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Symbols and Abbreviations

CE Cross-Entropy
MDP Markov Decision Process
MRAS Model Reference Adaptive Search

A action space in MDPs
D(·, ·) Kullback-Leibler divergence
Eθ expectation with respect to f(· ; θ)
Eg expectation with respect to g
f(· ; θ) sample density (CE and MRAS)
f̃(· ; θ) mixture of current and initial sample density (MRAS)
F(1), . . . , F(n) order statistic of F1, . . . , Fn

F̂ estimator for F
g reference distribution in MRAS
g∗ reference distribution in CE (optimal importance sampling density)
ĝ (random) continuous idealized reference distribution in MRAS
g̃ (random) discrete sample reference distribution in MRAS
M observation size
N sample size
RNπ (random) total discounted reward over N periods under policy π
S state space in MDPs, monotone positive function in MRAS
T sufficient statistic in an exponential family
v smoothing factor in parameter update
VN,π expected discounted reward over N periods under policy π
V̂ π,k
∞ estimated expected discounted reward under policy π obtained in

iteration k
X(ρ,N) sample corresponding to sample (1 − ρ)-quantile given N samples

(MRAS)
X◦k sample corresponding to threshold in iteration k (MRAS)

α increase rate of observation size
γ (1− ρ)-quantile (CE and MRAS)
γ̂ sample (1− ρ)-quantile (CE and MRAS)
γ̃ threshold level (MRAS)
ε minimum increase in threshold level (MRAS, Adapted CE)
λ mixture parameter of f̃
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Λk set of samples drawn in iteration k
ν Lebesgue (or counting) measure
θ parameter of parameterized distribution f
θ̂ estimated parameter (CE and MRAS)
Θ parameter space of parameterized family {f(· ; θ)}
π policy, decision rule
ρ quantile parameter
1{A} indicator function of event A
1̃{A} modified indicator function allowing for noise (MRAS)



Introduction

Markov Decision Problems (MDPs) have proven their ability as a powerful tool for
sequential decision making over the past decades and are widely used in various ar-
eas such as economics, telecommunication and robotics to solve real-world problems.
Standard solution methods are usually based on dynamic programming approaches
such as value iteration and policy iteration. However, these techniques assume a
complete knowledge of the model, that is for example an explicit representation of
the transition probabilities and a fully specified reward function.
Sometimes this is not the case and only samples generated by simulation runs of
the system are available. Then one is faced with a so-called learning problem. Ad-
ditionally one often resorts to simulation if exact calculations are too complex or
time-comsuming but sample paths of the given problem can easily be generated.
Many solution approaches are still applicable if the correct values are replaced by
approximations, obtained for example through averaging over several simulation
runs in Monte-Carlo simulation.
Whereas most reinforcement learning methods are concerned with efficiently testing
single actions when in a certain state, we consider in this work model-based algo-
rithms that directly search the space of complete policies. Unlike for example genetic
algorithms that directly manipulate sets of solution candidates called populations,
the methods discussed here are indeed model-based insofar as they work with proba-
bility distributions models on the solution space. This is similar to the idea pursued
by the class of Estimation of Distribution Algorithms (EDA, see [ZM04]), only that
we differentiate between the “ideal” distribution and a “practical” distribution to
facilitate the sampling and updating procedures.
Our main focus is the Model Reference Adaptive Search algorithm (MRAS) intro-
duced by Hu, Fu and Marcus in [CFHM07], [HFM07] and [HFM] in its version for
stochastic optimization (called MRAS2). Originally developed as a global optimiza-
tion method, the authors stress its ability to solve Markov Decision Processes with
continuous action and finite state spaces and compare it with Simulated Annealing
to prove its consistently good performance. Only few algorithms directly deal with
uncountable action spaces and do not use discretization - due to the curse of dimen-
tionality more thought has been invested in the reduction of the state space. Hence
an algorithm handling a continuous action space with a reasonably-sized finite state
space may be quite interesting. However, it is precisely in this setting that we cannot
reproduce the published results. Even more, we think that there are inherent struc-
tural problems complicating the implementation of the Model Reference Adaptive
Search and disturbing its behaviour.
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In addition, even though motivated by a different background, the MRAS is strik-
ingly similar in concept and appearance to the Cross-Entropy method (CE) proposed
by Rubinstein [RK04], [dBKMR05] in 1999 with adaptions suggested by Homem-
de-Mello in [dM07]. The Cross-Entropy algorithm was designed (and is still used)
for rare-event estimation, but has successfully been applied to optimization prob-
lems with a focus on combinatorial optimization (see e.g. [RK04], [CJK07]). Other
applications include continuous deterministic optimization [KPR06], [Liu04], pa-
rameter optimization [MMS05], [Dam07] and the calculation of stochastic shortest
paths [MRG03]. To our knowledge it has not as yet been applied to general Markov
Decision Processes.
The similarities of CE and MRAS suggest a comparative study to explore their re-
spective strengths. We will limit ourselves to MDPs with a focus on uncountable
action spaces. This allows us to compare the Model Reference Adaptive Search to
a conceptually related algorithm and at the same time to study the Cross-Entropy
algorithm in the as yet not keenly explored context of continuous stochastic opti-
mization.

The outline of this work is as follows:
Chapter 1 is a short introduction of some underlying notions and concepts needed in
later sections. The basic ideas of Markov Decision Processes, Exponential Families,
the Kullback-Leibler distance and the generation of random variables are presented
and the corresponding notations are established.
In Chapter 2, the Cross-Entropy method is introduced. We discuss its background
and motivation as well as its use as a global optimization algorithm, present some
important modifications and the application of this algorithm to stochastic opti-
mization.
The Model-Reference Adaptive Search is presented in Chapter 3. The successive
adaptations from the basic idea to the stochastic optimization algorithm are ex-
plained, we highlight similarities and differences in comparison with the CE and
illustrate the application to Markov Decision Processes of both algorithms.
In Chapter 4, we discuss convergence properties of the stochastic MRAS algorithm.
It can be shown that if the model distribution belongs to an exponential family
with sufficient statistic T (x), then Ek[T (X)]→ T (x∗) as k →∞ (see Theorem 4.9).
However, there are multiple assumptions required for this result which we discuss in
detail, as well as the several corrections and clarifications of the original proof found
in [CFHM07].
Our numerical experiments are described in Chapter 5. For different Markov Deci-
sion problems, we implement and test both CE and MRAS with various modifica-
tions. We show that the results concerning the behaviour of the Model Reference
Adptive Search in this context as published in [CFHM07] are too positive and give
reasons based on our observations. We further observe that the Cross-Entropy al-
gorithm in all its simplicity compared to the MRAS performs in all examples at
least as well, usually even better. A particularity of both algorithms, a consistent
underestimation of the value function, is brought to attention and explained.
Finally, a detailed conclusion and discussion of the theoretical and practical results
and observations is given in Chapter 6.



Chapter 1

General Notions

In this chapter, we will shortly introduce some basic ideas and definitions and es-
tablish the corresponding notation. Here and in subsequent chapters, ν denotes the
Lebesgue measure (in discrete settings the counting measure).

1.1 Markov Decision Processes

Markov Decision Processes are an important tool for modeling and solving sequential
decision making problems. There are several equivalent definitions and notations,
we use the formulation from [Rie04].

Definition 1 (Markov Decision Process). A Markov Decision Process (or MDP)
is defined by the tuple (S,A,D, p, r, V0, β), where the state space S is assumed to
be countable, A is the action space, D ⊆ S × A the space of admissible actions,
p : D × S → [0, 1] the transition law with p(i, a, j) denoting the probability of
reaching state j when choosing action a in state i, r : D → R the (bounded) reward
function, V0 the terminal reward (equal to zero in infinite horizon problems) and
β > 0 the discount factor.

Furthermore, a sequence π = (f0, f1, ...fN−1) with decision rules f : S →
A, f(i) ∈ D(i) ∀ i is called a policy. In the case of infinite MDPs the existence of
an optimal policy implies the existence of an optimal stationary policy π∗ = (f, f, ...).

For a fixed policy π and a given starting point i, the underlying probability space
is given by (Ω,Pπi), where

Ω := {ω = (i0, i1, . . . , iN )} = SN+1 and

Pπi({ω}) := δi,i0 ·
N−1∏
k=0

p(ik, fk(ik), ik+1).

Define Xn : Ω → S, Xn(ω) := in. Then the total discounted reward is the random
variable

RNπ (ω) :=
N−1∑
k=0

βkr(Xn(ω), f(Xn(ω)) + βNV0(XN (ω))

3
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and
VN,π(i) := Eπi(R

N
π )

is called the expected discounted reward. Moreover, we denote by

VN (i) := sup
π
VN,π(i)

the maximal discounted reward and call π∗ an optimal policy if VN = VN,π∗ .

1.2 Simulation and Random Numbers

With the emergence and further development of powerful computers in the last
decades, simulation has become a widely used tool for analysis and optimization
of problems in many different areas of application. It usually is employed if the
underlying system is either too complex to be treated analytically or not completely
known.

Random Variate Generation

To correctly and efficiently simulate a random process, we need to be able to produce
realizations of random variables with a given discrete or continuous distribution F .
This is not a trivial task, since computers are not only fundamentally deterministic
machines but can also only store discrete numbers due to their finite memory (every
number can only be represented by a finite number of bits).
The generation of random variates is usually divided into the generation of random
numbers that are uniformly [0, 1]-distributed and the modification of such a sequence
u1, u2, · · · ∼ U [0, 1] to produce outcomes x1, x2, · · · ∼ F .
For the first part, one usually resorts to generate so-called pseudo-random numbers.
These are elements of a deterministic sequence of numbers {un} depending on some
seed s0. The idea is that even though for a fixed random generator the sequence {un}
is completely determined by the seed, the elements of a given sequence are uniformly
distributed in that they cannot be distinguished from true realisations of a uniform
distribution by statistical tests. However, since they are in fact not random, this will
never be the case for all tests. The quality of such a generator can thus be measured
by the choice of statistical tests the produced sequences pass. Other criteria are for
example the length of period (i.e. the number of elements before the sequence starts
to repeat itself), the independence of the seed (sometimes some seeds may produce
“less random” sequences than others), the distribution among dimensions (e.g. no
3-dimensional patterns) and the speed with which variates are generated. In our
case we will use for random number generation the Mersenne Twister, widely used
due to its long period and good dimensional equidistribution.
There is a certain number of basic ideas to obtain random variates according to
a specific distribution from uniformly distributed random numbers. For a detailed
discussion refer e.g. to [Dev86]. Among the most instrumental and universal ones
are for example the
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• Inversion method:
If the desired F is a continuous distribution and the generalized inverse F−1(y) :=
inf{x : F (x) = y}, y ∈ (0, 1) can be computed explicitly, the following theorem
provides a general method to obtain realisations of X ∼ F :

Theorem 1.1. Let F , F−1 as above and U ∼ U [0, 1]. Then F is the distri-
bution function of F−1(U).

Hence x = F−1(u) is a realization of X ∼ F if u is a realization of U ∼ U [0, 1].

• Rejection method:
If there exists a distribution G such that F is absolutely continuous with
respect to G with bounded density p, i.e.

F (x) =
∫ x

−∞
p(z)dG(z) and p(x) ≤ c, 0 < c <∞ ∀x ∈ R,

and realizations of X ∼ G can easily be generated, the rejection (sometimes
also called acceptance-rejection) method can be employed. It is based on the
following theorem:

Theorem 1.2. Let F , G as above and {(Xi, Ui)}i∈N, (Xi, Ui) ∼ G ⊗ U [0, 1],
a sequence of independent and identically distributed random vectors. Then
the random variable I := min

{
i ≥ 1 : Ui ≤ p(Xi)

c

}
is geometrically distributed

with parameter 1
c and the random variable XI is distributed according to F .

Thus one can generate realizations of X ∼ F by the following algorithm:

Algorithm 1.1 (Rejection Method).

REPEAT Generate independently y ∼ G and u ∼ U [0, 1]

UNTIL u · c ≤ p(y).

RETURN y.

Note that the E[I] = c. Hence one should choose such a G that c is as small
as possible to obtain a fast generator.

Moreover, for most common distributions there even exist highly specialized algo-
rithms that take advantage of the concrete form of the distribution to speed up or
improve in other respects the random number generation. We will shortly state here
the algorithms used for our needs.

Normal Distribution

Realizations of standard normally distributed random variables are usually obtained
by the so-called Box-Muller Algorithm based on the following theorem.
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Theorem 1.3 (Box-Muller Method).
Let U1, U2 ∼ U [0, 1] independent. Then

X1 =
√
−2 ln(U1) · cos(2πU2)

and X2 =
√
−2 ln(U1) · sin(2πU2)

are independent and N (0, 1)-distributed.

Moreover, N (µ, σ)-distributed random variables can easily be generated from
X ∼ N (0, 1), since σX + µ ∼ N (µ, σ).

Exponential Distribution

As one can easily invert the distribution function F (x) = 1−e−λx of the exponential
distribution, this is an example for the application of the inversion method. The
inverse is given by

F−1(U) = − 1
λ

log(1− U),

but since 1 − U and U are identically distributed, one can simplify this and set
x = − 1

λ log(u) for a realization u of U ∼ U [0, 1].

1.3 Exponential Families

Exponential Families are a large class of families of distributions widely used in
statistical theory and applications due to several interesting characteristics. They
admit for example natural sufficient statistics whose dimensions are independent of
the sample size, form the basis for the so-called generalized linear models and are
also important in Bayesian statistics. Exponential families include among others
important families such as the normal, binomial, Poisson, gamma and beta distribu-
tions. We will usually consider some exponential family as model in our algorithms
and especially the convergence results of the model-reference adaptive search (Chap-
ter 4) rely heavily on the general form of these distributions. For more information
refer e.g. to [BD97], [Pru89].

Definition 2 (Exponential Family). A family of distributions {Pθ, θ ∈ Θ}, Θ ⊆
Rm, on a space X ⊆ Rn is called a m-parameter exponential family if there exist
functions h : Rn → R, T : Rn → Rm, η : Rm → Rm and B : Rm → R such that the
density f(x, θ) has the form

f(x, θ) = h(x) exp{η(θ)>T (x)−B(θ)} ∀x ∈ X .

It this can be reparameterised into

f(x, η) = h(x) exp{η>T (x)−A(η)} ∀x ∈ X ,

with A(η) = ln
∫

Rn h(x) exp{η>T (x)}ν(dx) finite (for discrete X the integral is re-
placed by a sum), then {Pθ, θ ∈ Θ} is called a canonical m-parameter exponential
family. In that case, the set S := {η ∈ Rm : −∞ < A(η) <∞} is called the natural
parameter space and T (X) = (T1(X), . . . , Tm(X)) the natural sufficient statistic.
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Note that the family of distributions of a random vector X = (X1, . . . , XN )
whose components are independent and identically distributed according to some
m-parameter exponential family Pθ is itself an m-parameter exponential family,
since for its density holds

f(x, θ) =
N∏
i=1

(
h(xi) exp{η(θ)>T (xi)−B(θ)}

)
=

N∏
i=1

h(xi) · exp{η(θ)>
N∑
i=1

T (xi)−N ·B(θ)}

= h̃(x) exp{η(θ)>T̃ (x)− B̃(θ)}.

Example 1.1 (Normal Distribution). Let Pθ = N (µ, σ2). Then θ = (µ, σ2) ∈ Θ =
R× R+ and

f(x, η) =
1√

2πσ2
exp

{
−1

2
(x− µ)2

σ2

}
= exp

{
−1

2
(x− µ)2

σ2
+ ln

(
1√

2πσ2

)}
= exp

{
−1

2

(
x2

σ2
− 2xµ

σ2
+
µ2

σ2

)
− 1

2
ln(2πσ2)

}
= exp

{
µ

σ2
x− 1

2σ2
x2 − 1

2

(
µ2

σ2
+ ln(2πσ2)

)}
.

Hence, N (µ, σ2) is a two-parameter canonical exponential family with

η =
(
µ

σ2
,− 1

2σ2

)
, T (x) =

(
x, x2

)>
, h(x) = 1 and

A(η) = ln
∫
X
h(x) exp{η>T (x)}dx = ln

∫
X

1 · exp
{
µx

σ2
− x2

2σ2

}
dx

= ln
∫
X

√
2πσ2

√
2πσ2

exp
{
−1

2
(x− µ)2

σ2

}
· exp

{
− µ2

2σ2

}
dx

= ln(
√

2πσ2)− 1
2
µ2

σ2
= −1

2

(
µ2

σ2
+ ln(2πσ2)

)
.

However, a n-dimensional random vector X whose components Xi are indepen-
dent and normally distributed with parameters (µi, σ2

i ) has a distribution of the
form

p(x, η) =
n∏
i=1

p(xi, ηi) = exp

{
n∑
i=1

(
µi
σ2
i

xi −
1

2σ2
i

x2
i −

1
2

(
µ2
i

σ2
i

+ ln(2πσ2
i )
))}

= exp

{
n∑
i=1

(
µi
σ2
i

,− 1
2σ2

i

)>
·
(
xi, x

2
i

)
− 1

2

n∑
i=1

(
µ2
i

σ2
i

+ ln(2πσ2
i )
)}

= h̃(x) exp{η̃>T̃ (x)− Ã(η)}

with

η̃ =
(
µ1

σ2
1

, . . . ,
µn
σ2
n

,− 1
σ2

1

, . . . ,− 1
σ2
n

)
and

T̃ (x) =
(
x1, . . . , xn, x

2
1, . . . , x

2
n

)
.
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Since the dimension m of the sufficient statistic and of η depends on n, it is a matter
of definition if this can be considered an exponential family.

Example 1.2 (Binomial Distribution). Let Pθ = Bin(n, θ), θ ∈ Θ = (0, 1) ⊂ R. Then

p(x, η) =
(
n

x

)
θx(1− θ)n−x

=
(
n

x

)
exp

{
ln
(

θ

1− θ

)
x+ n ln(1− θ)

}
.

Hence, Bin(n, p) is a canonical one-parameter exponential family with

η = ln
(

θ

1− θ

)
, T (x) = x, h(x) =

(
n

x

)
and

A(η) = ln
n∑
x=1

h(x) exp{η>T (x)} = ln
n∑
x=1

(
n

x

)
exp

{
ln
(

θ

1− θ

)
x

}

= ln
n∑
x=1

(
n

x

)(
θ

1− θ

)
= ln

n∑
x=1

(
n

x

)
θx(1− θ)−x · (1− θ)n

(1− θ)n

= ln(1 · (1− θ)n) = −n ln(1− θ).

Furthermore we consider a subset of exponential families called Natural Expo-
nential Families (NEF). The definition of this class of distributions varies through-
out literature [Mor82], [MN83], we will give here the rather strict one from [RK04]
needed in later sections. Unfortunately we were unable to find any source confirming
the definition of a NEF given in [CFHM07], which rather correponds to a canonical
exponential family as defined above.

Definition 3 (Natural Exponential Family). A one-parameter exponential fam-
ily {Pθ, θ ∈ Θ ⊆ R} in canonical form is called Natural Exponential Family (NEF)
if T (x) = x, i.e. if

f(x, η) = h(x) exp{η>x−A(η)} ∀x ∈ X ⊆ Rn, (1.1)

with h, A as in Definition 2.

Example 1.3. The binomial distribution is a natural exponential family (see Example
1.2). Other examples are the Poisson distribution and the Gamma distribution.
The normal distribution can be considered as a natural exponential family with
h(x) = exp{− x2

sσ2 } − ln(2πσ2) if one is only interested in the mean µ as it is often
the case in linear regression. Here we consider it a two-parameter exponential family
and hence not a NEF as the variance plays an important role in our context.

1.4 Kullback-Leibler divergence

The Kullback-Leibler divergence (also called relative entropy, cross-entropy or infor-
mation gain) was introduced by Kullback and Leibler in [KL51] as a generalization
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of Shannon’s measure of information.

