

ulm university universität **UUU**

Adaptive Space-Time Methods in Reduced Basis Methods

Time-Periodic Problems

Kristina Steih

Joint work with:

Karsten Urban, Sebastian Kestler

Institute for Numerical Mathematics UIm University

August 20th, 2013 | RB Summer School 2013, Kopp

Introduction

Space-Time Adaptive Truth Computation

Adaptive RB Methods

Introduction

So what's the problem?

Parametrized parabolic PDE with periodic BC in time:

$$u_t + \mathcal{A}(t;\mu)u = g(t;\mu) \quad ext{ on } \Omega \subset \mathbb{R}^d,$$
 $u(0) = u(T) \quad ext{ in } H.$

Here:

- $\blacktriangleright \quad \text{Parameter} \ \mu \in \mathcal{D} \subset \mathbb{R}^p$
- $V \hookrightarrow H \hookrightarrow V'$ a Gelfand triple
- ▶ $\mathcal{A}(t;\mu): V \to V'$ uniformly continuous and coercive
- Dirichlet/Neumann BCs in space

Goal: Construction of a Reduced Basis

- good error estimators
- fast online evaluations
- feasible offline training phase

Doing it in space-time!

Well-posedness cf. [Schwab/Stevenson 2009]

Let $\mathcal{A}(t;\mu)$ be uniformly bounded and coercive. Then the problem

$$\mathsf{Find}\; u(\mu) \in \mathcal{X}^{\mathrm{per}} : \underbrace{\int_{0}^{T} \langle u_{t}, v \rangle dt + \int_{0}^{T} a(t, u, v; \mu) dt}_{=:b(u, v; \mu)} = \underbrace{\int_{0}^{T} g(t, v; \mu) dt}_{::=f(v; \mu)} \quad \forall \, v \in \mathcal{Y}.$$

is well-posed.

Bochner spaces: $\begin{aligned} \mathcal{Y} &:= L_2(0, T; V), \\ \mathcal{X}^{\text{per}} &:= L_2(0, T; V) \cap H^1_{\text{per}}(0, T; V') \\ &= \{ u \in L_2(0, T; V) : u_t \in L_2(0, T; V'), \\ &u(0) = u(T) \text{ in } H \} \end{aligned}$

C. Schwab, R. Stevenson. Space-time adaptive wavelet methods for parabolic evolution problems. Math. Comp., 2009.

Doing it in space-time!

Well-posedness cf. [Schwab/Stevenson 2009]

Let $\mathcal{A}(t;\mu)$ be uniformly bounded and coercive. Then the problem

$$\mathsf{Find} \ u(\mu) \in \mathcal{X}^{\mathrm{per}} : \underbrace{\int_{0}^{T} \langle u_t, v \rangle dt + \int_{0}^{T} a(t, u, v; \mu) dt}_{=:b(u, v; \mu)} = \underbrace{\int_{0}^{T} g(t, v; \mu) dt}_{:=f(v; \mu)} \quad \forall v \in \mathcal{Y}.$$

is well-posed.

Bochner spaces:

$$\begin{split} \mathcal{Y} &:= L_2(0,\,T;\,V),\\ \mathcal{X}^{\text{per}} &:= L_2(0,\,T;\,V) \cap H^1_{\text{per}}(0,\,T;\,V')\\ &= \left\{ u \in L_2(0,\,T;\,V): \ u_t \in L_2(0,\,T;\,V'), \right.\\ & u(0) &= u(T) \text{ in } H \rbrace \end{split}$$

What do we gain?

- Periodic basis functions
- X Additional dimension

Alternative:

 Time-stepping (fixed-point iterations)

C. Schwab, R. Stevenson. Space-time adaptive wavelet methods for parabolic evolution problems. Math. Comp., 2009.

What do we gain for RB?

Basis construction

- Space-time basis functions
- Space-time offline quantities
 - Full space-time information

VS.

- Time-dependent operators
- X Large offline systems
- X High memory requirement

- Spatial basis functions (POD-Greedy)
- Spatial offline quantities

What do we gain for RB?

Basis construction

- Space-time basis functions
- Space-time offline quantities
 - Full space-time information

VS.

- Time-dependent operators
- X Large offline systems
- X High memory requirement

Online computations:

• 1 reduced system ($N_{\rm ST} \times N_{\rm ST}$) vs.

Fast online systems

- Spatial basis functions (POD-Greedy)
- Spatial offline quantities

► Fixed-point iterations (in each timestep N_{FP} × N_{FP})

