4 Model-Order Reduction for Linear PPDEs

Before we switch over to the construction of the a-posteriori error estimator AN (u), we remark
that there exist several extensions/modifications of Algorithm 4.4.1. In [18] the training set, i.e.
Ztrain — P, 4, is no longer static but adaptively refined whenever the next parameter is identified,
in [4] the greedy procedure itself is replaced by a steepest descent method in order to identify the
next parameter value, such that high-dimensional spaces of parameters become better treatable,
and in [13] an “hp” version has been introduced, which we are going to describe very briefly at

the end of Section 4.5.1, where we are going to propose our extension.

4.5 A-Posteriori Error Estimation

In this section we finally derive the a-posteriori error estimator for the field variable, i.e. for

NM(w) = u(p) — (), (4.5.1)

where u (1) solves P(u) and @V (u) is the solution of PN (). As pointed out in Section 4.4.2
it is important, that the a-posteriori error estimator to be derived is rapidly evaluable, rigorous
and effective.

Since the presented a-posteriori error estimator is residual-based we start by defining

T(];Y(U;,LL) = (s p) — a% (@ (), v ), (4.5.2a)
roy ey (s 10) = (15, — ) (vs )
= (

45.2b
£ = (s ) — (a® = a®) (N (1), v; ), ( )

where §; > d, > 0, v € X and 1 € Daq. Note, that we use the convention a® := a and f° := f.
Hence, r{Y (1) is the residual of P(u) and 7Y (u) is the residual of P(u) both w.r.t. a(u). We
continue by defining the corresponding Riesz representations, i.e. R} (1), R} 5,(1) € X, such
that

(RS (1), 0)x =7 (v;p),  vEX, (4.5.3a)
(RY 5,(10),0)x =715 5,(vip), vEX, (4.5.3b)

where from the Riesz representation theorem we infer that

Ry (1) =g, )l =IIRE (1) x, (4.5.4a)
R 5, (1) =75y 5, (5 1) 0 =lRE, 6, (1) 1, (4.5.4b)
where for h € X’ we denote ||h|| x/ := sup,cx %

Having this notation at hand, we can prove the following main result:

Proposition 4.5.1. Let 3(u) denote a positive lower bound for the inf-sup stability factor (i)
(c.p. (41.1)), ice. 0 < B(p) < B(u). Moreover, let EN (i) denote an upper bound for Ré\fg(,u),
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4.5 A-Posteriori Error Estimation

i.e. Ré\fo(,u) < EN(u). Then the a-posteriori error estimator

1
AN () = —— (RN () + EY () (4.5.5)
Bw)
18
1. rigorous, i.e. we have
AN (p) N
1< ——7~— = , 4.5.6
Sl 420
2. and effective, i.e. we have
() < 1AM (457

T L—c(p) B(n)’

if there exists a constant c(u) € [0,1), such that

EN(u) < e(p)RY (). (4.5.8)

Proof. For the first inequality, i.e. (4.5.6), by the bi-linearity of a, the definitions of ¢ (x) and
P(u), and (4.5.2) we find

a(eN (), vs 1) = a(u(p), v p) — a(@™ (1), v; p)

— —alu nl v,
= f(osp) —a(@™ (u), v; p) (4.5.9)

|
<

v; ) + 8o (v ).

|
<
m

Using this, the definition of AN (1), the definition of the inf-sup stability factor B(u) (c.p. (4.1.2))
and the fact that by assumption EN (1) > Ré\fo(u), yields rigorousity, as

Bw)AY (1) = RN(M)+EN( )
2 RE(w) + Reow) (4.5.10)
> ||a( ( )7 HM)HX’

> Bl (0)]lx

and by assumption B(u) < B(p), hence % > 1.

