperformance and the long-term information 
content of through-the-cycle ratings are two sides of the same coin. When 
assessing rating quality it is therefore essential to distinguish between the question 
of how well rating agencies fulfill their own objectives (e.g. looking through the 
cycle), and how well their objectives are aligned with those of rating users (e.g. 
short-term risk management vs. long-term investment). In the practical usage of 
ratings, statistical adjustments of rating information could help to overcome 
possible misalignments of objectives. For example, investors focusing on short-
term risk could employ a method similar to Butera and Faff (2006) to convert 
through-the-cycle ratings into short-term ratings. 
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Figure 1: EDFs, EDF trends (HP=Hodrick-Prescott) and ratings for four companies 
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Table 1: Descriptive statistics for ratings and EDFs 
 
Panel A: Univariate statistics      

 Mean Median St.dev. Skewness Kurtosis 

EDF  -0.96 -1.05 1.70 0.28 2.62 
Rating 9.39 9.00 4.00 0.13 2.27 

Panel B: Adjusted  R² from a regression of EDFs on     
   Adj. R²   
Rating   0.444   
Rating, Rating2, Rating3, Rating4, Rating5

  0.466   
Rating,  IRating<5, IRating>16   0.456   
PD(Rating)   0.412   

Notes: The sample includes all observations not in default. The number of observations is 356,436 
firm-months. EDF is Moody’s KMV expected default frequency (in logs), Rating is Moody’s 
rating (Aaa=1, C=21), PD(Rating) is Moody’s rating represented by the logarithms of idealized 
one-year default probabilities stated in Yoshizawa (2003). IRating<5 is one for ratings better than A1, 
and zero otherwise; IRating>16 is one for ratings worse than B3, and zero otherwise. 
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Table 2: Do ratings predict changes in EDFs? – regressions of EDF-changes on rating and EDF 
information 
 

 Prediction horizon a 

 6 months 12 months 18 months 24 months 36 months 

Panel A: Explaining cumulative changes in EDFs (EDFi,t+a – EDFit) 

Rating 0.033 0.061 0.072 0.083 0.109 

 (6.27) (6.57) (10.53) (6.29) (5.89) 

EDF -0.109 -0.208 -0.246 -0.270 -0.317 

 (-7.82) (-7.56) (-12.05) (-6.97) (-6.89) 

EDFt-EDFt-a 0.055 0.084 -0.007 -0.078 -0.186 

 (3.60) (3.26) (-0.24) (-1.44) (-7.22) 

Adj. R² 0.040 0.072 0.081 0.106 0.158 

NOB 50835 22173 12385 8000 3906 

Panel B: Explaining future one-month changes in EDFs (EDFi,t+a – EDFi,t+a-1) 
Rating 0.005 0.003 0.003 0.002 0.001 
 (5.80) (8.90) (7.21) (4.83) (1.93) 

EDF -0.017 -0.013 -0.011 -0.007 -0.004 
 (-7.74) (-13.30) (-10.39) (-6.41) (-3.10) 

EDFt-EDFt-a 0.010 -0.001 -0.005 -0.005 -0.002 
 (4.42) (-0.86) (-4.11) (-4.18) (-1.55) 

Adj. R² 0.006 0.004 0.004 0.002 0.001 

NOB 304655 261141 222849 190669 140035 

Notes: The results are based on regressions of the form 
Panel A:  itatiititititati uEDFEDFEDFRatingEDFEDF +−+++=− −+ )( ,3210, ββββ      

Panel B:  itatiitititatiati uEDFEDFEDFRatingEDFEDF +−+++=− −−++ )( ,32101,, ββββ  

where Rating is Moody’s rating (Aaa=1, C=21) and EDF is Moody’s KMV expected default 
frequency (in logs). Regression use only observations which are non-overlapping in the dependent 
variable. T-values (in parentheses) are corrected for heteroscedasticity and clustering within 
companies as well as observations belonging to the same time period [t,t+a].  
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Table 3: Characteristics of EDF trends used in the empirical analysis: Smoothing intensity and role 
of systematic components 
 
Panel A: Variance[TRENDi] / variance[EDFi]  

