4 Model-Order Reduction for Linear PPDEs

In the last chapter we have investigated the (reduced) optimal control problem under considera-
tion, i.e. O(u). We have seen that for the proposed solution algorithm, i.e. Algorithm 3.4.1, we
have to perform many evaluations of the reduced cost functional J(u). Moreover, for each evalu-
ation of the latter we need to solve the state equation S(u), which is a linear elliptic parametrized
partial differential equation (PPDE). Hence, these evaluations are quite expensive.

In this chapter we investigate the possibility of replacing S(u) by a reduced order model,
such that the evaluation of J(u) can be accelerated significantly by deriving an appropriate
approximation. The method of choice is the reduced-basis method (RBM), as it is designed
for “rapid, [repeated| and reliable evaluation of input-output relationships in which the output is
expressed as a functional of a field variable that is the solution of an input-parametrized partial
differential equation” (c.p. [39]).

As we aim in applying RBM, we start by presenting the main idea in the next section. More-
over, we give a short outline of the remaining parts of this chapter. Finally, note that although we
aim in using RBM for accelerating the evaluation of J(u), the theory in this chapter is conceived
as general as possible and our particular problem mainly serves for the numerical experiments.

Finally, we want to mention that in [42] we already applied RBM for our particular problem
at hand, but were lacking a-posteriori error estimators to that point what we want to make up

for in this chapter as well as in Chapter 6.

4.1 Main ldea & Outline

Before going into detail, we note that [39] contains an extensive overview of both the historical
background of reduced-basis methods and the current state of the art. Moreover, the mentioned
article provides many examples for its application within two particular contexts — the real-time
context and the many-query context. These contexts are of particular interest, as the method-
ology is not only motivated by but also optimized for application within. To be more precise,
in both contexts many repeated evaluations of input-output relationships have to be performed.
Moreover, decoupling the computation of an approximation to the field and the output of inter-
est, respectively, into an expensive offline and an inexpensive online phase, allows for obtaining
these approximations rapidly. Finally, the availability of a-posteriori error estimators does not
only guarantee the reliability of these approximations, but the efficiency of the methodology
itself, too. This explains the three keywords characterizing reduced-basis methods, i.e. repeated,

rapid and reliable, as already emphasized in the introduction to this chapter. Although in both
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4 Model-Order Reduction for Linear PPDEs

contexts many repeated evaluations have to be performed, there is one main difference: In the
real-time context the complexity of the offline phase can be neglected by definition, whereas in
the many-query context it may not. Hence, for the application in the latter context the number
of necessary evaluations should be sufficiently large in order to be profitable. One should recall,
that we aim in applying the reduced-basis method to speed up solving O(u). Consequently,
we are in the many-query context and the number of evaluations roughly equals the number of
iterations (times a constant) of the utilized optimization procedure, i.e. Algorithm 3.4.1.

Now, to formalize the input-output relationship, let X¢, H(Q) C X¢ C H(Q), denote
the ezact function space and p = (uq, ... ,ud)T € Daq the parameter vector (configuration).
Moreover, let the linear elliptic PPDE be defined by the bi-linear form a(-,-;u): X¢ x X¢ - R
and the linear form f(:;u): X¢ — R and let o(;p): X¢ — R denote some output functional,
additionally. Then, we define:

Definition 4.1.1. Let X C X°.
1. For all p € Dyg finding u(u) € X, such that

a(u(p),v;p) = f(ospu), veX, (P(p))

1s called the Primal Problem.

2. For all p € Dyg
s(p) = o(u(p); 1)

is called the Output of Interest, where u(u) solves P(u).

For solving P(u) numerically, we have to use a discrete function space XN c X¢ for X, e.g.
a finite element space or a spectral element space, specified by N degrees of freedom. In the
context of RBM X%V is called truth approrimation space, as it is assumed to be rich enough, such
that u€(u), i.e. the solution of P(u) using X = X¢, and vV (u), i.e. the solution of P () using
X = XN are indistinguishable. Hence, by this assumption we can restrict all our investigations
to this truth approximation space, i.e. we always use X := XN while referring to P(u). Next,
in order to ensure the well-posedness of P(u), we have to suppose the following assumption to
hold true, where for the inner product in X, i.e. (w,v)x, w,v € X, we consider the usual H'(£2)
inner product (recall Definition 2.2.2), and by | - |x := 1/(-,-)x we denote its induced norm:

Assumption 4.1.2. For all u € D,qg
1. a(-, ;) is continuous, i.e.

sup sup alw,vipn) = v(p) < o0, (4.1.1)
wex vex lwllxllvllx
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2. a(-,-; 1) satisfies the inf-sup stability condition, i.e.

, a(w,v; )
inf sup —————> =: B(u) >0, (4.1.2)
weX pex [|wllx|lvlx

3. f(sp) € X, ice. f(+; ) 4s linear and bounded.

This assumption ensures unique solvability (c.p. [2]) of P(u) for all u € D,q. For the successful
application of RBM, however, we need to assume further, that u(u) evolves on a low dimensional
manifold M := {u(p),u € Daa} C X rather than being an arbitrary member of X, which is
visualized schematically in Figure 4.1. Note, that the same assumption is also crucial for other
techniques of model order reduction, e.g. the proper orthogonal decomposition (POD), which we
detail in Section 4.4.1.

u(p u(u™)

Bz

Figure 4.1: Manifold M and snapshots u(u!), ..., u(u?).