Space-Time Error Bounds

Rigorous and Effective Error Bounds

$$\begin{aligned} \|e_N(\mu)\|_{\mathcal{Y}} &\leq \frac{\|r_N(\cdot;\mu)\|_{\mathcal{Y}'}}{\alpha(\mu)} =: \Delta_N^{\mathrm{ST},\mathcal{Y}}(\mu), \\ \|e_N(\mu)\|_{\mathcal{X}} &\leq \frac{\|r_N(\cdot;\mu)\|_{\mathcal{Y}'}}{\beta(\mu)} =: \Delta_N^{\mathrm{ST},\mathcal{X}}(\mu), \end{aligned}$$

where

▶
$$r_N(\mu) : \mathcal{Y} \to \mathbb{R}$$
 is the space-time residual,

K. Steih, K. Urban. Space-Time RBM for Time-Periodic Partial Differential Equations. Proc. MATHMOD, 2012.

Space-Time Error Bounds

Rigorous and Effective Error Bounds

$$\begin{aligned} \|e_N(\mu)\|_{\mathcal{Y}} &\leq \frac{\|r_N(\cdot;\mu)\|_{\mathcal{Y}'}}{\alpha(\mu)} =: \Delta_N^{\mathrm{ST},\mathcal{Y}}(\mu), \\ \|e_N(\mu)\|_{\mathcal{X}} &\leq \frac{\|r_N(\cdot;\mu)\|_{\mathcal{Y}'}}{\beta(\mu)} =: \Delta_N^{\mathrm{ST},\mathcal{X}}(\mu), \end{aligned}$$

where

•
$$r_N(\mu) : \mathcal{Y} \to \mathbb{R}$$
 is the space-time residual,

Advantages:

- Bounds in the "correct" norm
- Space-time β(μ) reflects true system behaviour
- Sharp bounds, independent of timestep size

K. Steih, K. Urban. Space-Time RBM for Time-Periodic Partial Differential Equations. Proc. MATHMOD, 2012.

K. Urban, A.T. Patera An improved error bound for RB approx. of linear parabolic systems. Math. Comp., 2012 (accepted).

So what about the extra dimension?

Initial Value Problems:

Choose a (tensorized) space-time basis with

- piecewise linear trial functions in time
- piecewise constant test functions in time

M. Yano, A.T. Patera, K. Urban A Space-Time Certified RBM for Burgers' Equation. M3AS, 2012 (submitted).

M. Yano. A Space-Time Petrov-Galerkin Certified RBM - Appl. to the Boussinesq Eq.. SIAM J. Sc. Comp., 2012 (submitted).

Introduction

So what about the extra dimension?

Initial Value Problems:

Choose a (tensorized) space-time basis with

- piecewise linear trial functions in time
- piecewise constant test functions in time

Periodic Problems:

- Crank-Nicolson scheme has to be combined with fixed-point iterations.
- Calculations do not decouple.

M. Yano, A.T. Patera, K. Urban A Space-Time Certified RBM for Burgers' Equation. M3AS, 2012 (submitted).

M. Yano. A Space-Time Petrov-Galerkin Certified RBM – Appl. to the Boussinesq Eq.. SIAM J. Sc. Comp., 2012 (submitted).

Introduction

Space-Time Adaptive Truth Computation

Adaptive RB Methods

Find
$$u(\mu) \in \mathcal{X}$$
: $b(u, v; \mu) = f(v; \mu) \quad \forall v \in \mathcal{Y}$
 $\mathcal{Y} = L_2(0, T) \otimes V$
 $\mathcal{X}^{\text{per}} = L_2(0, T) \otimes V \cap H^1_{\text{per}}(0, T) \otimes V'$

A) Tensorized Riesz Wavelet Bases

 $\begin{aligned} \text{Collection } \Upsilon &:= \{ \gamma_i : i \in \mathbb{N} \} \subset \mathcal{H} \text{ (separable Hilbert): } \quad \text{For } v = \sum_{i=1}^{\infty} v_i \gamma_i \\ \exists c, C > 0 : \quad c \| \mathbf{v} \|_{\ell_2(\mathbb{N})}^2 \leq \| v \|_{\mathcal{H}}^2 \leq C \| \mathbf{v} \|_{\ell_2(\mathbb{N})}^2 \qquad \forall \, \mathbf{v} = (v_i)_{i \in \mathbb{N}} \in \ell_2(\mathbb{N}). \end{aligned}$

 Collections for ranges of Sobolev spaces (after re-normalization) in 1D

Find
$$u(\mu) \in \mathcal{X}$$
: $b(u, v; \mu) = f(v; \mu) \quad \forall v \in \mathcal{Y}$
 $\mathcal{Y} = L_2(0, T) \otimes V$
 $\mathcal{X}^{\text{per}} = L_2(0, T) \otimes V \cap H^1_{\text{per}}(0, T) \otimes V'$

A) Tensorized Riesz Wavelet Bases

 $\begin{aligned} \text{Collection } \Upsilon &:= \{ \gamma_i : i \in \mathbb{N} \} \subset \mathcal{H} \text{ (separable Hilbert): } \quad \text{For } v = \sum_{i=1}^{\infty} v_i \gamma_i \\ \exists c, C > 0 : \quad c \| \mathbf{v} \|_{\ell_2(\mathbb{N})}^2 \leq \| v \|_{\mathcal{H}}^2 \leq C \| \mathbf{v} \|_{\ell_2(\mathbb{N})}^2 \qquad \forall \mathbf{v} = (v_i)_{i \in \mathbb{N}} \in \ell_2(\mathbb{N}). \end{aligned}$