Shannon published in 1948 a way of measuring the uncertainty associated with
a discrete random variable X, called entropy, as

H(X) := −
n∑
i=1

pi log pi,

where pi = P (X = xi) is the probability of outcome xi, i = 1, . . . , n (see [Sha48]).
He is since regarded as the founder of the field of information theory (information
being the opposite of entropy). Consider for example the toss of a coin: the uncer-
tainty of the outcome is maximal if both sides are equiprobable (i.e. if it is a fair
coin), the uncertainty is zero if one of the sides comes up with probability one.

In contrast, the notion of Kullback and Leibler compares the information content
of two different sources. In their original paper, they used it to measure the mean
information in a random variable X to discriminate between two hypotheses H1 and
H2, Hi := {X has probability density fi}, if H1 is true and defined it as

D(f1, f2) :=
∫
f1(x) log

f1(x)
f2(x)

ν(dx).

Moreover, this notion can be interpreted as the information gain in using probability
measure f1 instead of f2 and is therefore also used in Bayesian statistics to measure
the improvement in changing from the prior information f2 to the posterior infor-
mation f1.

In our context, however, we will use it primarily as a measure of discrepancy
between two densities. Even though D(f1, f2) is not a true metric, since it is not
symmetric and does not fulfill the triangle inequality, Kullback and Leibler showed
that

D(f1, f2) ≥ 0

and
D(f1, f2) = 0 ⇐⇒ f1(x) = f2(x) ν − a.s.

Note that even though the term “Kullback-Leibler divergence” today always refers
to D(f1, f2), the authors themselves defined “divergence” as D(f1, f2) + D(f2, f1),
which has the added advantage of being symmetric.

1.5 Results Probability

To prove convergence results of the considered algorithms, one frequently has to
assess the probability P

(∣∣ 1
n

∑n
i=1Xi − E[X]

∣∣ ≥ ε). Under certain conditions, one
can use the Chebychev inequality. However, often the assumptions of the following
theorem are easier to verify:
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Theorem 1.4 (Hoeffding’s Inequality). If X1, . . . , Xn are independent and 0 ≤
Xi ≤ 1 ∀ i = 1, . . . , n, then for 0 < t < 1− µ:

P

(
1
n

n∑
i=1

Xi − µ ≥ t

)
=

{(
µ

µ+ t

)µ+t( 1− µ
1− µ− t

)1−µ−t
}n

≤ e−nt2g(µ)

≤ e−2nt2 , (1.2)

where

g(µ) =

{
1

1−2µ ln
(

1−µ
µ

)
0 < µ < 1

2
1

2µ(1−µ)
1
2 ≤ µ < 1.

If a ≤ Xi ≤ b ∀ i = 1, . . . , n, the inequalities hold true if one replaces t by t
b−a and

µ by µ−a
b−a .

We use inequality (1.2) of this theorem in Chapter 4 to conclude that for inde-
pendent a ≤ Xi ≤ b, i = 1, . . . , n, and small ε > 0 holds

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi − E[X]

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

{
−2n

ε2

(b− a)2

}
. (1.3)

Moreover, we need the following terms:

Definition 4. A lower semicontinuous function I : X → R with I(x) ≥ 0 ∀x ∈ X is
called a rate function. We say that a sequence {zi}i∈N satisfies a Large Deviations
Principle with rate function I if

• For all closed sets C ⊂ X holds: lim supn→∞
1
n logP (zn ∈ C) ≤ − infx∈C I(x).

• For all open sets G ⊂ X holds: lim infn→∞ 1
n logP (zn ∈ G) ≥ − infx∈G I(x).

Analogous to this definition from [SW95] we say that a stochastic function g
satisfies a Large Deviations Principle with rate function I if for the observations
g1(x), g2(x), . . . holds

lim sup
n→∞

1
n

logP

(∣∣∣∣∣ 1n
n∑
i=1

gi(x)− E[g]

∣∣∣∣∣ ≥ ε
)
≤ −I(x, ε) ∀x ∈ X ,

i.e. if there exists some N such that

P

(∣∣∣∣∣ 1n
n∑
i=1

gi(x)− E[g]

∣∣∣∣∣ ≥ ε
)
≤ e−nI(x,ε) ∀n ≥ N. (1.4)



Chapter 2

The Cross-Entropy Method

In this chapter, we will give the basic ideas and algorithms of the Cross-Entropy
method as proposed by Rubinstein and Kroese in [dBKMR05] and [RK04].
The Cross-Entropy (or CE) method has originally been developed as a tool for rare-
event simulation. To estimate very small probabilities (10−5 or smaller), simple
Monte-Carlo simulation is impractical since it requires very large sample sizes to
obtain accurate estimators. One popular method to avoid this problem is the so-
called Importance Sampling : changing the original measure to increase the frequency
of the rare event in the simulation. The CE method provides an algorithm to
calculate the optimal parameters of this new probability by sequentially assigning
more and more probability mass to the rare event.

With some small adaptations, the same algorithm can be used to solve optimiza-
tion problems. We can interprete the occurence of (near-)optimal states x as a rare
event. Estimating the optimal importance sampling parameters by the CE method
thus results in obtaining a probability function with most of its probability mass
concentrated on the solutions of the original problem.

We will now give the details of the original rare-event algorithm and its applica-
tion to optimization problems.

2.1 Rare-event simulation and Importance Sampling

Let {f(· ; θ), θ ∈ Θ} be a parametric family of probability density functions on a set
X ⊆ Rn. Here and in all subsequent chapters we assume that X is measurable with
respect to ν. Consider the problem of estimating the probability

p = Pθfix
(
F (X) ≥ γ

)
,

where F : X → R and X ∈ X is distributed according to the given probability
f(· ; θfix). Since p can also be written as Eθfix1{F (X)≥γ}, the usual Monte-Carlo
estimator is

p̃ =
1
N

N∑
i=1

1{F (Xi)≥γ}, X1, . . . , XN ∼ f(· ; θfix).

11
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If p is very small, {F (X) ≥ γ} is called a rare event. In this case, the indicator
function in the estimator p̃ is equal to zero for most of the samples X1, . . . , XN , so
that obtaining a valid estimate for p by this direct approach requires a very large
sample size N . For example, to estimate a probability p = 10−6 with a relative error
(RE) of 10% the sample size has to be approximately N ≈ 108, since

RE =

√
Var(p̃)
E[p̃]

=

√
Var(1{F (X)≥γ})

N

p
=

√
p(1−p)
N

p
=

√
1− p
N

and thus
N =

1− p
p · RE2 ≈

1
p · RE2 .

To reduce the necessary sample size, one popular approach is a change of measure
to some density function g, called the importance sampling density, under which the
event is more likely to occur. Since

Ef [H(X)] = Eg
[
H(X)

f(X)
g(X)

]
for any function H and density g for which f << g, the probability p can be
estimated by

p̂ =
1
N

N∑
i=1

1{F (Xi)≥γ}
f(Xi; θfix)
g(Xi)

, X1, . . . , XN ∼ g.

However, finding a good importance sampling density g is often not trivial. The
estimator p̂ is still unbiased but its variance is determined by the choice of g. The
conditional density of X ∼ f(· ; θfix) given that the event {F (X) ≥ γ} occurs, i.e.

g∗(x) :=
1{F (x)≥γ}f(x; θfix)

p
, (2.1)

is optimal in the sense that it provides a zero-variance estimator but depends un-
fortunately on the unknown probability p.

To facilitate the problem of explicitly calculating an optimal g∗, the Cross-
Entropy approach restricts the choice of the importance sampling density to the
familiy {f(· ; θ)}. It aims to find the g ∈ {f(· ; θ)} that is closest to the optimal
density g∗ in the cross-entropy (or Kullback-Leibler) sense. That is, we want to
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solve the problem

min
θ
D (g∗, f(· ; θ)) = min

θ
Eg∗

[
ln

g∗(X)
f(X; θ)

]
= min

θ

∫
g∗(x) ln g∗(x)dx−

∫
g∗(x) ln f(x; θ)dx

= max
θ

∫
g∗(x) ln f(x; θ)dx

= max
θ

∫
1{F (x)≥γ}f(x; θfix)

p
ln f(x; θ)dx

= max
θ

Eθfix
[
1{F (X)≥γ} ln f(X; θ)

]
.

There again the problem is to obtain a good estimate for the expectation within a
reasonable sample size. The CE method proposes to solve this problem iteratively.
Observe that

max
θ

Eθfix
[
1{F (X)≥γ} ln f(X; θ)

]
= max

θ
Ew
[
1{F (X)≥γ}L(X; θfix, w) ln f(X; θ)

]
for some parameter w, where L(x; θfix, w) := f(x;θfix)

f(x;w) is the likelihood ratio between
f(· ; θfix) and f(· ;w).
The idea behind the algorithm is now to find the optimal important sampling pa-
rameter

θ∗ = argmax
θ

Ew
[
1{F (X)≥γ}L(X; θfix, w) ln f(X; θ)

]
(2.2)

by first relaxing the inequality F (X) ≥ γ to F (X) ≥ γ0, i.e. using γ0 < γ such
that the event {F (X) ≥ γ0} has a higher probability (say ρ = 0.01). Solving (2.2)
for w = θfix then gives the optimal parameter θ1 for the estimation of the event
{F (X) ≥ γ0}. Since under the importance sampling parameter θ1 this event has a
high probability to occur, it is most likely that we can find a new level γ0 < γ1 < γ
for which the probability that F (X) ≥ γ1 is still large enough, i.e. ρ. For this level
we can again compute the importance sampling parameter θ2 by solving (2.2) for
w = θ1. Thus, the algorithm iteratively constructs a sequence of increasing levels
{γi} and corresponding parameters {θi+1} until the original level γ is reached. The
corresponding importance sampling parameter (say θT ) is the optimal parameter θ∗

for the initial program, since (see 2.2)

θT = argmax
θ

EθT−1

[
1{F (X)≥γ}L(X; θfix, θT−1) ln f(X; θ)

]
= argmax

θ
Eθfix

[
1{F (X)≥γ} ln f(X; θ)

]
= argmin

θ
D (g∗, f(· ; θ)) .

However, to prove that the level γ is reached in a finite number of iterations is not
an easy task. Rubinstein and Kroese give in [RK04] sufficient conditions on the
parameterized family, the function F and the parameter ρ to ensure convergence in
maximal M(γ, f) iterations in the one-dimensional case for some function M , but



CHAPTER 2. THE CROSS-ENTROPY METHOD 14

to our knowledge, more general results have yet to be established.

The resulting algorithm is as follows:

Algorithm 2.1 (CE method for rare-event estimation).

Step 1: Initialize θ0 := θfix, iteration counter k := 0.

Step 2: Calculate γk as the (1− ρ)-quantile of F (X) under f(· ; θk).
If γk ≥ γ set γk := γ.

Step 3: Determine the new parameter θk+1 as the solution (cf. (2.2))

θk+1 = argmax
θ

Eθk
[
1{F (X)≥γk}L(X; θfix, θk) ln f(X; θ)

]
.

Step 4: If γk = γ, STOP.
The current parameter θk+1 is the optimal parameter θ∗.
Else set k := k + 1 and proceed with Step 2.

In practice, one only estimates the quantities γk and θk+1. In each iteration, N
samples X1, · · · , XN ∼ f(· ; θ̂k) are generated and the order statistic F(1), . . . , F(N)

is computed. Then

γ̂k = F(d(1−ρ)Ne),

θ̂k+1 = argmax
θ

1
N

N∑
i=1

1{F (Xi)≥bγk}L(Xi; θfix, θ̂k) ln f(Xi; θ).

Consequently, both the estimated quantile values γ̂k and the parameters θ̂k+1 are
random variables depending on all samples drawn up to that time, i.e. on the com-
plete history of the algorithm.
We will refer to the algorithm as given in Algorithm 2.1 as the algorithm in its
deterministic form, whereas the stochastic form refers to the use of the estimates γ̂k
and θ̂k+1.

Note that whereas the sequence of levels {γk} is determined by the algorithm,
the sample size N and the quantile parameter ρ have to be specified in advance.
Especially the choice of ρ (usually between 0.01 and 0.1) can be critical for the
performance of the algorithm in some examples (see [RK04] for more details). In
our examples, however, ρ = 0.1 yielded consistently good results.

2.2 Application to Optimization

Consider the following optimization problem:

max
x∈X

F (x), F : X → R (2.3)
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and denote by x∗ ∈ X the optimal state and by γ∗ = F (x∗) the optimal function
value.

Consider now the event {F (X) ≥ γ∗} or {F (X) ≥ γ∗ − ε}. Interpreting this
as a rare event under some arbitrary density function f ∈ {f(· ; θ)} and applying
the CE algorithm for rare-event simulation will result in constructing a sequence of
increasing levels {γk} converging to γ∗ and corresponding parameters {θk+1}. Since
the parameters θk+1 are the optimal importance sampling parameter for estimating
the event {F (X) ≥ γk}, once the optimal level γ∗ has been reached by the algorithm,
f(· ; θk+1) will be a density with most of its probability mass concentrated on the
set of states {x ∈ X} for which F (x) ≥ γ∗, i.e. on the solution set for our original
optimization problem.

However, in the original rare-event sampling setting we know the value of the
optimal level γ∗ since it is one of the fixed parameters in the estimation problem,
whereas here it is one of the unknown variables we are interested in finding. But
since γ∗ is the maximal level that can be reached by the algorithm - recall that
it is always computed as the (1 − ρ)-quantile of the current distribution - and the
sequence {γk} is usually at least non-decreasing, stopping the algorithm when an
appropriate convergence criterion has been satisfied should yield if not the optimal
γ∗ then at least a good estimate of it. Even though there are few theoretical results,
this behaviour has been verified by many numerical experiments.

Adapting the original Cross-Entropy method to these new requirements results
in the following algorithm in its stochastic form.

Algorithm 2.2 (CE method for optimization).

Step 1: Initialize θ̂0 := θfix for an arbitrary θfix, iteration counter k := 0.

Step 2: Generate N samples X1, . . . , XN ∼ f(· ; θ̂k), compute the order statistic
F(1), . . . , F(N) and estimate the (1− ρ)-quantile:

γ̂k = F(d(1−ρ)Ne).

Step 3: Estimate the parameter θk+1:

θ̂k+1 = argmax
θ

1
N

N∑
i=1

1{F (Xi)≥bγk} ln f(Xi; θ). (2.4)

Step 4: If the convergence criterion is reached (say γ̂k = γ̂k−1 = · · · = γ̂k−d for
some d ≤ t), STOP.
Else set k := k + 1 and proceed with Step 2.

Note that the likelihood ratio term L(· ; θfix, w) is not necessary here. In the rare-
event setting the parameter θfix was a fix component of the estimation problem
(recall that the optimal importance sampling density g∗ also depended on θfix).
Here, the interpretation of the optimization program as a rare-event problem is only
a tool and the initial density f(· ; θfix) is quite arbitrary. Dropping L(· ; θfix, w)
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means that we actually change the underlying estimation problem in each step:
instead of computing the optimal parameter θ∗ to approximate g∗ as in (2.1), we
approximate in the k-th iteration

g∗k(x) :=
1{F (x)≥γk}f(x; θk)
Eθk

[
1{F (X)≥γk}

] , (2.5)

i.e. compute the optimal importance sampling parameter for the estimation of
Pθk(F (X) ≥ γk). Rubinstein and Kroese mention that their numerical experiments
suggest that including the likelihood ratio in the optimization algorithm will often
produce less reliable estimates (see [RK04], p. 134).

The difficulty of the parameter update (2.4) depends on the choice of the param-
eterized family {f(· ; θ), θ ∈ Θ}, also called model distribution. In some cases the
argument of the maximum of 1

N

∑N
i=1 1{F (Xi)≥bγk} ln f(Xi; θ) can be determined an-

alytically, otherwise one has to solve this optimization problem numerically. These
additional computations may substantially influence the algorithm’s speed. Con-
sequently the update complexity should have an impact on the choice of model
distribution.

Example 2.1 (Natural exponential families). If the distributions of the components
X(1), . . . , X(n) of X are independent and each belongs to a natural exponential
family (i.e. has a density of the form (1.1)), it can be shown (see [dMR]) that the
maximizer in Step 3 of Algorithm 2.2 is given by

θ̂k+1 =

∑N
i=1 1{F (Xi)≥bγk}Xi∑N
i=1 1{F (Xi)≥bγk} . (2.6)

Example 2.2 (Normal Distribution). If the components X(1), . . . , X(n) of X are in-
dependent and have normal distributions N (µ(j), (σ2)(j)), j = 1, . . . , n, one can eas-
ily calculate that the parameter update has the following form for all components
j = 1, . . . , n:

µ̂
(j)
k+1 =

∑N
i=1 1{F (Xi)≥bγk}Xi∑N
i=1 1{F (Xi)≥bγk} , (2.7)

(σ̂k+1)(j) =

∑N
i=1 1{F (Xi)≥bγk}

(
Xi − µ̂(j)

k+1

)2

∑N
i=1 1{F (Xi)≥bγk} . (2.8)

2.3 Modifications of the Cross-Entropy Method

Various modifications of the basic algorithm have been proposed. They usually
differ in the calculation of the new parameter vector θ̂k in Step 3 of the algorithm
or change the algorithms parameters N and ρ at runtime. We will address here the
most important modifications.
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Different Update Rules

Recall that when being used for optimization, the CE algorithm is supposed to
appoint more and more probability mass to the set of optimal points and thus
eventually end up in a degenerate distribution. However, one of the main problems
of the CE method is that this process may happen too quickly and the algorithm
“freezes” at a suboptimal solution.
To avoid this, Rubinstein and Kroese propose a smoothed update of the parameter
vector θ̂k+1 in all optimization examples ( [RK04], [dBKMR05]): Let θ̃k+1 denote
the result of the estimation (2.4). Then calculate θ̂k+1 as

θ̂k+1 = v θ̃k+1 + (1− v) θ̂k (2.9)

for some v ∈ [0, 1]. Even though this is an additional parameter to be specified in
each problem, values of v = 0.5 or v = 0.7 seem to work well consistently.
In continuous optimization, the chosen parametric family of sampling distributions
is often the normal distribution with parameter vector θ = (µ, σ2). In this case,
one can additionally slow down the convergence of the variance by using a dynamic
smoothing parameter

βk = β − β
(

1− 1
k + 1

)q
, (2.10)

with q ∈ {5, . . . , 10} and β ∈ [0.8, 0.99]. Then βk replaces v in the smoothing of the
variance in iteration k.

Rubinstein and Kroese also discuss the use of different reward functions, i.e.
determining θ̂k+1 as the solution of

θ̂k+1 = argmax
θ

1
N

N∑
i=1

ψ (F (Xi))1{F (Xi)≥bγk} ln f(Xi; θ)

with a monotone function ψ. While they find good results for ψ(x) = x for some
problems, they dismiss the use of functions of the form ψ(x) = xβ with large β or
ψ(x) = exp(−x/β) as leading too easily to local optima.

Adaptive modification of the algorithm parameters

Since the choice of N and ρ has to be specified in advance for each problem, yet
can be critical for the performance of the algorithm, other modifications of the CE
method implement dynamic adaptations of these parameters.

The Fully Adaptive CE method (FACE) for continuous optimization basically
increases the sample size N each time there is no improvement. After a certain
number of successive increases the algorithm terminates, the problem is qualified as
‘hard’ and the current best solution as ‘unreliable’ (see [RK04],p.191).

A similar idea is put forward by Homem-de-Mello in the rare-event estimation
setting (see [dM07], [dMR]). Since there exist convergence results for this modified



CHAPTER 2. THE CROSS-ENTROPY METHOD 18

algorithm for rare event estimation under rather light assumptions and, moreover,
similar ideas are implemented in the Model-Reference Adaptive Search, we will give
below the algorithm in full detail but adapted to the optimization context, i.e. with
an arbitrary initial parameter θfix, without the likelihood ratio L(· ; θfix, θ) and with
an appropriate convergence criterion.
The underlying idea of this modification is to demand a level increase γk− γk−1 ≥ ε
in each iteration (and adapt ρ appropriately) or to increase the sample size to obtain
a better estimate of the quantile in the next iteration.
Note that the algorithm in its stochastic form does not ensure a strict monotonicity
of the sequence of levels {γk} since the sample (1 − ρk)-quantile γ̂k is a random
variable. As N increases, however, the estimator γ̂k gains in accuracy and the con-
vergence can be ensured with probability one.