Proving the effectivity of AN (1), i.e. (4.5.7) is more involved. We start by observing that by
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4 Model-Order Reduction for Linear PPDEs

(4.5.8) we have

(14 c(u) (RN (n) — EN ()
(1= () RY (1) + 26()RY (1) — (1 + () BN (1) (5.11)
> (1= () (RN (1) + EN (1)

Next, using v = RN (1) and v = —Ré\fo(,u), respectively, in (4.5.9) yields (recall (4.5.3))

(Rév(u)) Rév(.u))x + (Ré\,[O(NL Rév(U))X = a(gN(U)’ Rg(ﬂ)? N)a
— (RY (1), RE (1)) y— (RE (1), R (1)) = a (™ (1), =R (1) 1),

such that by summing up these two equations we obtain
IR (1% = IR (% = a(e™ (1), RE (1) = R (1); 1), (4.5.12)
and using the continuity of a (c.p. (4.1.1)) for the right hand side of (4.5.12) yields
a(e™ (), RY (1) = RY(1); 1) < () (IRY (1)l x + IR (1) 1) 11€™ (1) |- (4.5.13)

Hence, from combining (4.5.12) and (4.5.13), using that by duality [|RY (u)|x = RN () and

||’R2’0(u)||X = Ré\fo(u) (c.p. (4.5.4)) and the fact that EN(u) > Ré\fo(u) by assumption, we
obtain

RY (1) = BY (1) < RY (1) — R (k) < v()lle™ ()l x- (4.5.14)
Finally, using the definition of AN (1), (4.5.11) and (4.5.14) yields the claim, as

(1= c(u)B(r)AY (1)

(1= () (RY (n) + EN (1))
< (14 c(p)(RY (1) — EN(n))
< (L e(u)y()l1e ()| x-

Next, before we discuss the implications of Proposition 4.5.1, we consider the case of a to be

symmetric and coercive for all u € D,gq, i.e.

.o (v, v;p)
inf ——~~ =:a(u) >0, 4.5.15
TR (1) ( )
which allows for deriving a similar albeit sharper result than the one presented in Proposi-
M(

tion 4.5.1, if the error £ () is measured in the so-called energy norm || - ||, rather than in |- || x,
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4.5 A-Posteriori Error Estimation

where for y € Dy, w,v € X we define
(w,v) = a(w,vip), Jlwlly =/ (w,w),. (4.5.16)

Corollary 4.5.2. Let &(u) denote a positive lower bound for the coercivity constant a(u) (c.p.
(4.5.15)), i.e. 0 < &(u) < a(p). Moreover, let EN (i) denote an upper bound for R?fo(u), i.e.
R?fo(,u) < EN(u). Then the a-posteriori error estimator

1
AN (p) = ——==(RY (p) + BN (n)) (4.5.17)
a(p)
18
1. rigorous, i.e. we have
Al c(p)
1 My N (u)’

< TN o =
e Gl

2. and effective, i.e. we have

N () < 1Eeln) o)

M) < 70\ Gy (4.5.18)

if there exists a constant c(p) € [0,1), such that (4.5.8) holds true.

Proof. The proof is very similar to the proof of Proposition 4.5.1. Using (4.5.9), the definitions
of Afxe(,u), the energy norm || - ||, and the coercivity of a, i.e. (4.5.15), and the fact that by
assumption EN (u) > Ré\fo(u), yields rigorousity, as

V() AN ()

RN () + EN ()
> RN (u) + RNy(w)

la(e™ (1), s )l x

N(p), &N () )
[N (1)l x

_az (&N (), N ()i p)

[N ()l x

Veal)lle™ (1) w)ll,

and by assumption &(u) < a(u), hence % > 1.
For proving that A/{XE(/L) is effective, we start with (4.5.12), where for the right hand side we

apply the Cauchy-Schwarz inequality (recall that (w,v), = a(w,v;u)) in order to find

Vv

a(e

Ie™ (1) )l

Y

IR (1) 1% = IR (1% < IRE (1) = R ()l le™ (1)
< V) (IR () llx + IR (1) ()llx) ™ ()l