- Collections for ranges of Sobolev spaces (after re-normalization) in 1D
- Tensor product bases in higher dimensions:

$$\begin{split} \Psi^{\mathcal{X}} &= \mathbf{D}^{\mathcal{X}} \left(\Theta^{\mathrm{per}} \otimes \boldsymbol{\Sigma} \right) = \{ \psi^{\mathcal{X}}_{\boldsymbol{\lambda}} : \boldsymbol{\lambda} \in \boldsymbol{\mathcal{J}}^{\mathcal{X}} \} \\ \Psi^{\mathcal{Y}} &= \mathbf{D}^{\mathcal{Y}} \left(\Theta \quad \otimes \boldsymbol{\Sigma} \right) = \{ \psi^{\mathcal{Y}}_{\boldsymbol{\lambda}} : \boldsymbol{\lambda} \in \boldsymbol{\mathcal{J}}^{\mathcal{Y}} \} \end{split}$$

B) Equivalent Bi-infinite Matrix-Vector Problem

$$\begin{array}{lll} \mbox{Find } \mathbf{u} \in \ell_2(\boldsymbol{\mathcal{J}}^{\boldsymbol{\mathcal{X}}}): & \mbox{B} \mathbf{u} = & \mbox{f}, & \mbox{f} \in \ell_2(\boldsymbol{\mathcal{J}}^{\boldsymbol{\mathcal{Y}}}). \\ \\ \mbox{with } & \mbox{B} = \left[b(\boldsymbol{\psi}_{\boldsymbol{\mu}}^{\boldsymbol{\mathcal{X}}}, \boldsymbol{\psi}_{\boldsymbol{\lambda}}^{\boldsymbol{\mathcal{Y}}}) \right]_{\boldsymbol{\lambda} \in \boldsymbol{\mathcal{J}}^{\boldsymbol{\mathcal{X}}}, \boldsymbol{\mu} \in \boldsymbol{\mathcal{J}}^{\boldsymbol{\mathcal{Y}}}}, & \mbox{f} = \left[\langle f, \boldsymbol{\psi}_{\boldsymbol{\lambda}}^{\boldsymbol{\mathcal{Y}}} \rangle \right]_{\boldsymbol{\lambda} \in \boldsymbol{\mathcal{J}}^{\boldsymbol{\mathcal{Y}}}}. \end{array}$$

C)

A. Cohen, W. Dahmen, R. DeVore. Adaptive wavelet methods. II. Beyond the elliptic case. Found. Comput. Math., 2002. C. Schwab, R. Stevenson. Space-time adaptive wavelet methods for parabolic evolution problems. Math. Comp., 2009.

B) Equivalent Bi-infinite Matrix-Vector Problem – Normal Equations

Find
$$\mathbf{u} \in \ell_2(\boldsymbol{\mathcal{J}}^{\mathcal{X}})$$
: $\mathbf{B}^\top \mathbf{B} \mathbf{u} = \mathbf{B}^\top \mathbf{f}, \qquad \mathbf{f} \in \ell_2(\boldsymbol{\mathcal{J}}^{\mathcal{Y}}).$

with
$$\mathbf{B} = \left[b(\boldsymbol{\psi}_{\boldsymbol{\mu}}^{\mathcal{X}}, \boldsymbol{\psi}_{\boldsymbol{\lambda}}^{\mathcal{Y}}) \right]_{\boldsymbol{\lambda} \in \mathcal{J}^{\mathcal{X}}, \boldsymbol{\mu} \in \mathcal{J}^{\mathcal{Y}}}, \quad \mathbf{f} = \left[\langle f, \boldsymbol{\psi}_{\boldsymbol{\lambda}}^{\mathcal{Y}} \rangle \right]_{\boldsymbol{\lambda} \in \mathcal{J}^{\mathcal{Y}}}.$$

▶ Normal Equations: Galerkin problem, $\mathbf{B}^{\top}\mathbf{B}$ symmetric positive definite

A. Cohen, W. Dahmen, R. DeVore. Adaptive wavelet methods. II. Beyond the elliptic case. Found. Comput. Math., 2002.
 C. Schwab, R. Stevenson. Space-time adaptive wavelet methods for parabolic evolution problems. Math. Comp., 2009.

B) Equivalent Bi-infinite Matrix-Vector Problem – Normal Equations

$$\mathsf{Find} \ \mathbf{u} \in \ell_2(\boldsymbol{\mathcal{J}}^{\mathcal{X}}): \qquad \mathbf{B}^\top \mathbf{B} \mathbf{u} = \mathbf{B}^\top \mathbf{f}, \qquad \mathbf{f} \in \ell_2(\boldsymbol{\mathcal{J}}^{\mathcal{Y}}).$$

with
$$\mathbf{B} = \left[b(\boldsymbol{\psi}_{\boldsymbol{\mu}}^{\mathcal{X}}, \boldsymbol{\psi}_{\boldsymbol{\lambda}}^{\mathcal{Y}}) \right]_{\boldsymbol{\lambda} \in \mathcal{J}^{\mathcal{X}}, \boldsymbol{\mu} \in \mathcal{J}^{\mathcal{Y}}}, \quad \mathbf{f} = \left[\langle f, \boldsymbol{\psi}_{\boldsymbol{\lambda}}^{\mathcal{Y}} \rangle \right]_{\boldsymbol{\lambda} \in \mathcal{J}^{\mathcal{Y}}}.$$

- ▶ Normal Equations: Galerkin problem, $\mathbf{B}^{\top}\mathbf{B}$ symmetric positive definite
- C) Adaptive Wavelet Galerkin Methods

A. Cohen, W. Dahmen, R. DeVore. Adaptive wavelet methods. II. Beyond the elliptic case. Found. Comput. Math., 2002.
 C. Schwab, R. Stevenson. Space-time adaptive wavelet methods for parabolic evolution problems. Math. Comp., 2009.