Algorithm 2.3 (Adaptive CE method).

Step 1: Initialize θ̂0 := θfix for an arbitrary θfix, iteration counter k := 0. Define
ρ0 := ρ, N0 := N .

Step 2: Generate Nk samples X1, . . . , XNk ∼ f(· ; θ̂k), compute the order statistic
F(1), . . . , F(Nk) and estimate the (1− ρk)-quantile:

γ̂k = F(d(1−ρk)Nke).

Step 3: Estimate the parameter θk+1:

θ̂k+1 = argmax
θ

1
Nk

Nk∑
i=1

1{F (Xi)≥bγk} ln f(Xi; θ). (2.11)

Step 4: If the convergence criterion is reached, STOP.
Else proceed with Step 5.

Step 5: Check whether there exists ρ̄ ∈ (0, ρk] such that the sample (1− ρ̄)-quantile
is bigger than or equal to γ̂k−1 + ε.

a) If so and ρ̄ = ρk, set ρk+1 = ρk and Nk+1 = Nk.

b) If so and ρ̄ < ρk, set ρk+1 the largest of such ρ̄ and Nk+1 = Nk.

c) Otherwise set ρk+1 = ρk but increase the samplesize: Nk+1 = dαNke
for some α > 1.

Set k := k + 1 and proceed with Step 2.

Of course, instead of specifying N and ρ in advance, we now have to choose the
parameters ε and α. This choice is not as crucial for theoretical convergence but
can significantly influence the rate of convergence and the computational ressources
needed.
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2.4 Stochastic Optimization

Since we will be concentrating on the optimization of Markov Decision Processes, we
will shortly discuss the necessary adaptations for stochastic optimization problems
of the form

max
x∈X

F (x) := max
x∈X

E [F(x, Y )] , F : X × Y → R, (2.12)

where Y : ΩY → Y is a random variable on some probability space (ΩY ,Σ, P ). We
assume here that the expectation cannot be computed explicitly for every x ∈ X ,
since otherwise this problem reduces to (2.3). This means we have to approximate
F (x) by an unbiased estimate F̂ (x), e.g.

F̂ (x) =
1
M

M∑
j=1

F(x, Yj).

We will call M the observation size to distinguish it from the number of samples N .

Of course, using the estimate F̂ (x) instead of the correct value F (x) further com-
plicates the algorithm. Whereas before the only problem was to find “good” samples
(to avoid searching the complete state space X ), the evaluation of these samples is
now an additional source of inaccuracy - even for the same sample two independent
estimations usually differ. The parameters N and M play a crucial role here. The
sample size N determines the number of different states x ∈ X visited, a large N
thus increases the probability of finding the optimal point x∗; on the other hand, a
large observation size M ensures that the samples are evaluated correctly and thus
that good (and bad) samples are recognized as such and the algorithm is not guided
in a wrong direction. Hence, both a large N and a large M are desirable. However,
usually the computational budget is limited in time and/or memory space and there
has to be a tradeoff between the sample and the observation size to distribute the
allowed number of function evaluations. One approach is to use an adaptive scheme
to determine N (as in Section 2.3 and an increasing observation size M as in the
Model-Reference Adaptive Search (see Section 3.3).

Note moreover that the sequence {γk} will usually not converge to a fixed value
due to the variance of F̂ . Therefore the convergence criterion in Step 4 has to be
defined appropriately, e.g. stop when the sample variance of the moving average
(i.e. the average over the last d iterations) falls under a predefined level.

2.5 Model-Based Approach

The Cross-Entropy algorithm belongs to the class of model-based optimization meth-
ods. These approaches are characterized by the use of a probability distribution
modeling the current assumptions about the localisation of good solutions. In each
iteration, samples from the current distribution are drawn and evaluated and then
the model is updated on the basis of these samples’ performance. This distinguishes
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a model-based approach from for example genetic algorithms that also use mul-
tiple solution candidates called “population” in each iteration but infer the next
generation of these solutions directly from the current one without the use of an
intermediate distribution model.

Example 2.3. Consider the function F (x, y) = 4 exp{−1
2

(
(x− 4)2 + (y − 4)2

)
} +

2 exp{−
(
(x− 6.5)2 + (y − 6.5)2

)
} with optimum (x∗, y∗) = (4, 4), plotted in Figure

2.1.
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Figure 2.1: F (x, y)

Running the Cross-Entropy algorithm
with independent normal distributions
in each component yields the following
sequence of parameters:

Iteration (µx, µy) (σ2
x, σ

2
y)

0 (2.79, 5.47) (100, 100)
1 (4.61, 5.86) (3.85, 3.07)
2 (4.43, 5.14) (2.20, 1.07)
3 (4.13, 4.36) (0.15, 0.09)
...
9 (4.00, 4.00) (0.001, 0.001)

The first iterations are shown in Figure
2.2.
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Figure 2.2: Converging Density



Chapter 3

Model-Reference Adaptive
Search

The Model-Reference Adaptive Search method (or MRAS) has been proposed by Hu,
Fu and Marcus in [HFM07], [HFM] and [CFHM07]. Even though the authors stress
the generality of their approach they only consider one explicit instantiation which
is very similar to the Cross-Entropy algorithm in its modified version. Nevertheless,
they are able to establish some convergence results in their framework.

3.1 Basic Idea

As in section (2.2), we will consider the problem

max
x∈X

F (x), F : X → R.

Recall that in the Cross-Entropy method for optimization (Algorithm 2.2) the
current parameter θk is calculated in each iteration as

θk = argmin
θ
D (g∗k, f(· ; θ)) ,

where

g∗k(x) =
1{F (x)≥γk}f(x; θk)
Eθk

[
1{F (X)≥γk}

] .
We can call g∗k the reference distribution which we want to approximate as closely
as possible by a member of the parametrized familiy of densities {f(· ; θ), θ ∈ Θ}. In
rare event estimation, this family is determined by the given problem: to estimate
Pθfix (F (X) ≥ γ), X ∼ f(· ; θfix). In the optimization context, however, this family
can be chosen suitably for the given problem, e.g. in such a way as to facilitate the
sampling and updating processes. The reference distributions {gk} are then implied
by the choice of {f(· ; θ), θ ∈ Θ}.

The fundamental difference of the MRAS algorithm is now the separation of
the sequence of reference distributions and the family of parameterized distributions

21



CHAPTER 3. MODEL-REFERENCE ADAPTIVE SEARCH 22

(which we will refer to as sampling distributions). The authors propose a sequence
of the form

gk(x) =
F (x)gk−1(x)∫

X F (x)gk−1(x)ν(dx)
, x ∈ X , k ≥ 1, (3.1)

for some initial distribution g0(x) > 0 ∀x ∈ X if F (x) > 0 ∀x ∈ X .
This is a popular approach in evolutionary algorithms, called proportional selection.
In this form it appears in estimation of distribution algorithms (EDAs), a population-
based class of algorithms that do not generate new populations directly from the
parent generations by crossover and mutation operations but infer a probability
distribution model from the populations and sample the next generation of candidate
solutions from this posterior distribution. For details see e.g. [ZM04]. There it is
also shown that

lim
k→∞

Egk [F (X)] = F (x∗).

However, for arbitrary distributions g it can be difficult to generate samples
and to perform the update (3.1). Consequently, as the CE method and unlike
EDAs, the Model-Reference Adaptive Search makes use of a family of parameterized
distributions {f(· ; θ), θ ∈ Θ}:
In each iteration k, the samples are generated from the current density f(· ; θk) and
the new parameter θk+1 is obtained as

θk+1 = argmin
θ
D (gk, f(· ; θ))

for the given reference distribution gk, which (like the optimal importance sampling
density g∗k in the CE method) is never calculated explicitly.

Since the proportional selection scheme only works with positive F , an additional
strictly monotone function S : R → R+\{0} is introduced and each point x ∈ X in
(3.1) weighted with the value S (F (x)).

3.2 MRAS for deterministic optimization (MRAS0, MRAS1)

The specific sequence of reference distributions in the Model-Reference Adaptive
Search is given by

gk(x) :=
S (F (x))1{F (x)≥eγk}gk−1(x)

Egk−1

[
S (F (X))1{F (X)≥eγk}] , k = 1, 2, . . . ,

and g0(x) :=
1{F (x)≥eγ0}

Eθ0
[
1{F (x)≥eγ0}
f(X,θ0)

] , (3.2)

where the sequence of levels {γ̃k} is ensured to be non-decreasing, which is important
for the convergence results. Using this monotonicity and an iteration argument, one
can show that the sequence of reference distributions can also be written as

gk(x) =
S (F (x))k 1{F (x)≥eγk}

Eθk
[
S(F (X))k

f(X,θk) 1{F (X)≥eγk}
] , k = 0, 1, . . . . (3.3)
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To update the parameter of the parameterized density, we therefore have to solve

min
θ
D (gk, f(· ; θ)) = min

θ
Egk [ln gk(X)]− Egk [ln f(X; θ)]

= min
θ

Egk [ln gk(X)]−
Eθk

[
S(F (X))k

f(X,θk) 1{F (X)≥eγk} ln f(X, θ)
]

Eθk
[
S(F (X))k

f(X,θk) 1{F (X)≥eγk}
]

= max
θ

Eθk

[
S (F (X))k

f(X, θk)
1{F (X)≥eγk} ln f(X, θ)

]
.

The resulting algorithm in its deterministic form is as follows:

Algorithm 3.1 (MRAS0 - Deterministic MRAS).

Step 1: Initialize θ0 such that f(x, θ0) > 0 ∀x ∈ X , set iteration counter k := 0.

Step 2: Calculate γk as the (1− ρ)-quantile of F (X) under f(· ; θk).

Step 3: If k = 0 or γk ≥ γ̃k−1 + δ, set γ̃k = γk.
Else set γ̃k = γ̃k−1.

Step 4: Determine the new parameter θk+1 as the solution

θk+1 = argmax
θ

Eθk

[
S (F (X))k

f(X, θk)
1{F (X)≥eγk} ln f(X, θ)

]
.

Step 5: If the convergence criterion is satisfied, STOP. Else set k := k + 1 and
proceed with Step 2.

As with the CE method, one would use in practice only the stochastic form
with γk and θk+1 replaced by their respective Monte Carlo estimators. Moreover, to
maintain convergence results, the authors introduce in the stochastic form algorithm
(called MRAS1) some additional features:
Like the adaptive Cross-Entropy algorithm, the MRAS1 implements a dynamic
adaptation of the sample size N and the quantile parameter ρ. Unlike in Algo-
rithm 2.3 however, even the monotonicity of the sequence of now random levels
{γ̃k} rests assured by an exchange of the order of the parameter adaptation and the
distribution update. Note that this implies that sometimes less samples are consid-
ered in the parameter vector update than it would be the case in the adaptive CE
method. It might even happen that no samples at all are better than the current
level γ̃k, so that any parameter θ is a solution of (3.4). In that case, we will set
θ̂k+1 = θ̂k.
We will use the notation γ̃(ρ,N) to denote the sample (1 − ρ)-quantile when N
samples are drawn.
Additionally, the sampling distribution f(· ; θk) is replaced by a mixture of the cur-
rent distribution and the initial distribution f(· ; θ0), denoted by f̃ . Since f(· ; θ0) > 0
∀x ∈ X , this ensures that the optimal solution always has a positive probability of
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being sampled and reduces the danger of getting trapped in a local minimum.
Note that in the stochastic algorithm, when only a countable number of samples is
available, one actually minimizes in the parameter update the distance to a discrete
distribution, defined on the set of drawn samples Λk :=

{
X

(k)
1 , . . . , X

(k)
Nk

}
(X(k)

i the
i-th sample in the k-th iteration), given for k = 0, 1, . . . by

g̃k(Xi) =


S(F (Xi))

kef(Xi,
bθk)

1{F (Xi)≥eγk}P
Xi∈Λk

S(F (Xi))
kef(Xi,

bθk)
1{F (Xi)≥eγk}

∀Xi ∈ Λk if
{
Xi ∈ Λk : F (Xi) ≥ γ̃k

}
6= ∅,

g̃k−1(Xi) ∀Xi ∈ Λk−1 otherwise.

This distribution is random, since it depends not only on the random values of γ̃k
and θ̂k, but also on the randomly generated set Λk.

Algorithm 3.2 (MRAS1 - Adaptive MRAS).

Step 1: Initialize θ̂0 such that f(x, θ̂0) > 0 ∀x ∈ X , set iteration counter k := 0.
Define ρ0 := ρ, N0 := N .

Step 2: Generate Nk samples X1, . . . , XNk according to

f̃(· ; θ̂k) = (1− λ)f(· ; θ̂k) + λf(· ; θ̂0),

compute the order statistic F(1), . . . , F(Nk) and estimate the (1 − ρk)-
quantile:

γ̂k(ρk, Nk) = F(d(1−ρk)Nke).

Step 3: Parameter adaptation:

If k = 0 or γ̂k(ρk, Nk) ≥ γ̃k−1 + ε, then

a) Set γ̃k = γ̂k(ρk, Nk), ρk+1 = ρ and Nk+1 = Nk.

Else, check whether there exists ρ̄ ∈ (0, ρk] such that γ̂k(ρ̄, Nk) ≥ γ̃k−1 + ε.

b) If so, set γ̃k = γ̂k(ρ̄, Nk), ρk+1 = ρ̄ and Nk+1 = Nk.

c) Otherwise, set γ̃k = γ̃k−1, ρk+1 = ρ̄ and increase the sample size:
Nk+1 = dαNke.

Step 4: Estimate the parameter θk+1: If 1{F (Xi)≥eγk} > 0 for some Xi,

θ̂k+1 = argmax
θ

1
Nk

Nk∑
i=1

S (F (Xi))
k

f̃(Xi, θ̂k)
1{F (Xi)≥eγk} ln f(Xi, θ). (3.4)

Else set θ̂k+1 = θ̂k.

Step 5: If the convergence criterion is reached, STOP.
Else set k := k + 1 and proceed with Step 2.
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3.3 MRAS for stochastic optimization (MRAS2)

To solve stochastic optimization problems of the form

max
x∈X

F (x) := max
x∈X

E [F(x, Y )] , F : X × Y → R, (3.5)

Y : ΩY → Y a random variable, we proceed in the same way as in the cross-entropy
method (cf. Section (2.4)), i.e. replacing the expectation with its estimator

F̂ (x) =
1
M

M∑
j=1

F(x, Yj).

However, unlike the CE method, the Model Reference Adaptive Search uses an
increasing sequence of observation sizes {Mk}. If Mk →∞ as k →∞, the estimation
error |F (x) − F̂ (x)| will vanish in later iterations. Additional assumptions ensure
that this will happen fast enough.
Furthermore, the authors adapt the generation of the sequence {γ̃k} to the new
setting: due to the fact that one can only use the estimate F̂ (·) for the evaluation of
each sample, there is an additional source of randomness in the stochastic level γ̂k
in each iteration and thus also in γ̃k. Thus, it might be advisable to “correct” the
estimate when it appears to be too good. This is done in Step 3c of the algorithm,
i.e. when no sample in the current iteration was found to have a better performance
than the last level γ̃k−1. If this is the case, the sample X◦k−1 that achieved this level
γ̃k−1 is reevaluated with the current observation size Mk. To ease notation, we will
denote by X(ρ,N) the sample that corresponds to the (1− ρ)-quantile of F̂ (x) if N
samples are drawn, i.e.

X(ρ,N) ∈
{
Xi : F̂ (Xi) = F̂(d(1−ρ)Ne)

}
.

Note that due to this reevaluation the sequence {γ̃k} might not be monotone in-
creasing and we will need some assumptions on the behaviour of F to ensure its
convergence.
Another modification in comparison with Algorithm 3.2 also accounts for the inac-
curacy in the sample evaluation: as the update in Step 4 is based only on those
samples that perform better than the current level γ̃k but some samples with true
expectation better than γ̃k might have a poor score in the current iteration, we will
also partly include those samples that are slightly worse than γ̃k. That is, instead
of the indicator function 1{ bF (Xi)≥eγk} we will use

1̃{F, γ} :=


1 if F ≥ γ,
F−(γ−ε)

ε if γ − ε < F < γ,
0 if F ≤ γ − ε.

Then the algorithm is as follows:
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Algorithm 3.3 (MRAS2 - Stochastic Optimization).

Step 1: Initialize θ̂0 such that f(x, θ̂0) > 0 ∀x ∈ X , set iteration counter k := 0.
Define ρ0 := ρ, N0 := N .

Step 2: Generate Nk samples X1, . . . , XNk according to

f̃(· ; θ̂k) = (1− λ)f(· ; θ̂k) + λf(· ; θ̂0),

calculate

F̂k(Xi) =
1
Mk

Mk∑
j=1

F(Xi, Yj(ω)) ∀ i = 1, . . . , Nk,

compute the order statistic F̂k(1), . . . , F̂k(Nk) and estimate the (1 − ρk)-
quantile:

γ̂k(ρk, Nk) = F̂k(d(1−ρk)Nke).

Step 3: Parameter adaptation:

If k = 0 or γ̂k(ρk, Nk) ≥ γ̃k−1 + ε, then

a) Set γ̃k = γ̂k(ρk, Nk), ρk+1 = ρ, Nk+1 = Nk and X◦k = X(ρk, Nk).

Else, check whether there exists ρ̄ ∈ (0, ρk] such that γ̂k(ρ̄, Nk) ≥ γ̃k−1 + ε.

b) If so, set γ̃k = γ̂k(ρ̄, Nk), ρk+1 = ρ̄, Nk+1 = Nk and X◦k = X(ρ̄, Nk).

c) Otherwise, calculate γ̃k = F̂k(X◦k−1), set ρk+1 = ρ̄, X◦k = X◦k−1 and
increase the sample size: Nk+1 = dαNke.

Step 4: Estimate the parameter θk+1: If 1̃{ bFk(Xi), eγk} > 0 for some Xi,

θ̂k+1 = argmax
θ

1
Nk

Nk∑
i=1

S
(
F̂k(Xi)

)k
f̃(Xi, θ̂k)

1̃{ bFk(Xi), eγk} ln f(Xi, θ). (3.6)

Else set θ̂k+1 = θ̂k.

Step 5: If the convergence criterion is reached, STOP.
Else set k := k + 1 and proceed with Step 2.

As in the Cross-Entropy method for optimization, Hu, Fu and Marcus use a
smoothed update of the form (2.9) in all their numerical examples.

Example 3.1. Like in the Cross-Entropy method, the optimizer in the parameter
update of the model distribution (Step 4) can sometimes be calculated analytically.
This is especially the case if the components of X are independent and have for
example the following distributions:

• Natural Exponential Families:
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As in Example 2.1 the maximizer in (3.6) is given by

θ̂k+1 =

∑N
i=1

S( bFk(Xi))kef(Xi,bθk)
1̃{ bFk(Xi), eγk}Xi∑N

i=1

S( bFk(Xi))kef(Xi,bθk)
1̃{ bFk(Xi), eγk}

. (3.7)

• Normal Distribution:
Here, the update formulas for mean and variance in each component j =
1, . . . , n are the following (cf. Example 2.2):

µ̂
(j)
k+1 =

∑N
i=1

S( bFk(Xi))kef(Xi,bθk)
1̃{ bFk(Xi), eγk}Xi∑N

i=1

S( bFk(Xi))kef(Xi,bθk)
1̃{ bFk(Xi), eγk}

, (3.8)

(σ̂k+1)(j) =

∑N
i=1

S( bFk(Xi))kef(Xi,bθk)
1̃{ bFk(Xi), eγk}

(
Xi − µ̂(j)

k+1

)2

∑N
i=1

S( bFk(Xi))kef(Xi,bθk)
1̃{ bFk(Xi), eγk}

. (3.9)

One can see that the structure of the update formulas in CE and MRAS is quite

similar apart from the weight factors
S( bFk(Xi))kef(Xi,bθk)

in the latter (and the less important

modified indicator function). The function S : R → R+\{0} has to be strictly
increasing (and hence cannot be chosen to be 1 like in CE) and the occurence of
the density f̃(Xi, θ̂k) in this weight factor is a direct consequence of the reference
distribution’s form (3.1) and has to be computed for all samples X1, . . . , XNk in each
iteration. Naturally, this increases the operations needed in each iteration compared
with the Cross-Entropy method, even if sample size N , quantile parameter ρ and
observation size M are the same in both algorithms.

