4.5 A-Posteriori Error Estimation

as well as an update of the corresponding entries in C' (c.p. (4.5.22)). Moreover, it is important
to note, that the (online) complexity for computing the a-posteriori error estimator is the most
expensive part we have to perform, as M enters it quadratically (recall it only enters linearly for
solving PN (11)). Hence, the factors achieved by the application of the MCEIM (c.p. Figure 4.3)
become even more valuable.

In the next section we first describe the usual course of action in case of having non-affine para-
metric dependencies as well as possible drawbacks. Afterwards, we use what we have prepared
so far in order to expand Algorithm 4.4.1, such that € and ¢, on which we have not commented
yet, are selected automatically.

Finally, in Section 4.5.2 we try to exploit that for our particular application at hand the
parametric dependency of A(x;p) is basically five times one-dimensional rather than fully six-
dimensional (c.p. end of Section 4.3.3) in order to reduce the complexity for evaluating R (i)
and Rﬁ\fa(u).

4.5.1 e-Adaptive Greedy

As already emphasized in the introduction, the key for the success of RBM is the availability of
a-posteriori error estimators, as they allow for eliminating the uncertainty in the adjustment of
N, the number of reduced-basis functions to use. Choosing N to large yields inefficiency, as we
could achieve a desired approximation accuracy using less, whereas choosing NV to small results
in inaccurate approximations. Although this approach has been used for quite some time w.r.t.
N as described above, it has not yet been used for deriving optimal approximation tolerances €
for the non-affine forms, what we want to make up for in this section.

Before we do so, however, we shortly discuss what is the current state of the art in our opinion
and identify possible drawbacks. Whenever dealing with non-affine parametric dependencies
the first step is to apply the EIM (c.p. Section 4.3.1) in order to obtain affine-approximations
of the form (4.2.2) that seems to be sufficiently accurate and fix some M¢, M?, where MS <
M?. Tn order to stay in our notation, which is actually adapted for proceeding the other way
around, namely prescribing some tolerance and deducing the number of affine terms to be used,
afterwards, let € (), such that (4.2.1a) holds true for using the prescribed number of terms
M (M?) in (4.2.2a). Moreover, to keep this explanation simple, we assume that f is affine
consisting of My terms and M} and M]‘? have been fixed to My. Then, for these fixed numbers of
approximation terms the usual greedy, i.e. Algorithm 4.4.1, is applied, where for the a-posteriori
error estimator E () is replaced by Ré\’%(u) in (4.5.5) or (4.5.17), which is not an upper bound
for Ré\fo ().

Now, if M} is to small, from a certain point on, i.e. for some value of N, the error estimator
becomes large due to the error introduced by approximating a by a° and not because of the
approximation properties of XV, which is usually called the EIM-plateau. Hence, once the error
estimator approaches this plateau, the identification of the next parameter value to add to S¥,

i.e. pu* in Algorithm 4.4.1, based on the error estimator is almost entirely useless. Moreover,

79

4 Model-Order Reduction for Linear PPDEs

if M? is chosen to small, e.g. M® = M¢ + 1 is a popular choice (c.p. Lemma 4.3.2), Ré\f&(,u)
usually underestimates the error by far, such that Ré\fé(u) < RN(u) but at the same time
RQ’O(M) > RN(p). Hence, as EN(u) has been replaced by Ré\y%(u), one even cannot detect
that the error estimator already entered the EIM-plateau. The worst to happen at this point
is, that the selected parameter p* already resides in S”, which obviously breaks the greedy.
Although this can certainly be repaired by restricting the search for p* to Zn\ SV in line five
of Algorithm 4.4.1, this is not a real solution for the general issue.