B) Equivalent Bi-infinite Matrix-Vector Problem – Normal Equations

$$\mathsf{Find} \ \mathbf{u} \in \ell_2(\boldsymbol{\mathcal{J}}^{\mathcal{X}}): \qquad \mathbf{B}^\top \mathbf{B} \mathbf{u} = \mathbf{B}^\top \mathbf{f}, \qquad \mathbf{f} \in \ell_2(\boldsymbol{\mathcal{J}}^{\mathcal{Y}}).$$

with
$$\mathbf{B} = \left[b(\boldsymbol{\psi}_{\boldsymbol{\mu}}^{\mathcal{X}}, \boldsymbol{\psi}_{\boldsymbol{\lambda}}^{\mathcal{Y}}) \right]_{\boldsymbol{\lambda} \in \mathcal{J}^{\mathcal{X}}, \boldsymbol{\mu} \in \mathcal{J}^{\mathcal{Y}}}, \quad \mathbf{f} = \left[\langle f, \boldsymbol{\psi}_{\boldsymbol{\lambda}}^{\mathcal{Y}} \rangle \right]_{\boldsymbol{\lambda} \in \mathcal{J}^{\mathcal{Y}}}.$$

▶ Normal Equations: Galerkin problem, $\mathbf{B}^{\top}\mathbf{B}$ symmetric positive definite

C) Adaptive Wavelet Galerkin Methods

B) Equivalent Bi-infinite Matrix-Vector Problem – Normal Equations

$$\mathsf{Find} \ \mathbf{u} \in \ell_2(\boldsymbol{\mathcal{J}}^{\mathcal{X}}): \qquad \mathbf{B}^\top \mathbf{B} \mathbf{u} = \mathbf{B}^\top \mathbf{f}, \qquad \mathbf{f} \in \ell_2(\boldsymbol{\mathcal{J}}^{\mathcal{Y}}).$$

with
$$\mathbf{B} = \left[b(\boldsymbol{\psi}_{\boldsymbol{\mu}}^{\mathcal{X}}, \boldsymbol{\psi}_{\boldsymbol{\lambda}}^{\mathcal{Y}}) \right]_{\boldsymbol{\lambda} \in \mathcal{J}^{\mathcal{X}}, \boldsymbol{\mu} \in \mathcal{J}^{\mathcal{Y}}}, \quad \mathbf{f} = \left[\langle f, \boldsymbol{\psi}_{\boldsymbol{\lambda}}^{\mathcal{Y}} \rangle \right]_{\boldsymbol{\lambda} \in \mathcal{J}^{\mathcal{Y}}}.$$

▶ Normal Equations: Galerkin problem, $\mathbf{B}^{\top}\mathbf{B}$ symmetric positive definite

C) Adaptive Wavelet Galerkin Methods

B) Equivalent Bi-infinite Matrix-Vector Problem – Normal Equations

$$\mathsf{Find}\; \mathbf{u} \in \ell_2(\boldsymbol{\mathcal{J}}^{\mathcal{X}}): \qquad \mathbf{B}^\top \mathbf{B} \mathbf{u} = \mathbf{B}^\top \mathbf{f}, \qquad \mathbf{f} \in \ell_2(\boldsymbol{\mathcal{J}}^{\mathcal{Y}}).$$

with
$$\mathbf{B} = \left[b(\boldsymbol{\psi}_{\boldsymbol{\mu}}^{\mathcal{X}}, \boldsymbol{\psi}_{\boldsymbol{\lambda}}^{\mathcal{Y}}) \right]_{\boldsymbol{\lambda} \in \mathcal{J}^{\mathcal{X}}, \boldsymbol{\mu} \in \mathcal{J}^{\mathcal{Y}}}, \quad \mathbf{f} = \left[\langle f, \boldsymbol{\psi}_{\boldsymbol{\lambda}}^{\mathcal{Y}} \rangle \right]_{\boldsymbol{\lambda} \in \mathcal{J}^{\mathcal{Y}}}.$$

► Normal Equations: Galerkin problem, B^TB symmetric positive definite

C) Adaptive Wavelet Galerkin Methods

B) Equivalent Bi-infinite Matrix-Vector Problem – Normal Equations

$$\mathsf{Find} \ \mathbf{u} \in \ell_2(\boldsymbol{\mathcal{J}}^{\mathcal{X}}): \qquad \mathbf{B}^\top \mathbf{B} \mathbf{u} = \mathbf{B}^\top \mathbf{f}, \qquad \mathbf{f} \in \ell_2(\boldsymbol{\mathcal{J}}^{\mathcal{Y}}).$$

with
$$\mathbf{B} = \left[b(\boldsymbol{\psi}_{\boldsymbol{\mu}}^{\mathcal{X}}, \boldsymbol{\psi}_{\boldsymbol{\lambda}}^{\mathcal{Y}}) \right]_{\boldsymbol{\lambda} \in \mathcal{J}^{\mathcal{X}}, \boldsymbol{\mu} \in \mathcal{J}^{\mathcal{Y}}}, \quad \mathbf{f} = \left[\langle f, \boldsymbol{\psi}_{\boldsymbol{\lambda}}^{\mathcal{Y}} \rangle \right]_{\boldsymbol{\lambda} \in \mathcal{J}^{\mathcal{Y}}}.$$