3.4 Application to MDPs

Both the Cross-Entropy method and the Model Reference Adaptive Search are prin-
cipally global optimization algorithms on a multidimensional set X ⊆ Rn. However,
they can quite easily be adapted to solve Markov Decision Problems through direct
policy search if the state space S is finite.
Consider first the existence of a stationary policy π = (f, f, . . . ) with decision rule
f : S → A, f(i) ∈ D(i) ∀ i ∈ S. In the following (particularly in Chapter 5) we will
use the notation π for the policy π = (f, f, . . . ) as well as for the decision rule f itself
to avoid confusion with the model density f ∈ {f(· ; θ), θ ∈ Θ}. Since S is finite,
finding an optimal policy amounts to finding a vector π∗ =

(
π∗(i1), . . . , π∗(i|S|)

)
∈

D(i1)× · · · ×D(i|S|) := X ⊆ R|S| with V∞π∗(i) = V∞(i) for some fixed initial state
i. Hence the task is to maximize the function V∞π(i) : X → R over X - which
corresponds exactly to the usual global optimization setting.
Note that it is beyond the scope of the algorithms to consider the complete value
function V∞π ∈ R|S| since they require evaluation functions F : X → R in order to
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be able to sort candidate solutions π1, . . . , πn according to their performance. Con-
sequently we have to restrict ourselves to the real-valued evaluation F (π) = V∞π(i)
for some i. Having fixed this initial state, we will usually even drop it in the notation
and write V∞π = V∞π(i).
The adaptation to non-stationary policies is now straightforward and amounts to
an extension of the dimension of the search space X . Let N denote the time hori-
zon and Ft := Dt(i1) × · · · × Dt(i|S|) ⊆ R|S| the set of admissible policies at time
t ≤ N . Then the sought policy π∗ =

(
π∗0, . . . , π

∗
N−1

)
is the maximizer of V∞π(i) over

X = F0 × · · · × FN−1 ⊆ R|S|×N for some initial state i.
As described above in Sections 2.4 and 3.3, we will estimate the performance V∞π
by averaging over Mk observations of R∞π . Since it is impossible to calculate R∞π
numerically, we simulate the policy π over an adequate time horizon to obtain a
good estimate R̂∞π . Then V̂ π,k

∞ := 1
Mk

∑Mk
j=1 R̂

∞
π denotes the value function under

policy π estimated in iteration k.
Note that the algorithms are both formulated for maximization problems. Hence to
minimize, we consider the equivalent problem −V∞π → max.



Chapter 4

Convergence Results

In this chapter, we will give convergence results for the Model Reference Adaptive
Search for stochastic optimization. The statements and proofs follow [CFHM07], yet
we tried to put some ideas on a more rigorous mathematical basis, corrected several
formulations, were able to lessen some assumptions and to elaborate and complete
some arguments.
For the Cross-Entropy method, convergence results are few and moreover only con-
cerned with discrete and deterministic optimization. In that context, Costa, Jones
and Kroese (see [CJK07]) show that Algorithm 2.2 with modification (2.9) converges
with probability one to a degenerate distribution (but not necessarily to the opti-
mum) and that the parameters can be chosen in such a way that the probability
to generate the optimal solution in some iteration of the algorithm is arbitrarily
close to 1. However, they are not able to show convergence to the optimum and
even suppose that the conditions for the two statements cited above are mutually
exclusive.

4.1 Assumptions

In the following the necessary assumptions for convergence results of Algorithm 3.3
(MRAS2) are stated. Certainly analogical results for MRAS0 and MRAS1 (Algo-
rithms 3.1 and 3.2) can be derived with far less assumptions, yet our original interest
was in solving Markov Decision Processes and hence we will refrain from considering
Algorithms 3.1 and 3.2 separately. In addition, the underlying ideas in the proofs of
all three algorithms are similar and the deterministic optimization algorithm MRAS1

is only a special case of the stochastic optimization handled by MRAS2. Therefore
we will only discuss the latter algorithm below. For more details on the convergence
of MRAS0 and MRAS1 see [CFHM07].

Assumptions on the problem setting

(A1) F (x) has a unique global optimal solution x∗ ∈ X .

(A2) For any ξ < F (x∗), the set
{
x ∈ X : F (x) ≥ ξ

}
has a strictly positive

29
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Lebesgue (or discrete) measure.

(A3) For any δ > 0, define Aδ :=
{
x ∈ X : ‖x − x∗‖ ≥ δ

}
. Then it holds:

supx∈Aδ F (x) < F (x∗), where supx∈∅ := −∞.

(A4) There exists a compact set Kε such that w.p.1 there exists N ∈ N with:{
x ∈ X : F (x) ≥ F (X◦k)− ε} ⊆ Kε ∀k ≥ N .

(A5) For each k ∈ N there exists ∆k > 0 and Lk > 0 such that |S(y)k−S(y′)k|
|S(y)k| ≤

Lk |y − y′| for all y, y′ ≤ F (x∗) with ‖y − y′‖ < ∆k.

These assumptions ensure that value function and the set of admissible solutions
are of such a form that the global optimum of F is detectable by the algorithm.
Assumption (A1) enables us for example to choose unimodal model distributions
such as the normal distribution as underlying model. Given two or more distinct
optimal solutions, such a distribution would oscillate between the different peaks,
converge to only one of them or be unable to find any optimum. First approaches
in the CE method to use mixtures of unimodal distributions to optimize functions
with several optima are successful [KPR06], however proving their applicability is
difficult. Hence this restriction to the simpler case of a unique optimum.
(A2) guarantees that one can sample (near-)optimal solution candidates x ∈ X and
is automatically satisfied for discrete problems and for continuous value functions.
Under (A1), (A3) is an equally mild condition which ensures that the values of points
not in the neighbourhood of x∗ are bounded away from the optimal value F (x∗). It
is not satisfied if e.g. X is open and F (x) = F (x∗) for some x ∈ ∂X .
(A4) demands the existence of some compact set to which the search can be re-
stricted. This is necessary to obtain bounds for continuous functions on Kε in
Proposition 4.5 and Lemma 4.6. The assumption is satisfied if e.g. X is compact or
F (x) has compact level sets.
(A5) is a condition on the positive function S necessary to prove Lemma 4.7. If
for example S(y) = eτy for some τ > 0, it holds |S(y)k−S(y′)k|

|y−y′| = |S(ky)−S(ky′)|
|y−y′| ≤

d
d(y+∆k)S (k(y + ∆k)) = τkeτkyeτk∆k for all y, y′ : ‖y− y′‖ < ∆k. Then ∆k = 1

k and
Lk = τkeτ fulfill Assumption (A5).

Assumptions on the distribution family

(B1) The density of the parameterized family is of the form

f(x, θ) = h(x) exp
{
θ>T (x)−A(θ)

}
∀θ ∈ Θ, (4.1)

where A(θ) = ln
∫
X h(x) exp{θ>T (x)}ν(dx) is finite and T continuous for con-

tinuous distributions.

(B2) It holds that supθ∈Θ ‖h(x)T (x) exp
{
θ>T (x)

}
‖ is integrable (summable) w.r.t.

x.

(B3) The maximizer in the parameter update (Step 4 in all algorithms) is an interior
point of Θ ∀k.
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(B4) For the initial density holds: f(x, θ0) > 0 ∀x ∈ X and it is bounded away
from zero on the compact set Kε defined in Assumption (A4), i.e. f∗ :=
infx∈Kε f(x, θ0) > 0.

Observe that the distribution required by Assumption (B1) has the form of an
exponential family (see Section 1.3). However recalling the discussion at the end of
Example 1.1 we refrain from calling it such since we are more interested in the form
than in the characteristics of these class of distributions.
(B3) is trivially satisfied if Θ is unbounded. Note that the parameter set is the
one for the (possibly reparameterized) form given in Assumption (B1), which does
not necessarily correspond to the familiar one of the considered distributions (cf.
Examples 1.1, 1.2). Assumption (B4) is easily fulfilled by an appropriate choice
of θ0. In case of the normal distribution for example, the initial variance has only
chosen to be large enough.

Assumptions on the available samples F(x, Yj)

(C1) For any ε > 0, there exists a N > 0 and a function φ : N × R → R strictly
decreasing in the first argument, non-increasing in the second argument and
φ(n, ε)→ 0 as n→∞, such that ∀n ≥ N holds:

sup
x∈X

P

∣∣∣∣∣∣ 1n
n∑
j=1

F(x, Yj)− E
[
F(x, Y )

]∣∣∣∣∣∣ ≥ ε
 ≤ φ(n, ε).

(C2) For any ε > 0 and some function φ : N × R → R as in (C1), there exists a
N > 0, M > 0 such that ∀n ≥ N ,m ≥M holds:

sup
x,y∈X

P

∣∣∣∣∣∣ 1n
n∑
j=1

F(x, Yj)−
1
m

m∑
j=1

F(y, Yj)− F (x) + F (y)

∣∣∣∣∣∣ ≥ ε
 ≤ φ(min{m,n}, ε

)
.

These assumptions demand not only that the samples fulfill the law of large
numbers, but that they do so uniformly on X and that the rate of convergence can
be described by some function φ with the characteristics stated above.

Example 4.1. The sequence F(x, Yj), j = 1, 2, . . . is i.i.d with uniformly bounded

variance σ2(x) <∞. Then by Chebyshev’s inequality and Var
(

1
n

∑n
j=1F(x, Yj)

)
=

σ2(x)
n the function

φ(n, ε) :=
2 supx∈X σ2(x)

nε2

satisfies both (C1) and (C2).

Example 4.2. The sequence F(x, Yj), j = 1, 2, . . . fulfills the large deviations prin-
ciple (1.4) for some rate function I(x, ε) bounded from below on X . Then

φ(n, ε) := exp
{
−n · inf

x∈X
I(x, ε)

}
.
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Assumptions on the observation size

(D1) The sequence {Mk} satisfies Mk ≥ Mk−1 ∀ k ≥ 1 and Mk → ∞ as k → ∞.
Moreover, for some φ fulfilling (C1) and (C2) it holds that for any ε > 0 there
exists δε ∈ (0, 1) and Kε ∈ N such that

φ(Mk−1, ε) ≤ δkε ∀ k ≥ Kε.

(D2) For the function φ from (D1) and for some ∆k, Lk satisfying (A5), it holds:
For any ζ > 0 there exist δζ ∈ (0, 1) and Kζ ∈ N such that sequence {Mk}k≥0

satisfies

αkφ

(
Mk,min

{
∆k,

ζ

α
k
2

,
ζ

α
k
2Lk

})
≤ δkζ ∀ k ≥ Kζ .

Assumptions (D1) requires the observation size to grow fast enough to ensure
a sufficiently good rate of convergence of the estimate F̂k(x) = 1

Mk

∑Mk
j=1F(x, Yj)

to F (x) = E
[
F(x, Y )

]
. (D2) ensures that this convergence is even fast enough to

prevent an overlarge error between S(F̂k(x))k and S(F (x))k.

Example 4.3. Let φ be of the form φ(n, ε) = σ2

nε2
. Then

φ(Mk−1, ε) ≤ δkε ∀ k ≥ Kε

⇐⇒ Mk−1 ≥
σ2

ε2δkε
=
σ2

ε2
·
(

1
δε

)k
∀ k ≥ Kε.

This is satisfied for some Kε large enough if for example Mk−1 = c0 · βk with
β > 1

δε
> 1, c0 ≥ 1.

And for ∆k = 1
k ,  Lk = kτeτ holds the following, since min

{
∆k,

ζ

α
k
2
, ζ

α
k
2 Lk

}
= ζ

α
k
2 Lk

for large k:

αkφ

(
Mk,min

{
∆k,

ζ

α
k
2

,
ζ

α
k
2Lk

})
≤ δkζ ∀ k ≥ Kζ

⇐⇒ Mk ≥ σ2αk

δkζ (min{∆k,
ζ

α
k
2
, ζ

α
k
2 Lk
})2

= σ2

(
α

δ ζ

)k
max

{
k2,

αk

ζ2
,
k2τ2e2ταk

ζ2

}

= σ2 τ
2e2τ

ζ2

(
k

2
k︸︷︷︸
→1

α2

δζ

)k
∀ k ≥ Kζ .

Hence for example Mk = c0 · βk with c0 > 1, β > α2

δζ
> α2.
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Example 4.4. The function φ is of the form φ(n, ε) = exp {−n · I(ε)}, 0 < I(ε) <∞.
Then for ∆k = 1

k and Lk = kτeτ it holds

(D1) ⇐⇒ Mk−1 ≥ k ·
ln(δε)
−I(ε)

∀ k ≥ Kε,

(D2) ⇐⇒ Mk ≥ k ·
ln( δζα )

−I
(

ζ

α
k
2 kτeτ

) ∀ k ≥ Kζ .

Consider random variables F(x, Y ) ∈ [a, b] satisfying the Hoeffding inequality. Then

I(ε) = 2
ε2

(b− a)2

and

(D2) ⇐⇒ Mk ≥ −k ln
(
δζ
α

)(
(b− a)2

2

)(
α
k
2 kτeτ

ζ

)2

=
(
k

3
k α
)k
·
(
− ln

(
δζ
α

)
(b− a)2τeτ

2ζ

)
∀ k ≥ Kζ .

Hence a valid observation rule is for example given by Mk = c0 · βk with β > α,
c0 ≥ 1.

Assumptions (D1) and (D2) provide quite explicit rules for the choice of observa-
tion size Mk and its growth over time. As parameter choice may be a very difficult
task, this can be quite helpful. However, the problem shifts to finding a “good”
function φ, that is a function with very tight bounds in Assumptions (C1) and (C2)
to minimize the necessary observation size Mk. In straightforward, easy-structured
problems this may not present any difficulties. Nevertheless if the realizations of
F(x, Y ) are for example outcomes of a simulation of a complex or even partially un-
known system, it may be almost impossible to find a proven theoretically admissible
and at the same time practically realizable observation size rule.

Assumption on the sample size increase rate

(E1) Let ϕ > 0 be a positive constant such that
{
x ∈ X : S (F (x)) ≥ 1

ϕ

}
has a

strictly positive Lebesque (or counting) measure and define S∗ = S (F (x∗)).
Then assume α > (ϕS∗)2 ≥ 1.

This assumption is necessary for technical reasons in the proofs of Lemma 4.6 and
4.7 but does not impose any real constraints on the choice of the sample size increase
rate α: Under Assumption (A2) such a positive constant not only alway exists but
can be chosen as ϕ = 1+ε

S∗ for some ε > 0 in the continuous and ε = 0 in the discrete
case. Then (E1) reduces to α > 1 which is the only reasonable choice for the increase
rate anyway.
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4.2 Probability space and notations

Whereas MRAS0 is a deterministic algorithm, both MRAS1 and MRAS2 are stochas-
tic and depend on the drawn samples and in case of the MRAS2 also on their stochas-
tic evaluations. This means that in each iteration of MRAS2, the current parameters
θ̂k, Nk and ρk, the level γ̃k, the sample X◦k and the implicit reference distribution
form a stochastic process on a probability space (Ω = ΩX × ΩY ,F, P ).
We will denote by

X
(k)
i : ΩX → X

the ith candidate solution drawn in iteration k and by

Y
(k)
x,j : ΩY → Y

the stochastic component in the jth evaluation of sample x in iteration k. If we
define the random vector

Zk :=
(
X

(k)
1 , Y

(k)

X
(k)
1 ,1

, . . . , Y
(k)

X
(k)
1 ,Mk

, . . . , X
(k)
Nk
, Y

(k)

X
(k)
Nk
,1
, . . . , Y

(k)

X
(k)
Nk
,Mk

)
as the vector of samples drawn in iteration k, the filtration F is generated by

F = {Fk, k ∈ N}, where Fk = σ (Zi, i = 1, . . . , k) .

The distribution of Y may depend on x, but is independent of k and the algorithms
parameters (such as θk). The distribution of the samples X(k)

1 , . . . , X
(k)
Nk

depends on
the random variable θ̂k−1, but conditioned on θ̂k−1 (i.e. conditioned on Fk−1) these
samples are independent and identically distributed with density f̃(· ; θ̂k−1). Hence,
for the probability measure P it holds

P
((
X

(k)
1 , . . . , X

(k)
Nk

)
∈ A

)
=
∫
A

Nk∏
i=1

f̃(xi ; θ̂k−1) ν(d(x1, . . . , xNk)) ∀ A ⊆ XNk

and if h(· ;x) designates the probability density of Y under x

P (Zk ∈ A) =
∫
A

Nk∏
i=1

f̃(xi ; θ̂k−1)
Mk∏
j=1

h(yj ;xi)ν(dz) ∀A ⊆ XNk × YNk·Mk .

Example 4.5 (Infinite Horizon Markov Decision Problems). Consider sampling X
from the space of stationary policies of some Markov Decision Problem, i.e. X =̂ f ,
f : S → A. Then Y = (s0, s1, . . . ) ∈ S∞ can be interpreted as a random path under
policy f starting in some initial state s0. We know that

PX,x0(y) = δs0x0

∞∏
k=0

p(sk, X(sk), sk+1), (s0, s1, . . . ) ∈ S∞

and thus

P (Zk ∈ A) =
∫
A

Nk∏
i=1

f̃(xi ; θ̂k−1)
Mk∏
j=1

(
δ
s
(j)
0 x0

∞∏
m=0

p
(
s(j)
m , xi(s(j)

m ), s(j)
m+1

))
ν(dz).
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In the following, we will only consider MRAS2 (Algorithm 3.3), since our original
interest was in solving Markov Decision Processes. Moreover, even though conver-
gence result for deterministic optimization (MRAS1) can be obtained with far less
assumptions, it is only a special case of the more general stochastic optimization.

Recall that most components in the algorithm are random, since they are com-
puted using the random samples X and Y . This includes not only the parameters
γ̂k, Nk and ρk but also the levels γ̃k, the quantile samples X◦k and of course the set
of drawn samples Λk. Hence, all events that are defined over one or more of those
values are random events. Their occurence depends on the concrete realisation z of
the sample path Zτ , where τ is the stopping time

τ := min{t : in iteration t is the stopping criterion (Step 5) fulfilled}.

The events that are especially interesting for our needs are:

Ω2 := {z : Steps (3a) and (3b) are visited finitely often} ,

Ω3 :=
{
z : lim

k→∞
{x ∈ X : F (x) > F (X◦k)− ε} ⊆ Kε

}
,

where Kε is defined as in Assumption (A4),

Ω4(∆k) :=
{
z : max

x∈Λk
|F̂k(x)− F (x)| < ∆k infinitely often

}
,

where ∆k is defined as in Assumption (A5),

Ω5(Lk) :=
{
z : lim

k→∞

(
α
k
2Lk max

x∈Λk
|F̂k(x)− F (x)|

)
= 0
}
,

where Lk as in Assumption (A5).

Whenever we will use the terms “almost surely” or “with probability 1” in the fol-
lowing, we mean that the considered event happens for almost every sample path z.

Recall that in each iteration, the distance between the parameterized family of
distributions and an implicit discrete reference distribution is minimized, where the
reference distribution in iteration k is given by

g̃k(Xi) =



S( bFk(Xi))
k

ef(Xi,
bθk)

e1{ bFk(Xi), eγk}P
Xi∈Λk

S( bFk(Xi))
k

ef(Xi,
bθk)

e1{ bFk(Xi), eγk}
∀Xi ∈ Λk,

if
{
Xi ∈ Λk : F̂k(Xi) ≥ γ̃k

}
6= ∅,

g̃k−1(Xi) ∀Xi ∈ Λk−1, otherwise.