Hence, as one is well aware of these issues, M is usually chosen conservatively large, such
that (hopefully) R?fo(u) < RY(u) at any stage of the greedy. If this holds true, the possible
underestimation of Ré\fo(u) by R?f(g(u), and with it the value of MY? itself, becomes irrelevant, as
its total contribution to the error estimator is negligible. The price to pay is obviously inefficiency,
as one can do with less terms M¢. Hence, to avoid this inefficiency at least in the online phase,
one usually attaches a postprocessing phase, where the EIM-plateau is analyzed on the one hand,
such that M¢ can be reduced to a more reasonable value, and on the other hand MY is analyzed
and chosen, subsequently, such that the value of Rﬁ;(,u) “stabilizes”.

Although this approach works fine in practice, it is somewhat unsatisfying, as for large values
of M¢ the offline phase becomes considerably extensive. Moreover, it would be preferable to be
able avoid the postprocessing phase, which itself can be quite extensive, too. This leads us back
to the beginning of this section, namely the philosophy to choose M¢ as large as needed, but not
unnecessarily large, and to use the a-posteriori error estimator for this adjustment. The resulting
approach is presented in Algorithm 4.5.1, which we comment on next.

The first thing to note while comparing Algorithm 4.5.1 and Algorithm 4.4.1 is that the
identification of p* is now embedded into a loop. Moreover, as line eight already suggests, the
identified parameter value p* is only a candidate, where we assume that identC’ritﬁY{S(u) is Agﬁ(u)
(c.p. (4.5.24)) or some derived quantity. Note that the algorithm is designed for 0 < § < €, but
we could also state it for 0 = § < ¢, which is not a good choice, however, as we will reason
shortly.

Next, in line ten we only accept this candidate (i.e. give the “signal” that no more identifica-
tion is necessary), if Egé(,u*) < RN (u), ie. if A?}%(u*) is (sufficiently) effective. Sufficiently
effective, as we can infer from Proposition 4.5.1 that the usual upper bound for the effectivity is

increased by the factor ifg, which results in a factor of only two for our choice of ¢1 (default

values for the algorithm are given in parentheses in line two). At this point we remark that effec-
tivity of A?f s() is only enforced for the identified candidate p*, which is quite reasonable, as only
for this parameter we want to ensure that ||u(p)—a™ (1)| x is large, too, hence u(u*) will make a
meaningful contribution, if added to X ¥ in line five. For the remaining values in Z%#" we content
ourselves with rigorousity of Aé\;;(,u), as on termination of Algorithm 4.5.1 we want to guarantee
something like (depending on the choice of termCTitQ{é(u)) lw(p) — o™ (p)|x < Aé\i;(u) < tol

—train
=

for all p € , where it does not matter if AN;(;1) overestimates the error by far or not. To
put this the other way around, assume there exist some fi € =" such that |Ju(iz) — @™ ()] x

is already quite small. Enforcing effectivity for this particular fi would require an unnecessary

80

4.5 A-Posteriori Error Estimation

Algorithm 4.5.1 (RBM, e-Greedy Sample Selection)
1: Specify Z¥ain ¢ D 4, N™aX ¢ N, tol > 0 and p* € Dyg.
2: Additionally specify 1 > ¢;(= %), 1> (= %), e(=.1) and 0(= ec1c2).
3 Set SO« 0, WO «~ 0 and N « 1.
4: while true do
5. Update

SN . SN—l U {’u*}’ XN — XN—l fa {U(M*)}

and all remaining offline quantities (w.r.t. N).
6: Set isNotSafe + true.
7. while isNotSafe do
8: Identify the next candidate in Z" to add, i.e.

w4 argmax identCritﬁ;(u).

MeEtrain
N (,,*
9: Set §* « 6102%.
10: if EN(n*) < ciRY(u*) then
11: Set isNotSafe < false.
12: else
13: Set € « 5.
14: end if
15 Set ¢ < min(d, §*).

16: end while
17. if (arg max,,c=zirain termCrit?’%(u) < tol) or (N = N™2*) then

nes
18: return
19: else
20: N+ N+ 1.
21: end if

22: end while

decrement in the approximation tolerance €, hence an unnecessary increment in M, which we
wanted to avoid and which leads us to the adjustment of € (and §).