► Normal Equations: Galerkin problem, B^TB symmetric positive definite

C) Adaptive Wavelet Galerkin Methods

B) Equivalent Bi-infinite Matrix-Vector Problem – Normal Equations

$$\mathsf{Find}\; \mathbf{u} \in \ell_2(\boldsymbol{\mathcal{J}}^{\mathcal{X}}): \qquad \mathbf{B}^\top \mathbf{B} \mathbf{u} = \mathbf{B}^\top \mathbf{f}, \qquad \mathbf{f} \in \ell_2(\boldsymbol{\mathcal{J}}^{\mathcal{Y}}).$$

with
$$\mathbf{B} = \left[b(\boldsymbol{\psi}_{\boldsymbol{\mu}}^{\mathcal{X}}, \boldsymbol{\psi}_{\boldsymbol{\lambda}}^{\mathcal{Y}}) \right]_{\boldsymbol{\lambda} \in \mathcal{J}^{\mathcal{X}}, \boldsymbol{\mu} \in \mathcal{J}^{\mathcal{Y}}}, \quad \mathbf{f} = \left[\langle f, \boldsymbol{\psi}_{\boldsymbol{\lambda}}^{\mathcal{Y}} \rangle \right]_{\boldsymbol{\lambda} \in \mathcal{J}^{\mathcal{Y}}}.$$

- ▶ Normal Equations: Galerkin problem, $\mathbf{B}^{\top}\mathbf{B}$ symmetric positive definite
- C) Multitree-based Least-Squares Adaptive Wavelet Galerkin Methods

S. Kestler, K. Steih, K. Urban. An efficient space-time AWGM for time-periodic PDEs. 2013 (submitted).

MT-LS-AWGM

$$\begin{cases} u_t - u_{xx} + u_x + u = f(t, x) & \text{on } \Omega = (0, 1), \\ u(t, 0) = u(t, 1) & \text{for all } t \in [0, T] \\ u(0, x) = u(T, x) = 0 & \text{on } \overline{\Omega}, \end{cases}$$

(a) Exact Solution: $u(t, x) = e^{-1000 \left(x - \left(\frac{1}{2} + \frac{1}{4}\sin(2\pi t)\right)\right)^2}$

(b) Support centers

(c) Residual behaviour

 10^{5}

,

Introduction

Space-Time Adaptive Truth Computation

Adaptive RB Methods

$$\label{eq:Find} \operatorname{Find}\, u(\mu) \in \mathcal{X}: \qquad b(u,v;\mu) = f(v;\mu) \qquad \forall\, v \in \mathcal{Y}$$

Usual RB Point of View:

Assumption: Truth spaces $\mathcal{X}^{\mathcal{N}}$, $\mathcal{Y}^{\mathcal{N}}$ are "good enough" for all $\mu \in \mathcal{D}$.

Riesz representor $\hat{r}_N(\mu)$ of residual $r_N(\cdot; \mu)$: $(\hat{r}_N(\mu), v)_{\mathcal{Y}} = r_N(v; \mu) \quad \forall v \in \mathcal{Y}^{\mathcal{N}}$

$$\begin{array}{ll} (\hat{f}^{q},v)_{\mathcal{Y}} = f^{q}(v) & \forall v \in \mathcal{Y}^{\mathcal{N}} \\ (\hat{b}^{q,n},v)_{\mathcal{Y}} = b^{q}(\xi_{n},v) & \forall v \in \mathcal{Y}^{\mathcal{N}} \\ \end{array} , \forall q, n \, \big]$$

$$\label{eq:Find} \operatorname{Find}\, u(\mu) \in \mathcal{X}: \qquad b(u,v;\mu) = f(v;\mu) \qquad \forall\, v \in \mathcal{Y}$$

Usual RB Point of View:

Assumption: Truth spaces $\mathcal{X}^{\mathcal{N}}$, $\mathcal{Y}^{\mathcal{N}}$ are "good enough" for all $\mu \in \mathcal{D}$.

Adaptive Point of View:

For each $\mu \in \mathcal{D}$, we can calculate $u_{\varepsilon}(\mu) \in \mathcal{X}^{\Lambda_{\varepsilon}^{\mathcal{X}}(\mu)}$ with

$$\|u(\mu) - u_{\varepsilon}(\mu)\|_{\mathcal{X}} \le \varepsilon$$

$$u(\mu) \in \mathcal{X} \quad \text{Function Space}$$

$$\downarrow Discretization$$

$$u_{\varepsilon}(\mu) \in \mathcal{X}^{\Lambda_{\varepsilon}(\mu)} \quad \text{Truth Approximation} \\ \downarrow \text{Reduction}$$

$$u^{N}(\mu) \in \mathcal{X}_{\mathcal{X}} \quad \text{BB Approximation}$$

Riesz representor $\hat{r}_N(\mu)$ of residual $r_N(\cdot; \mu)$: $(\hat{r}_N(\mu), v)_{\mathcal{Y}} = r_N(v; \mu) \quad \forall v \in \mathcal{Y}^{\mathcal{N}}$