 Mean Median Standard deviation 

Hodrick-Prescott trend (λ=10,000) 0.503 0.483 0.701 

Hodrick-Prescott trend (λ=500,000) 0.321 0.193 0.779 

Moving average trend  0.500 0.449 1.127 

Local regression trend  0.323 0.192 0.803 

Panel B: R² from pooled regression of a variable on its monthly  cross-sectional means   

 R² for  
raw series 

R²  
for trend 

R² for  
cycle=EDF – Trend 

Rating  0.018   

EDF 0.097   

Hodrick-Prescott (λ=10,000) on EDF  0.087 0.160 

Hodrick-Prescott (λ=500,000) on EDF  0.041 0.219 

Moving average  of EDF  0.079 0.172 

Local regression on EDF  0.037 0.220 

Notes: The lower the variance ratios in Panel A, the higher the smoothing intensity. The lower the 
R² in Panel B, the lower the role of systematic components. EDF is Moody’s KMV expected 
default frequency (in logs), the moving average is computed over 37 months; the local regression 
with an eight-year bandwidth. The number of series i used in Panel A is 2643, the number of 
observations used in Panel B is 215,326. 
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Table 4: Correlations between ratings, EDFs and EDF trends 
 

 Rating EDF HP TREND 
(λ=10,000) 

HP TREND 
(λ=500,000) 

MA 
TREND  

LR 
TREND 

Panel A (pooled observations) 
Rating 1 0.649 0.684 0.716 0.690 0.713 

EDF 0.673 1 0.965 0.908 0.958 0.893 

HP TREND (λ=10,000) 0.709 0.967 1 0.963 0.999 0.949 

HP TREND (λ=500,000) 0.740 0.916 0.968 1 0.970 0.998 

MA TREND 0.714 0.960 0.999 0.974 1 0.957 

LR TREND 0.737 0.902 0.956 0.997 0.964 1 

Panel B (within-time) 
Rating 1 0.672 0.709 0.735 0.713 0.732 

EDF 0.695 1 0.967 0.920 0.961 0.907 

HP TREND (λ=10,000) 0.731 0.969 1 0.972 0.999 0.961 

HP TREND (λ=500,000) 0.755 0.927 0.975 1 0.977 0.997 

MA TREND 0.735 0.963 0.999 0.980 1 0.967 

LR TREND 0.752 0.916 0.966 0.998 0.971 1 

Panel C (within-series) 
Rating 1 0.205 0.231 0.237 0.231 0.231 

EDF 0.279 1 0.873 0.699 0.849 0.642 

HP TREND (λ=10,000) 0.311 0.891 1 0.864 0.995 0.806 

HP TREND (λ=500,000) 0.318 0.730 0.880 1 0.875 0.984 

MA TREND 0.310 0.871 0.996 0.892 1 0.818 

LR TREND 0.311 0.682 0.835 0.989 0.848 1 

 
Notes: Rating is Moody’s rating (Aaa=1, C=21), EDF is Moody’s KMV expected default 
frequency (in logs), HP TREND is the Hodrick-Prescott trend in EDFs with smoothing parameter 
λ; MA TREND denotes the centered moving average of EDFs computed over 37 months; LR 
TREND is obtained through local regression with an eight-year bandwidth. Entries below the 
diagonal are Pearson correlation coefficients, entries above are Spearman rank correlation 
coefficients. The number of observations is 215,326. 
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Table 5: Error distribution in bivariate rating prediction 
 

 Predictive variable 

Absolute 
prediction error  EDF HP TREND 

(λ=10,000) 
HP TREND 
(λ=500,000) MA TREND  LR TREND 

≤ 0.5 13.7% 14.7% 16.2% 14.9% 16.1% 

≤ 1.5 40.4% 42.6% 45.6% 43.1% 45.6% 

≤ 2.5 62.4% 65.6% 69.3% 66.2% 69.2% 

≤ 3.5 79.5% 82.2% 84.3% 82.5% 84.0% 

Notes: The Table summarizes the distribution of absolute regression errors | itû | when Moody’s 
rating (Aaa=1, C=21) is predicted in a bivariate regression of the form:  Ratingit = a + 
b·Predictive_Variableit + uit. EDF is Moody’s KMV expected default frequency (in logs), HP 
TREND is the Hodrick-Prescott trend in EDFs with smoothing parameter λ; MA TREND denotes 
the centered moving average of EDFs computed over 37 months; LR TREND is obtained through 
local regression with an eight-year bandwidth.   
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Table 6: Do rating changes explain changes in EDF trends? 
 