(4.2)

We will also consider a sequence of continuous reference distributions, given by

ĝk(x) =
S (F (x))k 1̃{F (x), F (X◦k )}∫

X S (F (x))k 1̃{F (x), F (X◦k )}ν(dx)
(4.3)
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and we refer to g̃k as sample reference distribution and to ĝk as idealized reference
distribution. This idealized distribution differs slightly from the one in [CFHM07]
(which is defined using the modified indicator function 1̃{F (x), F (X◦k−1)}), however we
find this approach more intuitive because is is closer to the original idea (cf. (3.3)).
The theoretical results are easily adapted.
Note that γ̃k = F̂k(X◦k) and that thus one major difference between g̃ and ĝ is the
use of correct function values F in the idealized distribution instead of the estimates
F̂ .

To abbreviate notations, we define Hk(F (x)) := S(F (x))kef(x,bθk)
. As before, we denote

by Eθ and Eg the expectations with respect to f(· ; θ) respectively g and by ν the
Lebesgue or counting measure, according to context.

4.3 Results

The main result in this section is that it holds under certain assumptions for the
parameter θ̂k determined by the algorithm MRAS2 in iteration k

Ebθk [T (X)]→ T (x∗) as k →∞,

where T is defined as in (4.1). If T is bijective, then we can easily determine x∗ as

x∗ = T−1

(
lim
k→∞

Ebθk [T (X)]
)
.

For many exponential families, x is even a component of the vector T (x). In those
cases, the result is equivalent to

Ebθk [X]→ x∗ as k →∞.

Example 4.6. (Normal Distribution) For Pθ = N (µ, σ2) it holds that T (x) = (x, x2)>

(see Example 1.1). Hence, we have Ebθk [X] → x∗ and Ebθk [X2
]
→ (x∗)2 and thus

for k →∞

µ̂k −→ x∗,

σ̂2
k = Ebθk [X2

]
−
(
Ebθk [X]

)2
−→ (x∗)2 − (x∗)2 = 0.

Example 4.7. (Binomial Distribution) Let Pθ = Bin(n, θ). Then we know from
Example 1.2 that T (x) = x. Thus

np̂k −→ x∗.

Note however that we do not obtain any result on the variance of the model distri-
bution.
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To prove this main theorem, we show successively that almost surely

Ebθk [T (X)] = Eegk [T (X)]→ Ebgk [T (X)]→ T (x∗)

as k →∞.
But first we state some auxiliary results that follow directly from the assumptions.
The first is a basic observation that will be needed later on in almost every proof.

Lemma 4.1. Let Assumptions (C1), (C2) and (D1) be satisfied for some φ. Then
the sequence {X◦k , k ∈ N} converges almost surely as k →∞.

Proof. Recall that X◦k = X◦k−1 if Step (3c) is visited in the algorithm. We will show
that there exists some N ∈ N such that (3c) will be visited in all iterations k ≥ N .
Define the event Ak := { (3a) or (3b) is visited in iteration k}. It holds: Ak implies
{F̂k(X◦k) ≥ γ̃k−1 + ε} and since γ̃k−1 = F̂k−1(X◦k−1), we have

Ak =⇒
{
F̂k(X◦k)− F̂k−1(X◦k−1) ≥ ε

}
.

Define also the event Bk := {F (X◦k) − F (X◦k−1) < ε
2}. Then Ak ∩ Bk will happen

almost surely only a finite number of times, since

P (Ak ∩ Bk) ≤ P
({
F̂k(X◦k)− F̂k−1(X◦k−1) ≥ ε

}
∩
{
F (X◦k)− F (X◦k−1) <

ε

2

})
≤ sup

x,y∈X
P
({
F̂k(x)− F̂k−1(y) ≥ ε

}
∩
{
F (x)− F (y) <

ε

2

})
≤ sup

x,y∈X
P
(
F̂k(x)− F̂k−1(y) + F (x)− F (y) >

ε

2

)
.

Using Assumption (C2), we can find a N1 ∈ N such that

P (Ak ∩ Bk) ≤ φ
(
Mk−1,

ε

2

)
∀ k ≥ N1.

For ε
2 exists by Assumption (D1) N2 ∈ N and δ = δ ε

2
∈ (0, 1) such that

φ
(
Mk−1,

ε

2

)
≤ δk ∀ k ≥ N2.

Thus
P (Ak ∩ Bk) ≤ δk ∀ k ≥ N := max{N1,N2}

and therefore
∞∑
k=0

P (Ak ∩ Bk) ≤ N +
∞∑
k=N

δk <∞.

It follows from the lemma of Borel-Cantelli that

P (Ak ∩ Bk infinitely often) = 0.

Hence, if Ak happens infinitely often, then almost surely Bck = {F (X◦k)−F (X◦k−1) ≥
ε
2} happens infinitely often. However, this is a contradiction since F (x) ≤ F (x∗)
∀x ∈ X . Thus, we can conclude that almost surely Ak happens only a finite number
of times. This means that there exists N ∈ N such that in all iterations k ≥ N Step
(3c) is visited and thus X◦k+1 = X◦k ∀ k ≥ N .
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With the convergence of {X◦k} and an increasing observation size it is clear that
also F̂k(X◦k) → F (X◦k) as k → ∞. The next lemma verifies that under certain
assumptions this convergence is fast enough.

Lemma 4.2. Let Assumptions (C1), (C2), (D1) (D2) and (E1) be satisfied for
some φ without considering ∆k and Lk in (D2). Then

lim
k→∞

α
k
2 |F̂k(X◦k)− F (X◦k)| = lim

k→∞
α
k
2 |γ̃k − F (X◦k)| = 0 almost surely.

Proof. Let ζ > 0. Then for any k ∈ N

P
(
α
k
2 |F̂k(X◦k)− F (X◦k)| > ζ

)
= P

(
|F̂k(X◦k)− F (X◦k)| > ζ

α
k
2

)
≤ sup

x∈X
P

(
|F̂k(x)− F (x)| > ζ

α
k
2

)
.

By Assumptions (C1) and (D2) there exist N1, N2 ∈ N and δ ∈ (0, 1) such that
∀ k ≥ max{N1,N2}

sup
x∈X

P

(
|F̂k(x)− F (x)| > ζ

α
k
2

)
≤ φ

(
Mk,

ζ

α
k
2

)
≤ αkφ

(
Mk,

ζ

α
k
2

)
≤ δk,

Hence, we can use Borel-Cantelli to conclude that

P
({
α
k
2 |F̂k(X◦k)− F (X◦k)| > ζ

}
infinitely often

)
= 0,

i.e. the probability that α
k
2 |F̂k(X◦k)− F (X◦k)| does not converge to zero is zero and

thus the claim follows with probability one.

Most of the following results only hold true on certain subsets of Ω. This lemma
gives an overview over the assumptions needed for the subsets to be large enough
to imply the respective claims on the whole of Ω almost surely.

Lemma 4.3. We have

(i) P (Ω2) = 1 if (C1), (C2) and (D1) are satisfied for some φ.

(ii) P (Ω3) = 1 if (A4) is satisfied.

(iii) If (A5), (C1) and (D2) are satisfied for some pair (∆k, Lk) and some φ, then
P (Ω4(∆k)) = 1.

(iv) If (A5), (C1) and (D2) are satisfied for some pair (∆k, Lk) and some φ, then
P (Ω5(Lk)) = 1.

Proof.

(i) Follows directly from the proof of Lemma 4.1.
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(ii) Assumption (A4).

(iii) Let ∆k as in Assumption (A5) and consider

P

(
max
x∈Λk

|F̂k(x)− F (x)| ≥ ∆k

)
≤ P

 ⋃
x∈Λk

{
|F̂k(x)− F (x)| ≥ ∆k

}
≤
∑
x∈Λk

P
(
|F̂k(x)− F (x)| ≥ ∆k

)
≤ |Λk| sup

x∈X
P
(
|F̂k(x)− F (x)| ≥ ∆k

)
.

To assess |Λk|, Hu, Fu and Marcus use the bound Nk ≤ αkN0. This is not quite
correct, since we set Nk = dαNk−1e each time Step (3c) is visited. Consider
for examples α = 1.05, N0 = 50 and assume that in the first two iterations
(3c) is visited. Then α2N0 = 55.125, but N2 = dα · dαN0ee = dαd52.5ee =
dα · 53e = d55.65e = 56 > α2N0. However, since in each iteration the mistake
due to rounding is bounded by 1, we can find some constant c such that
Nk ≤ αk(N0 + c) for all k.

It follows from Assumption (C1) that there exists N1 ∈ N such that

P

(
max
x∈Λk

|F̂k(x)− F (x)| ≥ ∆k

)
≤ αk(N0 + c)φ(Mk,∆k) ∀ k ≥ N1.

Since φ(·, ·) is supposed to be non-increasing in the second argument, there
exists by Assumption (D2) δ ∈ (0, 1) and N2 ∈ N such that

αkφ(Mk,∆k) ≤ αkφ

(
min

{
∆k,

ζ

α
k
2

,
ζ

α
k
2Lk

})
≤ δk ∀ k ≥ N2, ∀ ζ > 0.

Thus, we can conclude that

P

(
max
x∈Λk

|F̂k(x)− F (x)| ≥ ∆k

)
≤ (N0 + c) δk ∀ k ≥ N := min{N1,N2},

therefore
∞∑
k=0

P

(
max
x∈Λk

|F̂k(x)− F (x)| ≥ ∆k

)
≤ N + (N0 + c)

∞∑
k=N

δk <∞

and hence by Borel-Cantelli

P

(
max
x∈Λk

|F̂k(x)− F (x)| ≥ ∆k infinitely often
)

= 0.

If almost surely the event {maxx∈Λk |F̂k(x)−F (x)| ≥ ∆k} happens only a finite
number of times, then with probability 1 the event {maxx∈Λk |F̂k(x)−F (x)| <
∆k} must happen for almost every k. Thus P (Ω4(∆k)) = 1.
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(iv) Let Lk as in Assumption (A5). For an arbitrary ζ > 0, we have

P

(
α
k
2Lk max

x∈Λk
|F̂k(x)− F (x)| ≥ ζ

)
≤
∑
x∈Λk

P

(
|F̂k(x)− F (x)| ≥ ζ

α
k
2Lk

)

and as before, by using Borel-Cantelli and the Assumptions (C1) and (D2), we
can conclude that the event

{
α
k
2Lk maxx∈Λk |F̂k(x)− F (x)| ≥ ζ

}
can almost

surely happen only finitely often. This means that with probability 1 there
exists some N ∈ N with

α
k
2Lk max

x∈Λk
|F̂k(x)− F (x)| < ζ ∀ k ≥ N

and, since ζ was arbitrary, P (Ω5(Lk)) = 1.

The following two propositions are the first two steps in the proof of the main
theorem, as mentioned in the introductory paragraph of this section.

Proposition 4.4. Assume (B1)-(B3). Then

Ebθk+1
[T (X)] = Eegk [T (X)] ∀ k ∈ N.

Proof. We can assume that

g̃k(Xi) =
Hk(F̂k(Xi)) 1̃{ bFk(Xi), eγk}∑

Xi∈Λk

Hk(F̂k(Xi)) 1̃{ bFk(Xi), eγk} ,

i.e. that
{
Xi ∈ Λk : F̂k(Xi) ≥ γ̃k

}
is not empty, since otherwise we can find some

l ∈ N such that g̃k = g̃k−1 = · · · = g̃k−l has the above form. Consider for a fixed Nk

the function

Gk(θ) :=
1
Nk

Nk∑
i=1

Hk(F̂k(Xi))1̃{ bFk(Xi), eγk} ln f(Xi, θ)

and recall that θ̂k+1 = argmaxθGk(θ). Using the fact that f(· θ) is a density of the
form 4.1, we can write

Gk(θ) =
1
Nk

Nk∑
i=1

Hk(F̂k(Xi))1̃{ bFk(Xi), eγk} lnh(Xi)

+
1
Nk

Nk∑
i=1

Hk(F̂k(Xi))1̃{ bFk(Xi), eγk}θ>T (Xi)

− 1
Nk

Nk∑
i=1

Hk(F̂k(Xi))1̃{ bFk(Xi), eγk} ln
(∫
X
h(y) exp{θ>T (y)}ν(dy)

)
.
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Since

‖∇θ h(y) exp{θ>T (y)}‖ = ‖h(y)T (y) exp{θ>T (y)}‖
≤ sup

θ∈Θ
‖h(y)T (y) exp{θ>T (y)}‖,

which is integrable by Assumption (B2), we can interchange the derivative and the
integral and have

∇θGk(θ) =
1
Nk

Nk∑
i=1

Hk(F̂k(Xi))1̃{ bFk(Xi), eγk}T (Xi)

−
∫
X T (y)h(y) exp{θ>T (y)}ν(dy)∫
X h(y) exp{θ>T (y)}ν(dy)

1
Nk

Nk∑
i=1

Hk(F̂k(Xi))1̃{ bFk(Xi), eγk}.
This gradient equals zero if and only if

1
Nk

∑Nk
i=1Hk(F̂k(Xi))1̃{ bFk(Xi), eγk}T (Xi)

1
Nk

∑Nk
i=1Hk(F̂k(Xi))1̃{ bFk(Xi), eγk} =

∫
X T (y)h(y) exp{θ>T (y)}ν(dy)∫
X h(y) exp{θ>T (y)}ν(dy)

=
∫
X
T (y)h(y) exp{θ>T (y)−A(θ)}ν(dy)

⇐⇒ Eegk [T (X)] = Eθ[T (X)].

And since θ̂k+1 is by Assumption (B3) an interior point of Θ, we have ∇θGk(θ̂k+1) =
0 which implies that

Eegk [T (X)] = Ebθk+1
[T (X)].

Proposition 4.5. Let Assumptions (A1)-(A4), (B1) and (C1)-(D1) be satisfied for
some φ. Then

lim
k→∞

Ebgk [T (X)] = T (x∗) almost surely.

Proof. We will show that the claim is true for all z ∈ Ω2 ∩ Ω3. Since P (Ω2) =
P (Ω3) = 1, this implies that it is true for almost all z.
First, we will show some auxiliary results:
For all z ∈ Ω2, there exists N1 ∈ N such that X◦k+1 = X◦k = X◦N1

for all k ≥ N1. For
all z ∈ Ω3, there exists N2 ∈ N such that {x ∈ X : F (x) ≥ F (X◦k)− ε} ⊆ Kε for all
k ≥ N2. Hence, for all z ∈ Ω2 ∩ Ω3 we have {x ∈ X : F (x) ≥ F (X◦N )− ε} ⊆ Kε for
all k ≥ N := max{N1,N2}.
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Hence, for all z ∈ Ω2 ∩ Ω3 and for all k ≥ N , we can represent ĝk recursively as

ĝk+1(x) =
S (F (x))k+1

1̃{F (x), F (X◦N )}∫
X S (F (x))k+1

1̃{F (x), F (X◦N )}ν(dx)

=
S (F (x)) · S (F (x))k 1̃{F (x), F (X◦N )}∫

X S (F (x))k+1
1̃{F (x), F (X◦N )}ν(dx) ·

R
X S(F (x))k e1{F (x), F (X◦N )}ν(dx)R
X S(F (x))k e1{F (x), F (X◦N )}ν(dx)

=
S (F (x)) ·

S(F (x))k e1{F (x), F (X◦N )}R
X S(F (x))k e1{F (x), F (X◦N )}ν(dx)R

X S(F (x))·S(F (x))k e1{F (x), F (X◦N )}ν(dx)R
X S(F (x))k e1{F (x), F (X◦N )}ν(dx)

=
S (F (x)) ĝk

Ebgk [S (F (x))]
(4.4)

=

(
k∏

i=N

S (F (x))
Ebgi [S (F (x))]

)
· ĝN (x). (4.5)

Using representation (4.4) and Jensen’s inequality, it is easy to see that

Ebgk+1
[S (F (x))] =

Ebgk [S (F (x))2]
Ebgk [S (F (x))]

≥ Ebgk [S (F (x))]

for all z ∈ Ω2 ∩ Ω3 and for all k ≥ N . Since

Ebgk+1
[S (F (x))] ≤ Ebgk+1

[S (F (x∗))] = S(F (x∗)),

the sequence {Ebgk} converges for k →∞.
Assume now that limk→∞ Ebgk+1

[S (F (x))] =: S∗ < S(F (x∗)) =: S∗ and define the
set

A :=
{
x ∈ X : F (x) ≥ F (X◦N )− ε

}
∩
{
x ∈ X : S(F (x)) ≥ S∗ − S∗

2

}
=
{
x ∈ X : F (x) ≥ max

{
F (X◦N )− ε, S−1

(
S∗ − S∗

2

)}}
.

By Assumption (A2), A has a strictly positive measure and also ĝN (x) > 0 for all x ∈
A. For these points holds moreover that S(F (x)) > S∗ and thus limk→∞

S(F (x))
Ebgk [S(F (x))] =

S(F (x))
S∗

> 1. Considering (4.5), this means that lim infk→∞ ĝk(x) =∞ for all x ∈ A,
which leads to a contradiction since by Fatou’s lemma

1 = lim inf
k→∞

∫
X
ĝk(x)ν(dx) ≥

∫
X

lim inf
k→∞

ĝk(x)ν(dx) =∞.

Hence, we can conclude that limk→∞ Ebgk+1
[S (F (x))] = S(F (x∗)) for all z ∈ Ω2∩Ω3.

Now we can consider ‖Ebgk [T (X)]− T (x∗)‖:
Define G := {x ∈ X : F (x) ≥ F (X◦N ) − ε} and note that this is the support of ĝk
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for all z ∈ Ω2 ∩ Ω3 and for all k ≥ N . Since T (x) is by definition continuous, there
exists for any ζ > 0 some δ > 0 such that ‖T (x) − T (x∗)‖ ≤ ζ ∀x : ‖x − x∗‖ ≤ δ.
Define Aδ := {x ∈ X : ‖x− x∗‖ ≥ δ}. Then we have for all z ∈ Ω2 ∩Ω3 and k ≥ N :

‖Ebgk [T (X)]− T (x∗)‖ ≤
∫
X
‖T (x)− T (x∗)‖ ĝk(x)ν(dx)

=
∫
G
‖T (x)− T (x∗)‖ ĝk(x)ν(dx)

=
∫
G∩Acδ

‖T (x)− T (x∗)‖ ĝk(x)ν(dx)

+
∫
G∩Aδ

‖T (x)− T (x∗)‖ ĝk(x)ν(dx)

≤ ζ +
∫
G∩Aδ

‖T (x)− T (x∗)‖ ĝk(x)ν(dx)

≤ ζ + sup
G∩Aδ

‖T (x)− T (x∗)‖
∫
G∩Aδ

ĝk(x)ν(dx).

Since G is a subset of the compact set Kε by Assumption (A4) and T is continuous,
supG∩Aδ ‖T (x)− T (x∗)‖ <∞.
Note that by (A3) it holds that supx∈Aδ∩G F (x) ≤ supx∈Aδ F (x) < F (x∗) and since
S is monotone

S(F (x)) ≤ S

(
sup

x∈Aδ∩G
F (x)

)
< S(F (x∗)) ∀x ∈ Aδ ∩ G.

Moreover, since we have established that Ebgk+1
[S (F (x))] → S(F (x∗)) as k → ∞

for all z ∈ Ω2 ∩ Ω3, we can find some N3 ≥ N ∈ N such that Ebgk+1
[S (F (x))] >

S(supx∈Aδ∩G F (x)) ∀ k ≥ N3.
Hence for all z ∈ Ω2 ∩ Ω3 there exists c > 0 with

S(F (x))
Ebgk+1

[S (F (x))]
≤ c < 1 ∀x ∈ Aδ ∩ G,∀ k ≥ N3

and thus

ĝk(x) =

 k∏
i=N3

S (F (x))
Ebgi [S (F (x))]

 · ĝN3(x) ≤ ck−N3+1 · ĝN3(x) ∀x ∈ Aδ ∩ G.