75



4 Model-Order Reduction for Linear PPDEs

where we additionally used the continuity of a (c.p. (4.1.1)) and the triangle inequality. Hence,
again from duality and the fact that by assumption EN(u) > RN(u), we obtain

RY () — EN (1) < RY () — RNy (1) < vVA(w)lle™ (1) .- (4.5.19)

Finally, using the definition of A’ng(u), (4.5.11) and (4.5.19) again yields the claim, as

(1 = c(p)Va(u) AN (1) = (1 = c(u) (RN (1) + EN (1))
< (4 c(u)(RY (1) — EN (1))

(1 + )Vl ()l

IN

O

The first thing to note is that if a = a© and f = f€, i.e. if we are in the usual affine case,
then Rgfo(u) vanishes and for its upper bound we can choose EN () = 0, which implies that
(4.5.8) holds true for ¢(u) = 0, too, and the results reported in Proposition 4.5.1 and Corol-
lary 4.5.2 coincide with the well-known results for the affine case. Hence, Proposition 4.5.1 and
Corollary 4.5.2 are natural extensions to the standard theory. Comparing the results of Propo-
sition 4.5.1 and Corollary 4.5.2 we find the factor of \W in (4.5.18) to be squared in (4.5.7),

a(p)
where we recall that in case of a symmetric and coercive form a the values of coercivity constant

and inf-sup stability factor coincide, i.e we have 3(u) = a(p), which is also well-known. However,
for our particular application a is coercive, but not symmetric. Moreover, the problem derived
in Section 4.6.2.1 is symmetric, but no longer coercive, such that we cannot take advantage of
the sharper error bound provided by Corollary 4.5.2 at all and derived it mainly for the sake of
completeness.

At the beginning of this section we formulated the goal of deriving an a-posteriori error es-
timator that is rapidly evaluable, rigorous and effective. At this point we have seen that the
presented error estimators are rigorous, if EN () is an upper bound for RN (), and effective, if
EXN (1) additionally satisfies (4.5.8), which leaves us with the postulation of rapid evaluability.
Obviously, AN (p) (A}JX (1)) is rapidly evaluable if and only if all three components it consists
of, namely B(u) (a(p)), RN(u) and EN(u), are rapidly evaluable, such that we address each
component separately in the sequel.

We start with the lower bound for the inf-sup stability factor and the coercivity constant,
respectively, where we first note that in Corollary 4.5.2 we could readily use &(u) = a(p) and
in Proposition 4.5.1 we could use B(u) = B(n) or even (1) = a(p) in the coercive case, as
for the latter 0 < a(p) < B(p) holds true. However, the computation of «(u) translates to
solving a generalized eigenvalue problem, which in fact is more complex than solving the actual
problem P(u), and the computation of 3() is even more involved, which is why we substituted
B(p) and a(p) by lower bounds right from the start when formulating Proposition 4.5.1 and
Corollary 4.5.2, respectively. Now, except for some special cases the derivation of such rapidly
evaluable lower bounds is quite complex, such that at this point we assume these bounds to

be given and postpone the details on the construction to Section 4.7, which leads us to the
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4.5 A-Posteriori Error Estimation

offline- /online decomposition of RN ().

The offline- /online decomposition of the computation of Rﬁv (1) is quite standard. The key
idea is to use the fact that by duality RY (1) can be computed via |RY (u)||x (c.p. (4.5.4)).
Recall, that by (4.5.3a), (4.5.2a), (4.2.2) and the representation of 4™ (1) € X, ie. 0V (u) =
Ziv LGN (1)€n, the Riesz representation RY (1) € X satisfies for v € X

(RY (), v)x =N (v; 1)
= f(v;p) — a (" (), v; 1)

Mg N

M
Zz; )™ (v Zﬂ“ Zaff m(En, ).