 Dependent variable: 

 ΔHP TREND 
(λ=10,000) 

ΔHP TREND 
(λ=500,000) ΔMA TREND ΔLR TREND 

ΔEDFt 0.087 0.035 0.027 0.002 0.063 0.029 0.022 0.010 

 (32.96) (14.10) (18.50) (1.12) (21.78) (12.26) (14.15) (5.63) 

ΔRatingt 0.023 0.004 0.014 0.005 0.023 0.000 0.014 0.007 

 (15.76) (5.15) (14.14) (8.51) (15.62) (-0.04) (11.97) (10.14) 

simulated t (5%) 2.09 2.05 1.95 1.94 2.03 2.06 2.00 1.96 

ΔTRENDt | t-  0.215  0.193  0.387  0.076 

  (21.93)  (19.19)  (33.18)  (6.34) 

EDFt - EDFt-12  0.026  0.000  0.008  0.010 

  (11.25)  (0.51)  (4.47)  (6.97) 

Adj. R² 0.14 0.49 0.05 0.27 0.08 0.46 0.03 0.13 

NOB 69729 69729 69729 69729 67588 67588 69729 69729 

Notes: Δ denotes 3-month differences. Rating is Moody’s rating (Aaa=1, C=21), EDF is Moody’s 
KMV expected default frequency (in logs), HP TREND is the Hodrick-Prescott trend in EDFs 
with smoothing parameter λ; MA TREND denotes the centered moving average of EDFs 
computed over 37 months; LR TREND is obtained through local regression with an eight-year 
bandwidth. TREND | t- is computed with the same method as the dependent variable, but uses only 
information up until the current date t. Regressions use only non-overlapping observations. T-
values (in parentheses) are corrected for heteroscedasticity and clustering within companies as 
well as within time. Simulated critical t-statistics for the rating variable are obtained through a 
bootstrap in which rating series are reshuffled across observations. 
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Table 7: One-year stability of ratings and EDF-based categories 
 
Rating /                     
EDF-Range(%) Rating EDF HP TREND 

(λ=10,000) 
HP TREND 
(λ=500,000) MA TREND  LR TREND 

Aa   / 0.02-0.06 0.89 0.36 0.73 0.87 0.75 0.86 

A     / 0.06-0.12 0.92 0.32 0.51 0.75 0.53 0.73 

Baa / 0.12-0.5 0.90 0.59 0.77 0.89 0.79 0.89 

Ba   / 0.5-2.5 0.84 0.60 0.75 0.85 0.77 0.84 

B     / 2.5-15 0.83 0.52 0.73 0.80 0.80 0.80 

Notes: The table shows the fraction of firms whose rating grade stayed constant over one year. 
Rating is Moody’s rating, EDF is Moody’s KMV expected default frequency, HP TREND is the 
Hodrick-Prescott trend in EDFs with smoothing parameter λ; MA TREND denotes the centered 
moving average of EDFs computed over 37 months; LR TREND is obtained through local 
regression with an eight-year bandwidth. 
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Table 8: Correlations of ratings with EDF trends and stress scenario measures of default risk 
 

Trend method  
Correlation of  
ratings with HP (λ=10,000) HP (λ=500,000) MA  LR 

TREND 0.709 0.740 0.714 0.737 

max(TREND + 1.64 σ(CYCLE), EDF) 0.713 0.732 0.716 0.725 

max(TREND + 2.33 σ(CYCLE), EDF) 0.713 0.720 0.714 0.712 

TREND + 1.64 σ(CYCLE) 0.714 0.732 0.716 0.725 

TREND + 2.33 σ(CYCLE) 0.713 0.744 0.718 0.741 

Notes: Rating is Moody’s rating (Aaa=1, C=21), EDF is Moody’s KMV expected default 
frequency (in logs), HP denotes the Hodrick-Prescott filter with smoothing parameter λ; MA a 
centered moving average of EDFs computed over 37 months; LR trend is obtained through local 
regression with an eight-year bandwidth. CYCLE is EDF – TREND. The number of observations 
is 215,326. 
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Appendix A:  Selected results when rating information is captured through the log of the 
associated idealized default probability  
 