This means that ĝk(x) ≤ ζ ĝN3(x) for all x ∈ Aδ ∩ G and for all k large enough (say
k ≥ N4 ≥ N3). Since ∫

G∩Aδ
ĝk(x)ν(dx) ≤

∫
G
ĝk(x)ν(dx) ≤ 1,
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we can conclude the proof by observing that for all z ∈ Ω2 ∩Ω3 and for an arbitrary
ζ > 0 we have found N4 ∈ N such that for all k ≥ N4

‖Ebgk [T (X)]− T (x∗)‖ ≤ ζ + sup
G∩Aδ

‖T (x)− T (x∗)‖
∫
G∩Aδ

ĝk(x)ν(dx)

≤ ζ + sup
G∩Aδ

‖T (x)− T (x∗)‖
∫
G∩Aδ

ζ ĝN3(x)ν(dx)

≤ (1 + sup
G∩Aδ

‖T (x)− T (x∗)‖) ζ.

Hence, Ebgk [T (X)]→ T (x∗) on Ω2 ∩ Ω3.

To prove the third and final step towards the main theorem, we need the following
two results:

Lemma 4.6. Let (A4), (B1), (B4), (C1)-(D1) and (E1) be satisfied for some φ.
Then with probability 1 as k →∞

(i) 1
Nk

∑
x∈Λk

ϕkHk(F (x))1̃{F (x), F (X◦k )} −→ E ef(·, bθk)

[
ϕkHk(F (X))1̃{F (X), F (X◦k )}

]
,

(ii) 1
Nk

∑
x∈Λk

ϕkHk(F (x))1̃{F (x), F (X◦k )}T (x) −→ E ef(·, bθk)

[
ϕkHk(F (X))1̃{F (X), F (X◦k )}T (X)

]
.

Proof.

(i) We consider only z ∈ Ω2, since under (C1), (C2) and (D1) P (Ω2) = 1.
Let ζ > 0 small (cf. (1.3)) and define the event

Qk :=


∣∣∣∣∣∣ 1
Nk

∑
x∈Λk

ϕkHk(F (x))1̃{F (x), F (X◦k )} − E ef(·, bθk)

[
ϕkHk(F (X))1̃{F (X), F (X◦k )}

]∣∣∣∣∣∣ > ζ

 .

We will show that Qk almost surely happens only finitely often. To do so, we
define for shorthand notation also

Uk :=
{

Step (3a) and (3b) have been visited at most
√
k times at iteration k.

}
,

Wk :=
{
{x ∈ X : F (x) ≥ F (X◦k)− ε} ⊆ Kε

}
,

where Kε is defined as in Assumption (A4).
It holds that P (Uck infinitely often) = 0 (see the proof of Lemma 4.1) and
P (Wc

k infinitely often) = 0 by Assumption (A4). Hence,

P (Qk infinitely often) = P ( {Qk ∩ Uk} ∪ {Qk ∩ Uck} infinitely often)
= P ( {Qk ∩ Uk} infinitely often)
= P ( {Qk ∩ Uk ∩Wk} ∪ {Qk ∩ Uk ∩Wc

k} infinitely often)
= P ( {Qk ∩ Uk ∩Wk} infinitely often)
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Since we have assumed in (B4) that f∗ := infx∈Kε f(x, θ0) > 0 and all samples
Xi ∈ Λk are drawn with probability f̃(· ; θ̂k) = (1 − λ)f(· ; θ̂k) + λf(· ; θ0), we
know that for all Xi ∈ Λk and for all z ∈ Wk

0 ≤ ϕkHk(F (Xi))1̃{F (Xi), F (X◦k )} (4.6)

= ϕk
S(F (Xi))k

f̃(Xi; θ̂k)
1̃{F (Xi), F (X◦k )} ≤

(ϕS∗)k

λf∗
.

Ω2 implies that there exists N1 ∈ N such that X◦k = X◦k−1 for all k ≥ N1.

Hence for these k, X(k)
1 , . . . , X

(k)
Nk

and thus also ϕkHk(F (X(k)
i ))1̃{F (X

(k)
i ), F (X◦k )}

= ϕkHk(F (X(k)
i ))1̃{F (X

(k)
i ), F (X◦k−1)}, i = 1, . . . , Nk, are conditional on θ̂k−1

and F (X◦k−1) independent and identically distributed. Then the Hoeffding
inequality yields

P
(
Qk
∣∣Wk, θ̂k−1 = θ, F (X◦k−1) = γ,Nk = n

)
≤ 2 exp

{
−2n ζ2λ2f2

∗
(ϕS∗)2k

}
∀ k ≥ N .

Then if Pbθk−1,F (X◦k ),Nk
designs the joint distribution of θ̂k−1, F (X◦k) and Nk

(appropriately defined to allow for both the continuous and the discrete ran-
dom variables), we have for all k ≥ N1

P (Qk ∩Wk) =
∫
P (Qk ∩Wk| θ̂k−1 = θ, F (X◦k) = γ,Nk = n) dPbθk−1,F (X◦k ),Nk

(θ, γ, n)

≤
∫
P (Qk |Wk, θ̂k−1 = θ, F (X◦k) = γ,Nk = n) dPbθk−1,F (X◦k ),Nk

(θ, γ, n)

≤
∫

2 exp
{
−2n ζ2λ2f2

∗
(ϕS∗)2k

}
dPbθk−1,F (X◦k ),Nk

(θ, γ, n).

Observe that the event Uk implies that we visit Step (3c) at least k−
√
k times

and thus that Nk ≥ αk−
√
kN0 ∀ k. Hence we know that

Pbθk−1,F (X◦k ),Nk

(
θ̂k−1 = θ, F (X◦k) = γ,Nk < αk−

√
kN0

∣∣Uk) = 0 ∀θ,∀γ.

And since

exp
{
−2n ζ2λ2f2

∗
(ϕS∗)2k

}
≤ exp

{
−2αk−

√
kN0ζ

2λ2f2
∗

(ϕS∗)2k

}
∀n ≥ αk−

√
kN0,

it holds for all k ≥ N1

P (Qk ∩Wk ∩ Uk) ≤ P (Qk ∩Wk | Uk)

≤ 2 exp

{
−2αk−

√
kN0ζ

2λ2f2
∗

(ϕS∗)2k

}∫
dPbθk−1,F (X◦k ),Nk

(θ, γ, n)

= 2 exp

{
−2N0ζ

2λ2f2
∗

α
√
k

·
(

α

(ϕS∗)2

)k}
.
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And as e−x < 1
x ∀x, we have for all k ≥ N1

P (Qk ∩Wk ∩ Uk) < 2 · α
√
k

2N0ζ2λ2f2
∗
·
(

(ϕS∗)2

α

)k
=

1
N0ζ2λ2f2

∗
·

(
α
√
k
k (ϕS∗)2

α

)k
.

By (E1) we know (ϕS∗)2

α < 1. That means that there exists some δ ∈ (0, 1)
and some N2 ∈ N such that

α
√
k
k (ϕS∗)2

α
= α

1√
k · (ϕS∗)2

α
< δ ∀ k ≥ N2.

Hence
P (Qk ∩Wk ∩ Uk) ≤ const · δk ∀k ≥ max{N1,N2}

and we can again use Borel-Cantelli to conclude that

P (Qk ∩Wk ∩ Uk infinitely often) = P (Qk infinitely often) = 0,

and thus the claim follows with probability 1.

(ii) The proof of (ii) follows from almost the same arguments. However, we cannot
as easily conclude (cf. (4.6))

0 ≤ ϕkHk(F (Xi))1̃{F (Xi), F (X◦k )}T (Xi) ≤
(ϕS∗)k

λf∗
.

But by Assumption (B1), T (x) is continuous and thus attains a minimum
Tmin and a maximum Tmax on the compact set Kε. Hence we know that for
all Xi ∈ Λk and for all z ∈ Wk

(ϕS∗)k

λf∗
·min{0, Tmin} ≤ ϕkHk(F (Xi))1̃{F (Xi), F (X◦k )}T (Xi)

≤ (ϕS∗)k

λf∗
·max{0, Tmax}.

With these bounds for the random variable ϕkHk(F (Xi))1̃{F (Xi), F (X◦k )}T (Xi),
the Hoeffding inequality is applicable. Thus, the rest of the proof is analogical
to (i) with an added constant 1

max{0,Tmax}−min{0,Tmin} in the argument of the
exponential function.

Lemma 4.7. Let (A4)-(B1), (B4), (C1)-(D2)and (E1) be satisfied for some (∆k, Lk)
and some φ. Then with probability 1 as k →∞

(i) 1
Nk

∑
x∈Λk

ϕkHk(F̂k(x))1̃{ bFk(x), bFk(X◦k )} −→
1
Nk

∑
x∈Λk

ϕkHk(F (x))1̃{F (x), F (X◦k )},
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(ii) 1
Nk

∑
x∈Λk

ϕkHk(F̂k(x))1̃{ bFk(x), bFk(X◦k )}T (x) −→ 1
Nk

∑
x∈Λk

ϕkHk(F (x))1̃{F (x), F (X◦k )}T (x).

Proof. We only prove (i), since the claim in (ii) can be obtained in the same way
as in the proof of Lemma 4.6 (ii). Furthermore, we show that it holds for all
z ∈ Ω3 ∩ Ω4(∆k) ∩ Ω5(Lk). This implies the convergence in probability 1 since
P (Ω3 ∩ Ω4(∆k) ∩ Ω5(Lk)) = 1.
It holds∣∣∣∣∣∣ 1
Nk

∑
x∈Λk

ϕkHk(F̂k(x))1̃{ bFk(x), bFk(X◦k )} −
1
Nk

∑
x∈Λk

ϕkHk(F (x))1̃{F (x), F (X◦k )}

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1
Nk

∑
x∈Λk

ϕkHk(F̂k(x))1̃{ bFk(x), bFk(X◦k )} −
1
Nk

∑
x∈Λk

ϕkHk(F (x))1̃{ bFk(x), bFk(X◦k )}

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1
Nk

∑
x∈Λk

ϕkHk(F (x))1̃{ bFk(x), bFk(X◦k )} −
1
Nk

∑
x∈Λk

ϕkHk(F (x))1̃{F (x), F (X◦k )}

∣∣∣∣∣∣ .
Consider the first term on the right hand side of the inequality. By (A4) and (B4)
there exists N1 ∈ N such that for all z ∈ Ω3 and for all k ≥ N1∣∣∣∣∣∣ 1

Nk

∑
x∈Λk

ϕkHk(F̂k(x))1̃{ bFk(x), bFk(X◦k )} −
1
Nk

∑
x∈Λk

ϕkHk(F (x))1̃{ bFk(x), bFk(X◦k )}

∣∣∣∣∣∣
=

ϕk

Nk

∑
x∈Λk

∣∣∣Hk(F̂k(x))−Hk(F (x))
∣∣∣ 1̃{ bFk(x), bFk(X◦k )} ·

S (F (x))k

S (F (x))k

=
ϕk

Nk

∑
x∈Λk

∣∣∣∣S (F̂k(x)
)k
− S (F (x))k

∣∣∣∣
S (F (x))k

S (F (x))k

f̃(· ; θ̂k)
1̃{ bFk(x), bFk(X◦k )}

≤ (ϕS∗)k

Nkλf∗

∑
x∈Λk

∣∣∣∣S (F̂k(x)
)k
− S (F (x))k

∣∣∣∣
S (F (x))k

1̃{ bFk(x), bFk(X◦k )}

and using (A5) and (E1), we further know that for all z ∈ Ω3 ∩ Ω4(∆k) this is

≤ (ϕS∗)k

Nkλf∗

∑
x∈Λk

Lk|F̂k(x)− F (x)|

≤ (ϕS∗)k

λf∗
max
x∈Λk

Lk|F̂k(x)− F (x)|

≤ α
k
2

λf∗
max
x∈Λk

Lk|F̂k(x)− F (x)|.

By the definition of Ω5(Lk), this converges to zero for all z ∈ Ω3 ∩Ω4(∆k)∩Ω5(Lk).
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Similarly, there exists N2 ∈ N such that for all z ∈ Ω3 and all k ≥ N2∣∣∣∣∣∣ 1
Nk

∑
x∈Λk

ϕkHk(F (x))1̃{ bFk(x), bFk(X◦k )} −
1
Nk

∑
x∈Λk

ϕkHk(F (x))1̃{F (x), F (X◦k )}

∣∣∣∣∣∣
=

ϕk

Nk

∑
x∈Λk

Hk(F (x))
∣∣∣1̃{ bFk(x), bFk(X◦k )} − 1̃{F (x), F (X◦k )}

∣∣∣
≤ (ϕS∗)k

Nkλf∗

∑
x∈Λk

∣∣∣1̃{ bFk(x), bFk(X◦k )} − 1̃{F (x), bFk(X◦k )}

∣∣∣+
∣∣∣1̃{F (x), bFk(X◦k )} − 1̃{F (x), F (X◦k )}

∣∣∣
≤ (ϕS∗)k

Nkλf∗

∑
x∈Λk

∣∣∣F̂k(x)− F (x)
∣∣∣

ε
+

∣∣∣F̂k(X◦k)− F (X◦k)
∣∣∣

ε

≤ α
k
2

λf∗ε
max
x∈Λk

∣∣∣F̂k(x)− F (x)
∣∣∣+

α
k
2

λf∗ε

∣∣∣F̂k(X◦k)− F (X◦k)
∣∣∣ .

Using Lemma 4.2, (D2) and a similar argument as in Lemma 4.3 (iv), we can show
that this converges almost surely to zero.
This implies the claim.

Proposition 4.8. Let (A2), (A4), (A5), (B4) and (C1)-(E1) be satisfied for some
(∆k, Lk) and some φ. Then

lim
k→∞

∣∣∣ Eegk [T (X)]− Ebgk [T (X)]
∣∣∣ = 0 almost surely.

Proof. By a change of measure from ĝk to f̃(· ; θ̂k), we have

Ebgk [T (X)] =

∫
X T (x)S (F (x))k 1̃{F (x),F (X◦k}ν(dx)∫
X S (F (x))k 1̃{F (x),F (X◦k}ν(dx)

=
E ef(·, bθk)

[
T (X)Hk(F (X))1̃{F (X), F (X◦k )}

]
E ef(·, bθk)

[
Hk(F (X))1̃{F (X), F (X◦k )}

] .

Thus it suffices to show that∣∣∣∣∣∣
∑

x∈Λk
T (x)Hk(F̂k(x))1̃{ bFk(x), bFk(X◦k )}∑

x∈Λk
Hk(F̂k(x))1̃{ bFk(x), bFk(X◦k )}

−
E ef(·, bθk)

[
T (X)Hk(F (X))1̃{F (X), F (X◦k )}

]
E ef(·, bθk)

[
Hk(F (X))1̃{F (X), F (X◦k )}

]
∣∣∣∣∣∣

≤

∣∣∣∣∣∣
∑

x∈Λk
T (x)ϕkHk(F̂k(x))1̃{ bFk(x), bFk(X◦k )}∑

x∈Λk
ϕkHk(F̂k(x))1̃{ bFk(x), bFk(X◦k )}

−
∑

x∈Λk
T (x)ϕkHk(F (x))1̃{F (x), F (X◦k )}∑

x∈Λk
ϕkHk(F (x))1̃{F (x), F (X◦k )}

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

x∈Λk
T (x)ϕkHk(F (x))1̃{F (x), F (X◦k )}∑

x∈Λk
ϕkHk(F (x))1̃{F (x), F (X◦k )}

−
E ef(·, bθk)

[
T (X)ϕkHk(F (X))1̃{F (X), F (X◦k )}

]
E ef(·, bθk)

[
ϕkHk(F (X))1̃{F (X), F (X◦k )}

]
∣∣∣∣∣∣

−→ 0 almost surely.



CHAPTER 4. CONVERGENCE RESULTS 49

This follows from Lemma 4.6 and Lemma 4.7, if
∑

x∈Λk
ϕkHk(F (x))1̃{F (x), F (X◦k )} >

0 and E ef(·, bθk)

[
ϕkHk(F (X))1̃{F (X), F (X◦k )}

]
> 0 for all k ∈ N.

• E ef(·, bθk)

[
ϕkHk(F (X))1̃{F (X), F (X◦k )}

]
> 0:

Since F (X◦k)−ε ≤ F (x∗)−ε < F (x∗) ∀ k, the set {x ∈ X : F (x) ≥ F (X◦k)− ε}
has by Assumption (A2) a strictly positive measure. On the other hand, ϕ
is by (E1) such that the set {x ∈ X : S (F (x)) ≥ 1

ϕ} has a strictly positive
measure. Thus, the measure of {x ∈ X : F (x) ≥ max{S−1( 1

ϕ), F (X◦k)}} is also
strictly positive for all k. Moreover, for all x in this set holds [ϕS(F (x))]k ≥ 1.
This and the lemma of Fatou yields

lim inf
k→∞

E ef(·, bθk)

[
ϕkHk(F (X)) 1̃{F (X), F (X◦k )}

]
= lim inf

k→∞

∫
X
ϕkS(F (X))k 1̃{F (X), F (X◦k )}ν(dx)

≥
∫
X

lim inf
k→∞

ϕkS(F (X))k 1̃{F (X), F (X◦k )}ν(dx)

> 0.

•
∑

x∈Λk
ϕkHk(F (x))1̃{F (x), F (X◦k )} > 0:

We know from Lemma 4.6 and from the calculation above that

lim inf
k→∞

1
Nk

∑
x∈Λk

ϕkHk(F (x))1̃{F (x), F (X◦k )}

= lim inf
k→∞

E ef(·, bθk)

[
ϕkHk(F (X))1̃{F (X), F (X◦k )}

]
> 0.

Hence, the proof is completed.

Finally, we can state the main theorem.

Theorem 4.9. If Assumptions (A1)-(E1) are satisfied for some (∆k, Lk) and some
φ, then

lim
k→∞

Ebθk [T (X)] = T (x∗) almost surely.

Proof. This is now a direct consequence from Proposition 4.4, 4.5 and 4.8.

Note that apart from the specific choice of reference distributions, the proofs
rely heavily on the fact that Nk,Mk → ∞ while f̃(x; θ̂k) > λf(x, θ0) > 0 ∀x ∈ X.
This ensures not only that the probability of drawing an ε-optimal sample is always
positive for any ε > 0 but that this will happen eventually for k large enough and
that the near-optimal sample will be recognized as such. Hence a statement difficult
to prove for the CE (cf. the beginning of this chapter) follows trivially from the
assumptions here.



Chapter 5

Implementational Issues

To test and compare the Cross-Entropy and the Model Reference Adaptive Search
algorithm, we implemented a flexible C++-Framework (see attached CD) and stud-
ied the algorithms’ behaviour in three basic Markov Decision problems, namely a
queueing, an inventory and a replacement problem. These examples were chosen for
their representative character as they are all standa Figure rd problems in dynamic
optimization literature. Moreover, the first two test cases allow for testing the al-
gorithms on uncountable action spaces, a situation which is not as problematic as
uncountable state spaces yet rarely considered in literature, even though standard
optimization procedures such as Howard’s Policy Iteration require not only discrete
but even finite action spaces. Often, this problem is overcome in applications by a
discretization of the action space. However, the generality of both the CE and the
MRAS method leads to the very simple and direct approach of taking a continuous
probability distribution over the set of all possible policies. This is often not only
easier than working with discrete distributions but also avoids possible mistakes
during the discretization process.
Furthermore, it has to be added that both the queueing and the inventory problem
have been studied already by Hu, Fu and Marcus (see [CFHM07], [HFM]). There
the authors compare the MRAS method with a simple Simulated Annealing algo-
rithm and come to the conclusion that the Model Reference Adaptive Search shows
a consistently good performance with quite small variance in the optimal value. We
will reconsider exactly the same problems here, since we were not able to replicate
these optimistic results. Private communication even revealed that in one of the
examples a slight error in the source code seemed to be the reason for the good
convergence and that the implementation of the correct algorithm yielded far worse
results. A detailed discussion as well as our explanation approaches will be given
below.
We restrict ourselves to infinite-horizon problems so that there will be an optimal
stationary policy and our solution space has only dimension |S| and not |S| ×N (N
denoting the horizon).