$$\begin{array}{ll} (\hat{f}^{q}, v)_{\mathcal{Y}} = f^{q}(v) & \forall v \in \mathcal{Y}^{\mathcal{N}} \\ (\hat{b}^{q,n}, v)_{\mathcal{Y}} = b^{q}(\xi_{n}, v) & \forall v \in \mathcal{Y}^{\mathcal{N}} \\ \end{array}, \forall q, n \left] \end{array}$$

$$\label{eq:Find} \operatorname{Find}\, u(\mu) \in \mathcal{X}: \qquad b(u,v;\mu) = f(v;\mu) \qquad \forall\, v \in \mathcal{Y}$$

Usual RB Point of View:

Assumption: Truth spaces $\mathcal{X}^{\mathcal{N}}$, $\mathcal{Y}^{\mathcal{N}}$ are "good enough" for all $\mu \in \mathcal{D}$.

Adaptive Point of View:

For each $\mu \in \mathcal{D}$, we can calculate $u_{\varepsilon}(\mu) \in \mathcal{X}^{\Lambda_{\varepsilon}^{\mathcal{X}}(\mu)}$ with

$$\|u(\mu) - u_{\varepsilon}(\mu)\|_{\mathcal{X}} \le \varepsilon$$

Riesz representor $\hat{r}_N(\mu)$ of residual $r_N(\cdot; \mu)$: $(\hat{r}_N(\mu), v)_{\mathcal{Y}} = r_N(v; \mu) \quad \forall v \in \mathcal{Y}^{\mathcal{N}}$

$$\begin{array}{ll} (\hat{f}^{q}, v)_{\mathcal{Y}} = f^{q}(v) & \forall v \in \mathcal{Y}^{\mathcal{N}} \\ (\hat{b}^{q,n}, v)_{\mathcal{Y}} = b^{q}(\xi_{n}, v) & \forall v \in \mathcal{Y}^{\mathcal{N}} \\ \end{array}, \forall q, n \left] \end{array}$$

$$\label{eq:Find} {\rm Find}\; u(\mu) \in \mathcal{X}: \qquad b(u,v;\mu) = f(v;\mu) \qquad \forall \, v \in \mathcal{Y}$$

Usual RB Point of View:

Assumption: Truth spaces $\mathcal{X}^{\mathcal{N}}$, $\mathcal{Y}^{\mathcal{N}}$ are "good enough" for all $\mu \in \mathcal{D}$.

Adaptive Point of View:

For each $\mu \in \mathcal{D}$, we can calculate $u_{\varepsilon}(\mu) \in \mathcal{X}^{\Lambda_{\varepsilon}^{\mathcal{X}}(\mu)}$ with

$$\|u(\mu) - u_{\varepsilon}(\mu)\|_{\mathcal{X}} \leq \varepsilon$$

Riesz representor $\hat{r}_N(\mu)$ of residual $r_N(\cdot; \mu)$: $(\hat{r}_N(\mu), v)_{\mathcal{Y}} = r_N(v; \mu) \quad \forall v \in \mathcal{Y}$

$$\begin{array}{ll} (\hat{f}^{q},v)_{\mathcal{Y}} = f^{q}(v) & \forall v \in \mathcal{Y} \\ (\hat{b}^{q,n},v)_{\mathcal{Y}} = b^{q}(\xi_{n},v) & \forall v \in \mathcal{Y} \\ \end{array} , \forall q, n \left] \end{array}$$

$$\label{eq:Find} \operatorname{Find}\, u(\mu) \in \mathcal{X}: \qquad b(u,v;\mu) = f(v;\mu) \qquad \forall\, v \in \mathcal{Y}$$

Usual RB Point of View:

Assumption: Truth spaces $\mathcal{X}^{\mathcal{N}}$, $\mathcal{Y}^{\mathcal{N}}$ are "good enough" for all $\mu \in \mathcal{D}$.

Adaptive Point of View:

For each $\mu \in \mathcal{D}$, we can calculate $u_{\varepsilon}(\mu) \in \mathcal{X}^{\Lambda_{\varepsilon}^{\mathcal{X}}(\mu)}$ with

$$\|u(\mu) - u_{\varepsilon}(\mu)\|_{\mathcal{X}} \leq \varepsilon$$

 $\begin{array}{l} \text{Riesz representor } \hat{r}_{N}(\mu) \text{ of residual } r_{N}(\cdot;\mu): \\ (\hat{r}_{N}(\mu),v)_{\mathcal{Y}} = r_{N}(v;\mu) \quad \forall \, v \in \mathcal{Y}^{\mathbf{\Lambda}_{\varepsilon,r_{N}}^{\mathcal{Y}}} \end{array}$

$$\begin{split} (\hat{f}^{q}, v)_{\mathcal{Y}} &= f^{q}(v) \qquad \forall v \in \mathcal{Y}^{\Lambda_{\varepsilon, b^{q}}^{\mathcal{Y}}} \quad , \forall q \\ \hat{b}^{q, n}, v)_{\mathcal{Y}} &= b^{q}(\xi_{n}, v) \quad \forall v \in \mathcal{Y}^{\Lambda_{\varepsilon, b^{q}_{n}}^{\mathcal{Y}}} \quad , \forall q, n \, \big] \end{split}$$

,

Periodic Convection-Diffusion-Reaction Problem

$$\begin{cases} u_t - u_{xx} + \mu_1 u_x + \mu_2 u = \cos(2\pi t) & \text{on } \Omega = (0, 1), \\ u(t, 0) = u(t, 1) & \text{for all } t \in [0, T] \\ u(0, x) = u(T, x) = 0 & \text{on } \overline{\Omega}. \end{cases}$$

Coercive for parameter range $\mu \in [0, 30] \times [-9, 15]$.