Panel 1: Results from regressions as in Table 2, Panel A 

 Prediction horizon a 

 6 months 12 months 18 months 24 months 36 months 

Panel A: Explaining cumulative changes in EDFs (EDFi,t+a – EDFit) 

Rating 0.041 0.076 0.086 0.100 0.125 

 (5.96) (6.16) (9.13) (5.53) (4.79) 

EDF -0.102 -0.194 -0.226 -0.248 -0.280 

 (-7.65) (-7.29) (-11.38) (-6.51) (-5.87) 

EDFt-EDFt-a 0.052 0.078 -0.014 -0.085 -0.196 

 (3.40) (3.02) (-0.52) (-1.56) (-7.10) 

Adj. R² 0.038 0.068 0.076 0.100 0.149 

NOB 50835 22173 12385 8000 3906 

 
Panel 2: Results from correlation analysis as in Table 4, Panel A   

 Rating EDF HP TREND 
(λ=10,000) 

HP TREND 
(λ=500,000) 

MA 
TREND 

LR 
TREND 

Panel A (pooled observations) 

Rating 1 0.649 0.684 0.716 0.690 0.713 

EDF 0.653 1 0.965 0.908 0.958 0.893 

HP TREND (λ=10,000) 0.689 0.967 1 0.963 0.999 0.949 

HP TREND (λ=500,000) 0.720 0.916 0.968 1 0.970 0.998 

MA TREND 0.694 0.960 0.999 0.974 1 0.957 

LR TREND 0.716 0.902 0.956 0.997 0.964 1 

 
Panel 3: Coefficients on ΔRatingt  from regression analysis as in Table 6 

ΔRatingt 0.030 0.006 0.018 0.006 0.029 0.000 0.018 0.009 

 (13.73) (4.75) (12.76) (7.73) (13.49) (0.09) (11.01) (9.19) 
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Appendix B:  Sensitivity analysis of the regressions in Table 2  
 

 Prediction horizon a 

 6 months 12 months 18 months 24 months 36 months 

Data up to 2001, coefficient on rating when explaining cumulative EDF changes (EDFi,t+a – EDFit), 

Rating 0.038 0.069 0.076 0.089 0.116 

 (6.40) (6.76) (9.68) (6.82) (5.17) 

Data up to 2001, coefficient on rating when explaining one-month EDF changes (EDFi,t+a – EDFi,t+a-1) 

Rating 0.006 0.004 0.003 0.002 0.001 

 (5.48) (8.81) (7.31) (4.71) (1.51) 

S&P ratings, coefficient on rating when explaining cumulative EDF changes (EDFi,t+a – EDFit), 

Rating 0.031 0.059 0.070 0.076 0.087 

 (8.94) (8.52) (7.52) (5.75) (4.10) 

S&P ratings, coefficient on rating when explaining one-month EDF changes (EDFi,t+a – EDFi,t+a-1) 

Rating 0.005 0.003 0.003 0.002 0.001 

 (7.41) (7.86) (6.76) (4.29) (2.50) 
Moody’s non-US ratings, coefficient on rating when explaining cumulative EDF changes (EDFi,t+a – 
EDFit), 

Rating 0.036 0.064 0.075 0.096 0.134 

 (4.94) (5.17) (10.56) (8.10) (6.76) 
Moody’s non-US ratings, coefficient on rating when explaining one-month EDF changes (EDFi,t+a – 
EDFi,t+a-1) 

Rating 0.005 0.004 0.003 0.002 0.0004 

 (4.56) (7.96) (5.69) (3.50) (0.53) 

Notes: The table reports β1 coefficients from regressions of the form 

itatiititititati uEDFEDFEDFRatingEDFEDF +−+++=− −+ )( ,3210, ββββ      

itatiitititatiati uEDFEDFEDFRatingEDFEDF +−+++=− −−++ )( ,32101,, ββββ  

 
 