Hence, from linear superposition we infer that RY (1) € X can be composed via

Mg N
RY (1) = Z O () F™ + Z Do Z A, (4.5.20)
where F™, A™ € X satisfy for all v € X

(FH,U)X = fm(v)a 1<m< M6f7 (4521&)
(A" v)x =—a™("v), 1<m< M 1<n<N. (4.5.21D)

For notational convenience, we abbreviate (4.5.20) by

Mg
= Z I (p)C™,
m=1
where M¢ = M§ + MgN. Finally, we compute RN (u) from
(RY (1) = IR ()% = 9°(w) - CO° (),

where 9°(1) = (9, (1)) 1<m<me € RM¢ and the matrix C' € RMeXMe consists of the mutual inner
products (w.r.t. X) of C™, 1 <m < M, i.e.

€= (€™ C™)x) s nre- (4.5.22)

Hence, once we have the functions C™ € X, 1 < m < M¢, and the matrix C, respectively, at
hand, the (online) complexity for computing RN (1) is O((M¢)?) = O((M§ + M{N)?), which
yields N-independency. Obviously, in order to enable this online complexity, in the offline phase
we have to compute C", 1 < m < M¢, which translates to solving M¢ = M}i + M{N Poisson-like
problems (c.p. (4.5.21)), which leaves us with the computation of EN(u).

The possibility of rapidly computing EX (u) obviously depends on its definition, as to this
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4 Model-Order Reduction for Linear PPDEs

point we only required it to be an upper bound for Ré\fo(u). The best choice w.r.t. to the
effectivity of the a-posterior error estimator would be to use EN(u) = Ré\fo(u). However, as
ré\fo(,u) involves (c.p. (4.5.2b)) the (possibly) non-affine forms a and f, for its computation we
cannot carry out an offline- /online decomposition as just presented for RN (11), hence we would
loose N-independency, which is why we stated Proposition 4.5.1 and Corollary 4.5.2 w.r.t. an
upper bound for R, (x) right from the start. Now, instead of using EN (1) = RYN(11) we define

for any 0 < d9 < d71:

~N -
¥ { 511+ ¥ ()llx), 62 =0, s

Es s
o RY (1) + EY o(n), 82> 0.

Substituting EN(u) in (4.5.5) and (4.5.17) by EQ%(M) for any 0 < § < € yields our final a-

posteriori error estimators, i.e.

AN () = = (BN (o) + BN (). (4.5.24a)
Bu)
Ay eo(n) = Oi(ﬂ) (RN (1) + ENs(1)). (4.5.24b)

It is immediately obvious, that this substitution is indeed justified, as Egvé(u) is an upper bound
for Ré\fo(u) forall 0 < § < e, as for 0 = 6 < € from (4.5.3b), (4.5.2b), (4.2.1) and (4.5.23) we infer
that

RN (1) = Irlo (s )l xe
= I(f = f) ) = (@ —a) (@ (), 5 )l x/
< = FOCmllxr + (@ = a) (@Y (), 5 1) llxe
<e+ela” (u)llx
= EN(u),

and for 0 < § < €, we simply use

RYNo(p) < RY5(1) + Ryo(p) < RY5(u) + Exp(p) = ENs(p).

For the offline- /online decomposition of EeNé(,u) we note that |4~ (11)||x can be computed (online)
in O(N), as the reduced-basis functions are normalized w.r.t. the inner product in X, hence
o™ ()|lx = ||a™ (i)]|2. Moreover, for 0 < § < € the decomposition of Ré\fé(,u) works along the
lines of RY (1) presented above, such that the online complexity yields O(((M}; — M§) + (M7 —
M¢E)N)?), which finalizes the derivation of our rigorous, effective and rapidly evaluable (i.e. in a

complexity independent of N') a-posteriori error estimator.

Before we proceed we recall that in line four of Algorithm 4.4.1 we stated to “update all
remaining offline quantities”. Now, it is clear that this, e.g. for the computation of RN (1), also
involves the solution of the Poisson-like problems (4.5.21b) for the current N and 1 < m < M}
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