Snapshot Accuracy

Greedy Convergence [Binev et.al.]

Suppose that the Kolmogorov n-width for some compact set \mathcal{F} fulfills $d_0(\mathcal{F}) \leq M$, $d_n(\mathcal{F}) \leq Mn^{-\alpha}$ for some $M, \alpha > 0$. For an approximation $\hat{F}_n := \operatorname{span}\{\hat{f}_0, \ldots, \hat{f}_{n-1}\}$ with $\|f_i - \hat{f}_i\| \leq \varepsilon$, the weak Greedy algorithm with parameter γ then has the convergence rate

$$\sup_{f \in \mathcal{F}} \operatorname{dist}(f, \widehat{F}_n) \le C \max\{Mn^{-\alpha}, \varepsilon\}, \qquad C = C(\alpha, \gamma).$$

P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, P. Wojtaszczyk. Convergence Rates for Greedy Algorithms in RBM. SIAM J. Math. Anal., 2010.

Snapshot Accuracy

Greedy Convergence

Suppose that the Kolmogorov n-width for some compact set \mathcal{F} fulfills $d_0(\mathcal{F}) \leq M$, $d_n(\mathcal{F}) \leq Mn^{-\alpha}$ for some $M, \alpha > 0$. For an approximation $\hat{F}_n := \operatorname{span}\{\hat{f}_0, \ldots, \hat{f}_{n-1}\}$ with $\|f_i - \hat{f}_i\| \leq \varepsilon$, the weak Greedy algorithm with parameter γ then has the convergence rate

$$\sup_{f \in \mathcal{F}} \operatorname{dist}(f, \widehat{F}_n) \le C \max\{Mn^{-\alpha}, \varepsilon\}, \qquad C = C(\alpha, \gamma)$$

Idea:

- Tighten snapshot accuracy "when necessary"
- Here: at repeated selection of same parameter μ
- Reduction factor: $\varepsilon_u^{\text{new}} = 0.1 \cdot \varepsilon_u$

P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, P. Wojtaszczyk. Convergence Rates for Greedy Algorithms in RBM. SIAM J. Math. Anal., 2010.

Snapshot Accuracy

Greedy Convergence

Suppose that the Kolmogorov n-width for some compact set \mathcal{F} fulfills $d_0(\mathcal{F}) \leq M$, $d_n(\mathcal{F}) \leq Mn^{-\alpha}$ for some $M, \alpha > 0$. Let $S_n := \{\mu_0, \ldots, \mu_{n-1}\}$ the selected parameters and $\varepsilon_n^* := \max_{0 \leq i < n} \min_{0 \leq j < n, \mu_j = \mu_i} \varepsilon_i$, $\|f_i - \hat{f}_i\| \leq \varepsilon_i$. Then the Greedy convergence is

 $\sup_{f \in \mathcal{F}} \operatorname{dist}(f, \widehat{F}_n) \le C \max\{M | S_n|^{-\alpha}, \varepsilon_n^*\}, \qquad C = C(\alpha, \gamma).$

Idea:

- Tighten snapshot accuracy "when necessary"
- Here: at repeated selection of same parameter μ
- Reduction factor: $\varepsilon_u^{\text{new}} = 0.1 \cdot \varepsilon_u$

P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, P. Wojtaszczyk. Convergence Rates for Greedy Algorithms in RBM. SIAM J. Math. Anal., 2010.

Error Estimator Accuracy

Error bound w.r.t. exact solution

$$\|u(\mu) - u_N(\mu)\|_{\mathcal{X}} \le \Delta_N(\mu) := \frac{\|\widehat{r}_N(\cdot;\mu)\|_{\mathcal{Y}}}{\beta(\mu)}, \qquad r_N(\cdot;\mu) : \mathcal{Y} \to \mathbb{R}$$

Problem:

- ► Computable: $\Delta_{N,\varepsilon}(\mu) := \frac{\|\widehat{r}_{N,\varepsilon}(\cdot;\mu)\|_{\mathcal{Y}}}{\beta(\mu)}$ with $\|\widehat{r}_N(\cdot;\mu) \widehat{r}_{N,\varepsilon}(\cdot;\mu)\|_{\mathcal{Y}} \le \varepsilon$.
- ► Training depends on good error estimation → choice of ε?