Assume that in line ten the candidate p* is rejected, as A?;;(u*) is not sufficiently effective.
Moreover, assume for a moment that we have chosen to use 0 = § < ¢, hence replaced EGN (1)
by EE%(/L) in (4.5.5) and (4.5.17), respectively, in order to obtain (4.5.24). In this case for the
adjustment of € we could determine €*, such that (c.p. (4.5.23))

o) _ (1t i) 1x)

c1 = ’
RY () RY ()
hence set N
R *
€+ cl#,
L4 Jla™ ()] x

in line thirteen of Algorithm 4.5.1. However, the main issue with this approach is that Ee%(u)
usually overestimates Ré\fo(u) by far, such that e is decreased just for achieving Ré\fo(u*) <

81

4 Model-Order Reduction for Linear PPDEs

E%(u*) < RN (p*), hence again leads to an unnecessary decrement in the approximation
tolerance €. For this reason we have formulated Algorithm 4.5.1 w.r.t. 0 < § < ¢, as rigor-
ously bounding Ré\fo(u) by Ee%(,u) = Ré\fg(u) + E(%(u) allows for separating the approximation
tolerance e from the estimation tolerance §, that is adapted in lines nine and fifteen, such that
N N
Eso(w) (1 + [[a" (u7)llx)

= < cjco.
RY () RY ()

This choice basically guarantees, that the maximum contribution of E(%(u*) to that value of
Ee%(,u*) for which we would barely accept the identified candidate p* in line ten (i.e. Eﬁ;(u*) =
c1 RN (u*)) is at most a fraction of c. Obviously, usually E(%(,u) again overestimates R(js\fo(ﬂ)
by far. However, at this point this is not that serious, as the estimation tolerance § can be
decreased without decreasing the approximation tolerance € at the same time. Moreover, in the
final stages of Algorithm 4.5.1 we expect € and § to take values, such that M¢ is much larger
than Mg — M¢, which is underlined by our numerical experiments in a moment. Finally, the
approximation tolerance € is adapted in line thirteen, where we just divide it by two. This
rather crude adjustment stems from the fact that we do not know if Ré\fg(u*) is currently over-
or underestimating RQ’Q(M*) and, all the more important, in which way a decrement of € affects
the value of RQ%(M*).

To summarize, Algorithm 4.5.1 is enabled basically by two things. Firstly, the availability of
rigorous and effective a-posteriori estimators that allows for detecting and avoiding the EIM-
plateau and, secondly, the paradigm shift from specifying M¢ and deriving €, afterwards, to
specifying € and deriving M from this.

Before we are going to present the numerical experiments, we want to remark that in our
opinion the proposed e-greedy algorithm could very efficiently be combined with the hp-RBM
introduced in [13]. The latter basically consists of two steps. In the first one, the admissible
space of parameters is partitioned (h-refinement) w.r.t. some proximity indicator that we do not
want to detail at this point. In the second one, a local reduced-order model is derived for each
element of this partition by applying the usual greedy algorithm (p-refinement). Now, for non-
affine parameter dependencies the application of the e-greedy in the p-refinement step for the ith
element of this partition could not only lead to a local reduced-order model w.r.t. the reduced-
basis approximation space, say X ZN ¢ but also w.r.t. the necessary approximation tolerance of the
non-affine forms, say ¢;, which we see as a chance in order to obtain even better adapted local

reduced-order models.

Numerical Experiments’

For the numerical experiments presented in this section, we restrict our investigations to & =
Qsym, Which is more challenging than & = dgjag, but actually yields qualitative comparable re-

sults. Moreover, for mapping © — Q(u) we use the non-affine mapping, introduced in Section 2.4,

i.e. we choose 7, = Tﬁaﬁ, whereas choosing 7, = Tjﬂ yields again quite similar results. Finally,

tAll numerical experiments have been performed using MATLAB® R2007a and COMSOL Multiphysics® 3.4.

82