50
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5.1 General Discussion

Before we can compare two algorithms, we should establish some criteria for “good”
algorithms.
Surely, one of the most important quality features of an optimization algorithm is
its ability to find optimal or near-optimal solutions. Moreover, this should happen
consistently or at least sufficiently often, depending on the problem to be solved. In
some cases (for example if the problem structure and complexity allow for repeated
algorithm runs) it may be satisfactory if only most and not all of the found solutions
are acceptable. Nevertheless, to compare the performance of two algorithms we will
consider both the quality and the reliability of the solutions.
Another important aspect is the time required for an algorithm to terminate. Time
refers here to CPU time, i.e. the computational effort needed. We usually measure
this by the number of value function evaluations, since in each iteration the effort
needed to simulate the candidate policies dominates by far the number of other op-
erations. One should however bear in mind that for the same number of function
evaluations, the MRAS algorithms has to perform more basic operations due to its
more complicated parameter adaptation (Step 3 in Algorithm 3.3) and the weight
factors in the model distribution’s parameter update (cf. Example 3.1).
Whereas these two criteria are important in the analysis of all algorithms, we will
in our case also be interested in some specific features arising from the behaviour of
the two algorithms as well as from their similarities and differences.
Due to the fact that we study the Cross Entropy method and the MRAS for stochas-
tic optimization and replace in both algorithms analytic evaluations by estimates
derived from simulation, we have to differentiate between the calculated optimal
policy and the respective estimated value function. Our main focus of attention is
the performance (i.e. the correct value) of the found policies, but comparing the
quality of the value function estimate is also of interest. To avoid confusion, the
term “solution” will usually refer to the policy only.
Both algorithms are rather general in nature and are not especially designed for one
single problem class. Therefore the ease of their adaptation to a given problem, the
complexity of their implementation and the effort needed to find good parameter
combinations are also interesting properties in our opinion.

In our experiments we performed several runs (usually 100) for each problem
instance and logged in each iteration the number of value function evaluations,
the sample quantile (respectively the threshold level in the MRAS) and the esti-
mated value of the best sample. As stopping rule we usually chose a fixed number
of function evaluations, i.e. we stopped after iteration T if the total sample size∑T

i=0Ni ·Mi ≥ c for some c ∈ N. The motivation for this choice was to obtain com-
parable solutions of both algorithms. In “normal” applications one would surely use
process-dependent stopping rules as discussed at the end of Section 2.4.
To evaluate the average behaviour of the algorithms, we considered both the thresh-
old level and the best sample value as step functions in the total sample size and
averaged at a given number of points (e.g. every 5000 samples) over these step
functions. Note that for the Cross-Entropy algorithm this method corresponds to
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calculating the averages in each iteration if the evaluation points are appropriately
chosen, whereas in the MRAS the Nk are not fix so that for different runs the total
number of function evaluations in a given iteration will differ. There are other eval-
uation methods: Hu, Fu and Marcus use for example in [CFHM07] the approach of
plotting for each iteration the average values against the average total sample sizes.
As solution π∗ found in an algorithm run we chose the best-rated sample in the last
iteration.

5.2 Queueing

The queueing model, taken from [CFHM07], consists of a capacitated single-server
queue where during one period the customer arrival rate follows a Bernoulli dis-
tribution with given parameter p ∈ [0, 1] and one customer can be served with a
service completion probability a ∈ [0, 1]. Any arrival exceeding the queue capacity
is lost. In each period a cost r(i, a) occurs, depending on the number of customers
in the system i and the service rate a. The problem is to choose the optimal service
completion probabilities a = a(i) such that the expected discounted costs for a given
initial state i0 are minimal.
This can be modeled as an infinite-horizon Markov Decision Problem with

• S = {0, 1, . . . , L}. it ∈ S the number of customers in the system in period t,
L ∈ N the queue capacity.

• A = [0, 1]. a ∈ A the service completion rate, D(i) = A.

• p(i, a, j) =


p(1− a) j = i+ 1
(1− p)a j = i
(1− p)(1− a) + pa j = i− 1

for i ∈ {1, . . . , L− 1}

and p(0, a, j) =
{

1− p j = i
p j = i+ 1

, p(L, a, j) =
{

1− a j = i
a j = i− 1

the

transition probabilities.

• a cost function r(i, a).

• β < 1 the discount factor.

Note that since the policy space F = [0, 1]|S| is uncountable, it is reasonable to use
a continuous parameterized family in both the CE and the MRAS algorithm.

Hu, Fu and Marcus [CFHM07] chose to employ independent univariate normal
densities in each component, truncated between 0 and 1. That is, the probability
of choosing action a ∈ [0, 1] when in state i ∈ S in iteration k is determined by the
density

f(a;µk(i), σ2
k(i)) =


1√

2πσ2
k

(i)
exp


− 1

2

(a−µk(i))2

σ2
k

(i)

ff
Φ
“

1−µk(i)

σk(i)

”
−Φ
“
−µk(i)

σk(i)

” a ∈ [0, 1]

0 otherwise

,
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where Φ is the standard normal distribution. Then the density of the distribution
of a policy π : S → [0, 1] is the product

∏
i∈S f(π(i);µk(i), σ2

k(i)). Moreover, as in
all their examples, they employ as positive function S(y) = e−τy for y > 0 with
some constant τ > 0. As we consider the equivalent maximization problem, we have
V∞π < 0 and hence we use S(y) = eτy for τ > 0. Note that S(y) ∈ [0, 1] ∀ y. Then
the update in Step 5 of Algorithm 3.3 becomes

µ̂k+1(i) =

∑
π∈Λk

exp{kτ bV π,k∞ }Q
i∈S

ef(π(i);bµk(i),bσ2
k(i))

1̃{bV π,k∞ ,eγk}π(i)∑
π∈Λk

exp{kτ bV π,k∞ }Q
i∈S

ef(π(i);bµk(i),bσ2
k(i))

1̃{bV π,k∞ ,eγk}
, (5.1)

σ̂k+1(i) =

∑
π∈Λk

exp{kτ bV π,k∞ }Q
i∈S

ef(π(i);bµk(i),bσ2
k(i))

1̃{bV π,k∞ ,eγk} (π(i)− µ̂k+1(i))2

∑
π∈Λk

exp{kτ bV π,k∞ }Q
i∈S

ef(π(i);bµk(i),bσ2
k(i))

1̃{bV π,k∞ ,eγk}
, (5.2)

where f̃(π(i); µ̂k(i), σ̂2
k(i)) = (1− λ)f(π(i); µ̂k(i), σ̂2

k(i)) + λf(π(i), µ0(i), σ0(i)).

We use the same model structure for the Cross-Entropy algorithm, where the
parameters are updated as

µ̂k+1(i) =

∑
π∈Λk

1{bV π,k∞ ≥ bγk}π(i)∑
π∈Λk

1{bV π,k∞ ≥ bγk} ,

σ̂k+1(i) =

∑
π∈Λk

1{bV π,k∞ ≥ bγk} (π(i)− µk+1(i))2∑
π∈Λk

1{bV π,k∞ ≥ bγk} .

We consider in this example a queue with capacity L = 49, arrival probability
p = 0.2, discount factor β = 0.98 and cost function

r(i, a) = i+ 5
(
|S|
2

sin(2πa)− i
)2

.

Hu, Fu and Marcus use a policy improvement method based on a discretization of
the action space to obtain a valid estimate for the optimum and give graphically
V ∗∞ ≈ 70 for the initial state i0 = 5 with optimal actions π(0) ≈ 0.5 monotone
decreasing in i to π(25) ≈ 0.3 and π(i) ≈ 0.3 for i = 26, . . . , 49.
To approximate V π

∞, each policy is simulated for 100 periods.

A parameters for the CE method, we choose N = 100, ρ = 0.1, observation size
M = 50 and v = 0.7 for the smoothed update of µ, as suggested in [RK04]. For the
variance update, we implement the additional scheme (2.10) with q = 7 and β = 0.9.
The initial mean µ0(i) is uniformly distributed in [0, 1] and the initial variance is set
to be σ2

0(i) = 1 for all i. The average results of 100 runs and the standard errors at
each evaluation point are displayed in Figure 5.1.
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Figure 5.1: Cross-Entropy for queueing
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The parameters used by Hu, Fu and Marcus in [CFHM07] for the MRAS algo-
rithm are N0 = 100, ρ0 = 0.1, λ = 0.01, α = 1.04, τ = 0.01, ε = 0.1, v = 0.5 and
Mk = d1.05Mk−1e with M0 = 50. The initial mean and variance are as in the CE
algorithm.
Using their original MATLAB-routine, we obtained as average over 100 runs the
following result displayed in Figure 5.2, which is similar to those published in
[CFHM07]. Note that only the behaviour of the best sample is shown.

Figure 5.2: MRAS implementation by Hu, Fu and Marcus, i0 = 5
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However, in their implementation they forgot to calculate the product
∏
i∈S f(π(i);µk(i), σ2

k(i)).
As a result, they divide the exponential term exp{kτV̂ π,k

∞ } not by the density of the
sample π, but by the density f(π(i);µk(i), σ2

k(i)) of some component of one of the
samples in Λk, leading to a magnitude of mistake of several dimensions. Figure 5.3
depicts the average behaviour of the corrected implementation as obtained from 100
simulation runs.

Figure 5.3: Corrected MRAS implementation by Hu, Fu and Marcus, i0 = 5
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Trying to reproduce their numerical experiment in our framework, we faced some
major numerical problems: Solution candidates π drawn in the first few iterations
perform usually (as expected) quite poorly, i.e. the value V̂ π,k

∞ is very large. In fact,
exp{kτV̂ π,k

∞ } is quite frequently numerically zero for all samples considered in the
update (i.e. for the approximately 10% best samples), leading to a division-by-zero
error. This problem is further aggravated with each iteration by the increase of k.
A similar problem occurs in the calculation of the densities: If during the runtime
of the algorithm the model distributions indeed approach degenerate distributions,
the density of each drawn component π(i) can be that large that computing the
product

∏
i∈S f(π(i);µk(i), σ2

k(i)) produces a numerical overflow.
Accepting some added computational cost, these problems can technically be over-
come by expanding the fractions (5.1), (5.2) in the update process by

max
π∈Λk

exp{−kτV̂ π,k
∞ } (5.3)

and/or
(

max
π(i)∈Λk

f̃(π(i); µ̂k(i), σ̂2
k(i))

)|S|
. (5.4)

The latter circumvents the overflow by rescaling the densities to values in [0, 1].
Unfortunately, though, especially in early iterations this may have quite the opposite
effect, namely that (when maxπ(i)∈Λk f̃(π(i); µ̂k(i), σ̂2

k(i)) is large compared to the
densities of other components) the rescaled densities are numerically zero. Finding
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a useable scaling factor is then not an easy task.
Let πmax = argmaxπ∈Λk

exp{−kτV̂ π,k
∞ }. Then the former expansion yields the larger

term exp{kτ(V̂ π,k
∞ −V̂ πmax,k

∞ )} in both enumerator and denominator and this ensures
that at least for the one sample π = πmax the exponential function will be positive.
Note however that this modification usually produces the need for a readjustment
of parameter τ . Unlike in the unmodified algorithm, where a rough knowledge
of the value function dimensions could serve as a good guideline for the choice of
parameters, the optimal adjustment of τ now depends on the spread in the set of
best samples in each iteration, hence directly on the behaviour of the algorithm -
and this can only be determined by observation!
In their source code, Hu, Fu and Marcus used even another method: they added a
small positive constant to the exponential function, thus calculating(

exp{τ V̂ π,k
∞ }+ 10−5

)k
(5.5)

in each iteration. This usually works but has the disadvantage that in initial itera-
tions the constant term will dominate any exponential weighting factor whereas in
later iterations the problem is not completely excluded, since the constant factor
10−5k vanishes for large k.

Figure 5.4: Queueing Example - Original MRAS
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The behaviour of the original MRAS algorithm using the exponential function
expansion and the parameters stated above is shown in Figure 5.4. The results were
obtained as the average over 100 runs. We see that the mean value of the found
solutions is far worse than that obtained by the Cross-Entropy algorithm whereas
the variance is significantly larger. For a detailed comparison of the solutions found
by both algorithms, see Figure 5.5. One can see that all values found by the CE
method were less than 300, most of them even smaller than 100, whereas only 14
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results of the MRAS reached a level below 500 (note that we used different grids for
the two histograms).

Figure 5.5: Queueing Example - Histogram of Solution Values
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One problem in many of the runs seems to be a sudden and preliminary decrease
in the variance of the sampling distribution, so that the algorithm freezes in some
suboptimal solution. This usually happens if the adaptation of parameter ρ in step
3b is too pronounced (e.g. when only one sample exceeds the former threshold) and
hence in later iterations the sample quantile is too ambitious (taking into account
say only the best 1-2 % of the order statistic). On this issue, Hu, Fu and Marcus
mention in [HFM07] that it may be advisable to perform the parameter update in
Step 4 only if at least Nmin samples would be considered. However, what they do
is to perform the quantile update in Step 3b only if at least Nmin samples exceed
the new threshold (hence introducing a bound ρmin = Nmin

N → 0 as N →∞) but to
always update the sampling distribution parameter (unless no sample at all reaches
the threshold). The results of this modification with Nmin = 10 are presented in
Figure 5.6, again averaging over 100 runs performed by our implementation.

A test run with Nmin = 5 even yielded three solutions with values between
40 000 and 75 000. A close look at the algorithm’s behaviour in these cases revealed
yet another problem concerning the weighting factors exp{kτ bV π,k∞ }Q

i∈S
ef(π(i);bµk(i),bσ2

k(i))
. Usually

the range of densities varies from iteration to iteration but is quite constant be-
tween the top samples in each iteration. However, it may happen that the sampling
distribution has tightened around some suboptimal solution and then a good (or
better) solution π is drawn according to the initial distribution f(· , θ0). Then the
denominator

∏
i∈S f̃(π(i); µ̂k(i), σ̂2

k(i)) is very small compared to those of the other
samples (in our example e.g. of dimension 10−33 compared to dimension 10−5 or
105). Hence, this specific sample π will most probably have such a heavy weight
compared to the others that it completely dominates the parameter update. Thus
the new parameter µ̂k+1 will correspond almost exactly to π whereas the new vari-
ance σ̂k+1 will be practically zero. Due to the fact that we use a smoothed update
scheme (cf. (2.9)), the algorithm will end up with a mean somewhere between the
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Figure 5.6: Queueing example - MRAS with ρmin
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old mean and π with a very small variance. It may then be that this new mean is
not only suboptimal but far worse than both the old mean µ̂k and π and that in
subsequent iterations no further sample will reach the old threshold level γ̂k.
Note that the behaviour described above holds true if we use modification (5.3) and
the sample π is actually the best sample (or nearly the best) in the iteration. Other-
wise the difference in the density may be balanced out by an equally large difference
in the exponential term. However, if we use (5.5), the exponential evaluation terms
do not differ very much among the top samples in one iteration. Then the density is
the one dominating factor in the calculation of the weights and the algorithm may
just meander from one unlikely sample to another with no consideration for their
performance.

The observations noted above suggest that the smoothed update may cause some
of the problems in the MRAS algorithm. Yet trials runs reveal that abandoning all
smoothing will cause the variance to converge to zero in about 4 - 5 iterations,
leading to unmanageable numerical overflows of the densities. Hence we retain the
smoothing with parameter v = 0.5 for the variance but set v = 1 (no smoothing)
for the update of the mean vector (using Nmin = 10, (5.3) and the other parameters
as above). This produces a significant decrease of the average solution value and
variance compared to the test run with only Nmin (figure 5.6). A comparison is
shown in Figure 5.7.

Additional experiments with different parameters τ (also using an adapted scheme),
v and α yielded no significant further improvement.

To further investigate the reasons for the different behaviour of Cross-Entropy
and MRAS, we implemented the Adaptive Cross-Entropy method presented in Al-
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Figure 5.7: Queueing example - Influence of smoothed update in MRAS
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gorithm 2.3. The results of 100 simulation runs with parameters N0 = 100, ρ0 = 0.1,
ε = 0.1, α = 1.04 and v = 0.5 for both mean and variance as in the MRAS, stopped
after 300 000 function evaluations as above, are displayed in Figure 5.8. Moreover,
we ran the Adaptive Cross-Entropy separately with fixed observation size M = 50
as in the original algorithm and with the increasing scheme used in the MRAS (pa-
rameters M0 = 50 and Mk = d1.05Mk−1e, as above). Then the only differences
between MRAS and Adaptive CE lie in the use of the weighting factors and the
order of parameter adaptation and distribution update. Performing the same ex-
periments with Step 5 before Step 3 in Algorithm 2.3 (i.e. in the same order as in
MRAS) yields no substantial discrepancies in the results. Hence we have excluded

any differences apart from the factors exp{kτ bV π,k∞ }Q
i∈S

ef(π(i);bµk(i),bσ2
k(i))

.

Figure 5.8: Queueing Example - Solutions of Adaptive Cross-Entropy
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One can see in Figure 5.8 that the Adaptive CE with fixed observation size
performs much better in the given scope of function evaluations. This seems to be
simply because the algorithms stops after approximately 50 iterations in contrast to
approximately 26 for the Adaptive CE with increasing observation size: Figure 5.9
depicts the solutions of the basic Adaptive CE (taken from the same simulation run
as above) after 26 iterations which are similar to those obtained by the algorithm
with increasing Mk. Yet even those solutions, though not as good as the ones found
by the Cross-Entropy methods with fixed M , are far better than those of the Model
Reference Adaptive Search. As we have excluded every other factor, this difference
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Figure 5.9: Queueing Example - Adaptive Cross-Entropy after 26 Iterations
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can only be explained by the weighting terms.
Note that the observations above are quite interesting: apparently the number of
iterations has more influence on the convergence of the algorithms than the number
of function evaluations. This might be explained by the fact that methods with
increasing sample size use a large part of the allowed function evaluations for exact
estimates and not for finding more (better) samples. One would however expect the
methods with few observations allocated to each sample to converge to non-optimal
solutions as they should be less able to distinguish good samples from bad ones.
Nevertheless, re-evaluating all solutions found in our simulation runs by the different

Figure 5.10: Estimate based on 10 000 Observations
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algorithms with 10 000 observations each to obtain more exact value estimates does
not entail a different result. Even though the solutions are generally rated worse, the
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overall picture remains the same (cf. Figure 5.10). Hence facing a computational
budget, it is apparently advisable to invest more in sampling different solutions than
in their exact evaluation. The general underestimation of the value function will be
discussed in more detail in the next example.

5.3 Inventory

We consider the inventory control problem from [CFHM07] with exponentially dis-
tributed demand, no lead times, full backorders and linear holding and penalty costs.
At the beginning of each period, the inventory i is reviewed and an order a is placed.
Then the costs for this period are calculated, consisting of (fix and variable) ordering
costs and linear holding respectively penalty costs. During the period, a stochastic
demand d occurs, so that the inventory level at the beginning of the next period
is i + a − d. This is a Markov Decision Process with uncountable state and action
space, described here as a stochastic control model:

• S = R, it ∈ S the inventory position at the beginning of period t.

• A = R+, at ∈ A the ordered amount in period t. D(i) = A.

• Z = R+ the space of disturbances, dt ∈ Z the demand in period t.

• Transition law Q : D → Z, given by the density q(d|i, a) = q(d) = λe−λd, i.e.
the demand is exponentially distributed with parameter λ.

• Transition function T : D × Z → S, T (i, a, z) = i+ a− z.