Error Estimator Accuracy

Error bound w.r.t. exact solution

$$\|u(\mu) - u_N(\mu)\|_{\mathcal{X}} \le \Delta_N(\mu) := \frac{\|\widehat{r}_N(\cdot;\mu)\|_{\mathcal{Y}}}{\beta(\mu)}, \qquad r_N(\cdot;\mu) : \mathcal{Y} \to \mathbb{R}$$

Problem:

- ► Computable: $\Delta_{N,\varepsilon}(\mu) := \frac{\|\widehat{r}_{N,\varepsilon}(\cdot;\mu)\|_{\mathcal{Y}}}{\beta(\mu)}$ with $\|\widehat{r}_N(\cdot;\mu) \widehat{r}_{N,\varepsilon}(\cdot;\mu)\|_{\mathcal{Y}} \le \varepsilon$.
- Training depends on good error estimation \rightarrow choice of ε ?

Idea:

- Tighten Riesz representor accuracy as well
 - ▶ *b*: for all new snapshots
- Reduction factor:

$$\varepsilon_{\hat{b}}^{\rm new} = 0.1 \cdot \varepsilon_{\hat{b}}$$

Error Estimator Accuracy

Error bound w.r.t. exact solution

$$\|u(\mu) - u_N(\mu)\|_{\mathcal{X}} \le \Delta_N(\mu) := \frac{\|\widehat{r}_N(\cdot;\mu)\|_{\mathcal{Y}}}{\beta(\mu)}, \qquad r_N(\cdot;\mu) : \mathcal{Y} \to \mathbb{R}$$

Problem:

- ► Computable: $\Delta_{N,\varepsilon}(\mu) := \frac{\|\widehat{r}_{N,\varepsilon}(\cdot;\mu)\|_{\mathcal{Y}}}{\beta(\mu)}$ with $\|\widehat{r}_N(\cdot;\mu) \widehat{r}_{N,\varepsilon}(\cdot;\mu)\|_{\mathcal{Y}} \le \varepsilon$.
- Training depends on good error estimation ightarrow choice of ε ?

Idea:

- Tighten Riesz representor accuracy as well
 - b: for all new snapshots
 - *f*: recalculate representors
- Reduction factor:

 $\begin{aligned} \varepsilon_{\hat{b}}^{\text{new}} &= 0.1 \cdot \varepsilon_{\hat{b}} \\ \varepsilon_{\hat{f}}^{\text{new}} &= 0.1 \cdot \varepsilon_{\hat{f}} \end{aligned}$

Equivalent Error Estimator

Recall:

- Error bound accuracy: $|\Delta_N(\mu) \Delta_{N,\varepsilon}(\mu)| \leq \frac{\varepsilon}{\beta(\mu)}$
- Greedy training relies on *equivalent* error estimator
- Error bound accuracy can be chosen independently of snapshot accuracy

Question:

For which tolerances ε is $\Delta_{N,\varepsilon}(\mu)$ still equivalent to $e_N(\mu)$?

Equivalent Error Estimator

Recall:

- Firror bound accuracy: $|\Delta_N(\mu) \Delta_{N,\varepsilon}(\mu)| \leq \frac{\varepsilon}{\beta(\mu)}$
- Greedy training relies on *equivalent* error estimator
- Error bound accuracy can be chosen *independently* of snapshot accuracy

Question:

For which tolerances ε is $\Delta_{N,\varepsilon}(\mu)$ still equivalent to $e_N(\mu)$?

A-posteriori equivalence condition

Assume $\Delta_{N,arepsilon}(\mu) \leq \Delta_N(\mu)$ and let

$$\begin{split} \varepsilon &= \varepsilon(\mu) \leq \frac{1-c}{2-c} \beta(\mu) \Delta_{N,\varepsilon}(\mu), \qquad c \in (0,1). \end{split}$$
Then: $c \|e_N(\mu)\|_{\mathcal{X}} \leq \Delta_{N,\varepsilon}(\mu) \leq \frac{\gamma_b(\mu)}{\beta(\mu)} \|e_N(\mu)\|_{\mathcal{X}}.$

- Assumption realistic, as $\mathcal{Y}_{\varepsilon} \subset \mathcal{Y}$.
- Offline-online decomposition: accuracy ε can be bounded a-posteriori

Conclusion

Adaptive calculations:

- Compute snapshots and Riesz representors adaptively up to a certain accuracy
- Consider error with respect to exact solution
- Update snapshots/representors when necessary
- Accuracy of basis functions and error estimator can be determined *separately*
- A-posteriori criteria to ensure equivalence of error estimator

Goal:

- Control real error
- Minimize computational cost for target RB tolerance

Outlook:

- Different update strategies
- Minimize error bound decomposition by using EIM ([Casenave])
- A-priori statements about computational cost caused by updates

F. Casenave. Accurate a posteriori error evaluation in the reduced basis method . C. R. Math., 2012.

Conclusion

Adaptive calculations:

- Compute snapshots and Riesz representors adaptively up to a certain accuracy
- Consider error with respect to exact solution
- Update snapshots/representors when necessary
- Accuracy of basis functions and error estimator can be determined separately
- A-posteriori criteria to ensure equivalence of error estimator

Goal:

- Control real error
- Minimize computational cost for target RB tolerance

Outlook:

- Different update strategies
- Minimize error bound decomposition by using EIM ([Casenave])
- A-priori statements about computational cost caused by updates

F. Casenave. Accurate a posteriori error evaluation in the reduced basis method . C. R. Math., 2012.