• r(i, a, j) =
{
K + ca+ hj+ + pj− a > 0
hj+ + pj− a = 0

, where K is the cost of placing

an order, c the additional ordering cost per unit and h and p the holding
respectively penalty costs per unit.

• β = 1, V0 = 0.

The aim is to minimize the long run stationary costs Gπ =
∫
S V∞π(i)µ(i)di of the

system, where µ is the stationary distribution of the inventory level.

It is well-known that the optimal policy for such an inventory problem is of (s, S)-
form: If the inventory level i is below some threshold s the inventory is restocked to
level S, i.e.

at =
{

0 it ≥ s,
S − it it < s.

Moreover, for exponentially distributed demand D with mean E[D] = 1
λ and linear

penalty and holding costs, the optimal levels s∗ and S∗ can be determined analyti-
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cally (see [AKS58]) as

s∗ = − 1
λ

ln

(
h+
√

2Khλ
h+ p

)
,

S∗ = s∗ +

√
2K
λh

.

Furthermore, for a given policy (s, S) we have

G(s,S) =
c

λ
+
K + h

(
s− 1

λ + λ
2 (S2 − s2)

)
+ (h+ p) 1

λe
−λs

1 + λ(S − s)
. (5.6)

This policy structure can be used to reduce the dimension of our model distribu-
tion from |S| to 2. Again, we use normal distributions in each component for both
Cross-Entropy and Model Reference Adaptive Search. Since we do not truncate our
distribution here, the updates are as in Examples 2.2 and 3.1. As initial parameters
we use µ0(s) ∼ U [0, 2000], µ0(S) ∼ U [0, 4000] and σ2

0(i) = 106 for i = s, S in both
algorithms. Note that in the simulation we do not restrict our policies to s ≤ S for
ease of random number generation, but if in the final solution s > S, we set s = S,
i.e. we evaluate the policy π = (S, S).

Example 1

The first specific problem instance is given by h = c = 1, p = 10, K = 100 and
E[D] = 200. The optimal strategy in this case is (s∗, S∗) = (340.95, 540.95) and
the average costs for this policy are G∗ = 740.95. To estimate the performance of a
given policy, it is first simulated over 50 periods to reach an arbitrary system state
(“warm-up phase”). Then the average costs over the next 50 periods are calculated.
Averaging over 150 periods to estimate costs yielded no discernible differences.
As in the previous section, the parameters for the CE method are N = 100, ρ = 0.1,
M = 50 and v = 0.7. Test runs revealed that the modified smoothing scheme (2.10)
destabilizes the algorithm in this example, hence we used the simple update (2.9)
with v = 0.7 for both mean and variance.
The parameters used in MRAS are N0 = 100, ρ0 = 0.1, λ = 0.01, α = 1.04, τ = 0.01,
ε = 0.01, Mk = d1.05Mk−1e, M0 = 50 and v = 0.5 for both mean and variance.
Furthermore we used the bound for ρk with Nmin = 10 here and in all subsequent
examples.
The average results of 100 simulations runs (stopped after 300000 function evalua-
tions) of both CE and MRAS are displayed in Figure 5.11.

As one can see, the MRAS performs better than in the previous example. This is
to be expected considering the smaller range of function values (avoiding numerical
problems regarding the exponential function) and the equally smaller range of values
of
∏2
i=1 f̃(π(i); µ̂k(i), σ̂2

k(i)) (for different samples in one iteration as well as in the
course of the algorithm) due to less dimensions.



CHAPTER 5. IMPLEMENTATIONAL ISSUES 63

Figure 5.11: (s, S)-Inventory Problem (Example 1)
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Observe that the mean estimated solution values of the Cross Entropy algorithm
are far below the theoretical optimum. This deviance is also confirmed in the com-
parison between these estimations and the correct analytic evaluation (5.6) of the
found solutions, shown in Figure 5.12. Since the differences in the estimates of the

Figure 5.12: Quality of Solution Value Estimate in (s,S)- Inventory Problem (Ex-
ample 1)
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MRAS are much smaller, we additionally tested the CE algorithm with the same
parameters as above but an increasing sample size (as for the MRAS M0 = 50,
Mk = d1.05Mk−1e). As expected, this decreases the estimation error considerably
(see Figure 5.13, note the different grids). However, even with increasing observation
size this underevaluation is systematic in both Cross-Entropy and Model Reference
Adaptive Search.
The explanation for this is straightforward: the candidate solutions are sorted ac-
cording to their estimated performance. Hence those evaluations that underestimate
the value (i.e. that give a score better than the real performance) are favoured in
this process and, as there is always some variance in the estimator and so there
are usually evaluations that suggest a better performance than it is the case, the
given solution values are almost always too good. The increasing observation size
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decreases the magnitude of error but cannot impede the general tendency.

Due to the observations made in the queueing example, we also tested the MRAS
without the smoothed update for the vector of means. The results of all four simu-
lations are presented in Figure 5.14 (standard errors are in parentheses). Note that
unlike in Section 5.2 the reduced smoothing yielded worse results than the original
update.

The standard error in the solutions of both Cross Entropy methods is far more
significant than that of the MRAS algorithms. This is due to 2-3 comparatively
bad solutions (values in [800, 930]) in both runs. However, comparing the “good”
solutions - in this case all solutions with values smaller than 750 - one can see that
the values of the policies found by both MRAS algorithms are more scattered than
those found by the Cross-Entropy methods (Figures 5.15, 5.16). Hence the CE
apparently yields better policies, but on the other hand produces more outliers.

Example 2

Similar results are obtained in the second problem instance of the (s,S)- Inventory
problem with h = 15, c = 20 , p = 50, K = 1000 and E[D] = 400. The optimal
strategy in this case is (s∗, S∗) = (404.24, 635.18) with G∗ = 17527.65. Again,
we compare the four algorithm instances of the first example and change only the
parameter τ to τ = 0.001 to account for the greater function values. The results
are displayed in Figures 5.17 and 5.18. Note that again the Cross-Entropy methods
produce more solutions very close to the optimum than the MRAS and that in this

Figure 5.13: Quality of Solution Value Estimate in (s,S)- Inventory Problem (Ex-
ample 1)
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Figure 5.14: Results (s,S)-Inventory Problem Example 1

Mean (error) Minimum No. < 750
MRAS 743.38 (4.38) 740.961 97

CE 746.03 (19.72) 740.953 93
MRAS (mod. smoothing) 745.2 (8.44) 740.96 94

CE (mod. observation size) 747.1 (22.73) 740.964 92
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Figure 5.15: Inventory Example 1 - Comparison of good solutions
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Figure 5.16: Inventory Example 1 - Solutions (Optimum (s∗, S∗) = (340.95, 540.95))
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case we do not even observe a greater variance in the CE solution values.

Figure 5.17: Results (s,S)-Inventory Problem Example 2

Mean (error) Minimum
MRAS 17615.81 (107.15) 17528.00

CE 17615.62 (126.21) 17527.82
MRAS (mod. smoothing) 17666.30 (123.83) 17530.27

CE (mod. observation size) 17589.00 (99.33) 17527.97

Again we are interested in the quality of the value function estimates. In Figure
5.19 we plot the ratio of each solution’s value function estimate and its correct value
for the different algorithms and obtain similar results as in the first example: The
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Figure 5.18: Inventory Example 2 - Comparison of solutions
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Cross-Entropy method without increasing sample size significantly underestimates
the performance of the found policies (the estimate being between 92% and 97%
of the correct value), whereas both MRAS and the CE with increasing observation
size yield better estimates (96% - 99%) but still systematically underrate the correct
values.

Figure 5.19: Inventory Example 2 - Value Function Estimates
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A different picture is obtained when considering the threshold respectively sam-
ple quantile of the last iteration as estimate for the solution value. This approach
is motivated by the underestimation observed before and the fact that the quantile
value is of course consistently greater than that of the best sample. We see from Fig-
ure 5.20 that this yields indeed better estimates. Unlike in the CE algorithms where
the quantile is still always smaller than the correct solution value (98% - 100% for
increasing observation size), the ratio of threshold and correct value in the MRAS
algorithm is sometimes even greater than 1. This hints at a different behaviour of
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Figure 5.20: Inventory Example 2 - Threshold as Value Estimate
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quantiles (in CE) and thresholds (in MRAS).
To further study this behaviour, we ran again 100 simulations for both the Cross
Entropy method with increasing observation size M0 = 50, Mk = d1.1Mk−1e and
the MRAS with allowed total number of function evaluations c = 5 000 000. The
average results are displayed in Figures 5.21 and 5.22. Note that we could only
include 99 runs in the evaluation of the MRAS since one simulation run ended with
NaN (Not a Number) as function value and solution, evidence of a numerical over-
or underflow in some denominator.

Figure 5.21: Inventory Example 2 - Long run behaviour Cross Entropy
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Figure 5.22: Inventory Example 2 - Long run behaviour MRAS
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Figure 5.23: Inventory Example 2 - Long run behaviour CE with more smoothing
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One can see that indeed the sample quantile level of the CE decreases faster
than the sequence of thresholds in the MRAS. With increasing exactness of the
estimates, the quantile levels (and best sample values) are corrected and approach
the optimum from below. That these observations are not due to the different
smoothing factor v shows a simulation run of the CE with v = 0.5 as in MRAS
(Figure 5.23). Nevertheless, as expected, the smoothing factor does reduce the
misjudgment in the first couple of iterations (less than 0.5 ·106 function evaluations),
but does not substantially influence the long time behaviour.

5.4 Replacement

Consider a randomly degrading system, e.g. a machine with several components
that may fail. In each period, one can either continue to run the system at a cost
depending on the grade of its wearout or repair it to reduce abrasion to zero. The
aim is to find a policy that minimizes the expected discounted costs for an infinite
horizon. This can be modeled as a MDP with

• S countable state space, 0 ∈ S, i ∈ S the grade of wearout, i = 0 corresponding
to a new system.

• A = {0, 1}, a =
{

1 =̂ replace
0 =̂ continue

, D(i) = A.

• p(i, a, j) =
{
p0j , a = 1
pij , a = 0

, where (pij) is a stochastic transition matrix.

• r(i, a) =
{
r1(i) , a = 1
r0(i) , a = 0

. We will consider reward functions of the form

r1(i) = −K−c(0), r0(i) = −c(i) for some fix cost K and some state-dependent
cost c.

• β > 0 the discount factor, V0 ≡ 0.

One can show that under certain assumptions the optimal stationary policy is
of the form (0, . . . , 0, 1, . . . , 1). This is for example the case when pij ∼ b(|S| − 1, pi)
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with 0 < p0 ≤ · · · ≤ p|S|−1 < 1 and the costs c(i) are isotone in i. (see exer-
cises [Rie04]).

An obvious choice for the sampling distribution in this case are independent
Bernoulli distributions Bin(1, θ) in each component. As these distributions belong
to a NEF, the updates are as in Examples 2.1 and 3.1. We start with θ0 = 1

2 in all
components.

We consider 20 components (i.e. |S| = 21), K = 13, c(i) = i, β = 0.9 and
pij ∼ b(20, pi) with p0 = 0.15, p1 = · · · = p5 = 0.2, p6 = · · · = p11 = 0.3, p12 = · · · =
p15 = 0.5 and p16 = · · · = p20 = 0.8. Then the optimal stationary policy and its
value are given by

π∗(i) =
{

0 i ≤ 9
1 i ≥ 10

,

Vπ∗ = −(39.345, 41.589, 42.589, 43.589, 44.589, 45.589, 49.2821,
50.2821, 51.2821, 52.2821, 52.3498, . . . , 52.3498).

We simulate every policy for 100 periods, starting in state i0 = 0 to obtain an esti-
mate for the total discounted reward R∞π (0).

For the Cross-Entropy algorithm we use again N = 100, ρ = 0.1 and v = 0.7.
The parameters in MRAS are N0 = 100, ρ0 = 0.1, v = 0.5, ε = 0.01, α = 1.04,
τ = 0.1, Nmin = 10 and λ = 0.01. The observation size for both algorithms is
M0 = 100, Mk = d1.1Mk−1e.

As the behaviour of both algorithms varied in test runs from simulation run to
simulation run, it was quite difficult to decide on an upper bound of allowed function
evaluations to assess correctly the quality of the algorithms. Hence, we decided to
introduce a stopping criterion based on the convergence to a degenerate distribution
in the following sense: We declared the distribution Bin(1, θ) in each component as
“converged” if θ < 0.1 or θ > 0.9 (test runs indicated that once having reached these
values, the parameter θ only converged closer to 0 respectively 1). The algorithm
was stopped if in iteration k

C :=
∑
i∈S

1{θk(i)∈(0.1,0.9)}min {θk(i)− 0.1, 0.9− θk(i)} ≤ 0.05,

i.e. if basically all parameters θ(i) had reached one of the thresholds.
This worked quite well for the Cross-Entropy algorithm where most of the 50 runs
converged in about 30 to 50 iterations (see Figure 5.24). Two out of those 50
runs had to be aborted as even after 84 iterations they were far from convergence
(C ≈ 0.385).

Unfortunately, even though by Example 4.7 E[X] = θ → x∗ ∈ {0, 1} componen-
twise, we could not observe such a convergence during a reasonable time intervall
(≈ 12 hours of real runtime). To obtain any utilizable results, we decided to stop
the algorithm after 65 iterations. Over 49 simulation runs, this corresponded to a
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Figure 5.24: Replacement Example: Convergence behaviour Cross Entropy
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mean 43.33 23 525 400
error 12.97 75 567 223

median 41.50 5 957 600
IQR 17.00 9 956 300

mean number of 136 955 333 function evaluations (standard error 6 521 046), where
each run took 2-3 hours. In comparison: most of the simulations runs of the Cross-
Entropy algorithm that converged in 30-40 iterations took 20 minutes. In Figure

Figure 5.25: Replacement Example: Convergence behaviour MRAS

 2

 2.5

 3

 3.5

 4

 4.5

 0  2e+07  4e+07  6e+07  8e+07  1e+08  1.2e+08  1.4e+08

Av
er

ag
e 

va
lu

e 
of

 C
 p

er
 it

er
at

io
n

Average number of function evaluations per iteration

MRAS

5.25 we plotted for each iteration the average value of C against the average number
of function evaluations and one can observe that indeed the convergence of C → 0
is very slow.

In addition, the typical evolution of a simulation run of both Cross-Entropy
and MRAS (represented by the best sample πk in each iteration k, i.e. the current
solution) is displayed in figures 5.27 and 5.26. Both runs obtain very good solutions:
VπCE

35
(0) = −39.3498 and VπMRAS

65
(0) = −39.3499. One can see that the CE converges

in about 10 iterations in the first 13 components and has reached after 32 iterations
a fix solution. Quite the contrary is observable for the MRAS: after more than 60
iterations, not even the boundary state (optimal is i = 10) is fix and the last 7
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components do not show any convergence at all. This makes the solution extremely
volatile. Had we stopped this run of MRAS after 64 iterations for example, the
performance would have been VπMRAS

64
(0) = −39.3645.

To compare the performance of CE and MRAS in this example, we calculated
the correct value V ∗π (0) of each solution π∗ through a linear program (cf. [Rie04])
where in the case of CE π∗ was taken as the solution after convergence (and hence
not after a fixed number of iterations or function evaluations). For the MRAS, we
evaluated separately the solutions obtained after 44 iterations (corresponding to the
mean number of iterations of the Cross-Entropy algorithm, see Figure 5.24) and after
65 iterations. Note that the mean number of function evaluations of the MRAS after

0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 0 0 0

1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 0 1 0

2 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 1 0 0
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14 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 0 0
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Figure 5.26: Typical solution evolution MRAS
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23 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1

24 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 1

25 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1

26 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 1

27 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 1

28 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1

29 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1

30 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 1

31 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 1

32 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1

33 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1

34 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1

35 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1

Figure 5.27: Typical solution evolution CE
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Figure 5.28: Comparison of Solutions

CE with increasing observation size
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44 iterations was 12 575 622 (standard error 503 609). The results are displayed in
Figure 5.28. One can see that the solutions of the MRAS indeed ameliorate between
the 44th and the 65th iteration, hence there is some (slow) convergence. In addition,
comparing the CE and the MRAS after 44 iterations one observes similar results
as in the Inventory Example 1 (cf. Figure 5.15), namely that the Cross-Entropy
algorithm produces more outliers on the one hand but also more very good solutions
on the other hand.



Chapter 6

Conclusions

As we have seen, the Cross-Entropy method and the Model Reference Adaptive
Search are conceptually very similar algorithms. Yet they differ considerably in the
amount of proven theoretical statements and practical properties.

Due to several innate characteristics of the MRAS - the specific sequence of refer-
ence distributions, the parameter adaption, the inclusion of the initial density, etc. -
one obtains that under certain conditions Ebθk [X]→ x∗ as k →∞ under the sample

density f(· ; θ̂k). In special cases, e.g. if f is the density of a Normal distribution,
additionally even Varbθk [X] → 0. In order to verify the assumptions (which also
limit the valid space for some parameters), a complete knowledge of the underlying
system is required.
Similar results for the Cross-Entropy method do not exist. Even in a deterministic
and discrete setting one cannot show that the sampling distribution converges to
an optimal solution. And due to its relative simplicity compared to the MRAS, we
cannot employ the methods used there to obtain related statements.

In contrast to what this may suggest, the Model Reference Adaptive Search
yields in many cases far from optimal results in practical applications. This does
not conflict with the theoretical results, as they rely basically on the fact that the
complete space X can be searched if necessary (cf. remarks at the end of Chapter
4). Due to the limited resources of computational time and memory, this cannot be
reproduced in practice.
Especially in high dimensional continuous settings (as in Section 5.2), the compli-
cated weights in the update formula that contribute considerably to the theoretical
findings cause numerous numerical problems and disturb rather than support the
convergence to an optimal solution. For low dimensions or discrete problems, we
observe in some cases (Section 5.3 Example 1, Section 5.4) less non-optimal solutions
in the MRAS, but at the same time the Cross-Entropy method is apparently better
in finding solutions very close to the optimum.
At the same time, the calculation of the weight factors (particularly the computa-
tion of the densities) and the parameter adaptation in Step 3 necessitate a significant
additional amount of operations per iteration and per sample in comparison to the
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CE.
Concerning the algorithm parameters, the Cross-Entropy method is apparently quite
robust (compare e.g. Figures 5.21, 5.23) and consistently successfull with the same
parameter set. Only the modified smoothing of the variance (2.10) is not always
advisable.
The Model Reference Adaptive Search is much more susceptible to parameter choice
and demands moreover good knowlegde not only of the theoretical properties (to de-
termine e.g. the observation sizes in each iteration) but also of the range of function
values in X and the behaviour of the method in a given example to find functioning
parameters τ and v, etc.
Additionally, the implementation of the MRAS is much more difficult, as numer-
ous numerical problems have to be dealt with, often leading to further problems in
the parameter choice. Moreover, to obtain a stable behaviour one has to introduce
for example bounds for the parameter ρ, based on observation and often (ideally)
adapted to one specific simulation run. There were no such problems with the Cross-
Entropy method.
Hence, in practice the MRAS is not better than the CE (often even worse) but more
complicated in the implementation. Furthermore, it demands more computational
resources and more care in the adjustment to concrete problems.

We have also observed that the Cross-Entropy method seems to be well-qualified
to solve continous stochastic optimization problems, even with large solution space
dimensions and independent of the prior knowledge about the system to be opti-
mized. However, this applies rather to its ability to find good solutions than to the
evaluation of their correct performance.
This is not restricted to the CE: In both algorithms the calculated function values
are too optimistic, that is too small in minimization and too large in maximization
problems. As this issue is less pronounced in the Model Reference Adaptive Search,
we suggest a similar use of increasing observation sizes for the Cross-Entropy, even
though the exponential growth necessary in the MRAS to fulfill the assumptions
may be exaggerated.
Even so, using CE or MRAS for optimization one should be aware of this problem
and, if need be, reevaluate the solution to obtain a more precise estimate of their
value. Using the thresholds respectively sample quantiles or other estimators may
also be worth considering.
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