If this assumption holds true, a reduced-order model can be obtained by Galerkin projection
of P(;) onto a small subspace of X spanned by solutions of P(x). To be more precise, the
reduced-order approximation u™ (1) € XV :=span{¢!,..., N} C X, to u(p) € X satisfies

a(u® (p),v;p) = flvip), ve XN (4.1.3)

Obviously, if N <« N, the complexity for solving (4.1.3) is significantly reduced compared to
the complexity for solving P(x). On the other hand, the complexity for assembling (4.1.3) still
depends on NV, such that the solution u™ (1) can be obtained more rapidly, but not rapidly enough
for the application within the two contexts described above. Hence, despite the projection of P (1)
onto a low dimensional subspace of X, the second important ingredient is the full decoupling
into an offline- /online phase, such that the latter becomes independent of A'. However, the
possibility for performing this decoupling directly relates to the parametric dependency of the

forms @ and f on the parameter . The usual assumption is, that these forms allow for an affine
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decomposition, i.e. for w,v € X and p € D,q we have

a(w,v; u) = Z I (1) ™ (w,v), (4.1.4a)

flosp) = Z 0 ( (4.1.4b)

where the forms a™, 1 < m < M,, and f™, 1 < m < My, are independent of the parameter
i € D,q and the corresponding coefficients 1, only depend on the latter.

At this point we note, that if this assumption holds true and if M, and My are of moder-
ate size, this case is very well known (c.p. [39] and references therein for linear outputs, i.e.
o(viu) = L(v;p), €(;u) € X' linear and bounded, and [22, 23] for quadratic outputs, i.e.
o(v;p) = b(v,v;p), b(+,5p): X x X — R bi-linear and continuous) and we could basically
stop our investigations.

However, if it does not hold true we have to replace these forms by affine approximations, say
a® and f€ in a first step and build the reduced-order model (ROM) based on these approxi-
mations, afterwards, what is formalized in Chapter 4.2. A possible way of deriving such affine
approximations in an economic way, i.e. with almost as few terms as possible, is presented in
Chapter 4.3. Although this new method enables very economic affine approximations, for small
approximation tolerances e the number of terms Mg needed for approximating a up to € is still
large in our particular application, which leads us to the next issue: a-posteriori error estimation.

Generally speaking, the availability of effective and rigorous' a-posteriori error estimators is
key for the success of the RBM, as rigorousity implies reliability of the derived approximations
on the one hand and effectivity implies efficiency of the method itself on the other hand. In other
words, these two properties ensure that we can choose N, the number of used basis functions
for X7, as large as necessary, but not unnecessarily large at the same time. Following this
argument for the approximation tolerance e from above, it is obviously desirable to (be able
to) choose it as small as necessary, but not unnecessarily small, too. The derivation of an
a-posteriori error estimator that takes both approximation errors (affine approximation of non-
affine forms as well as Galerkin projection onto X*) into account and remains rigorous and
effective is subject of Section 4.5. The benefit of such an estimator is, that we can extent the
standard greedy procedure, which is usually used to generate “good” reduced-basis functions for
XN and is presented along with the proper orthogonal decomposition in Section 4.4, such that
the approximation tolerance € can be adjusted adaptively, too, what is detailed in Section 4.5.1.

Before we turn to the a-posteriori error estimation for the output of interest, we anticipate
that the computation of the a-posteriori error estimator for the field variable basically consists
of two parts, namely the computation of a lower bound for the stability factor 8(u), which is
subject of Section 4.7, as well as the computation of || - || x» for some residuals. As this is the

most expensive part, we investigate in Section 4.5.2 in which situations it can pay off to replace

!The terms “effective” and “rigorous” are defined in the further course of this chapter.
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it by the computation of some localized quantities.

In Section 4.6 we turn to the output of interest and derive rigorous error estimators for both
linear and quadratic outputs. Moreover, we again carefully analyze which approximation accu-
racy is needed at which point in order to achieve a prescribed approximation tolerance for the
output while the overall complexity is not unnecessarily large at the same time. The latter is all
the more important as we do not want to use any kind of postprocessing step.

Finally, we present many numerical experiments underlining the impact of the proposed way

of action for our motivating application.

Remark 4.1.3. In this chapter we focus on the application of RBM for solving the state equa-
tion S(u) and the evaluation of the reduced cost functional J(p). However, for accelerating
Algorithm 3.4.1 we also have to apply RBM for solving the adjoint equation A(p) as well as the
evaluation of the reduced gradient VJI(u) (c.p. (3.3.12)). Hence, in Definition 4.1.1 we called
P(u) the Primal Problem, which already indicates that we are going to apply the results from
this chapter to both the state and the adjoint equation later on, i.e. in Chapter 5. Moreover, for
the output approximation investigated in Section 4.6 we again have to take advantage of some
adjoint problems, which are called Dual Problems in this context in order to avoid confusion with

the adjoint equation A(u).

4.2 Reduced-Order Model (ROM)

In this section we introduce the reduced-order model. As already mentioned in Section 4.1, if the
forms a and/or f are non-affine separable w.r.t. the parameter pu € D,q or if the corresponding
numbers of summands in (4.1.4), i.e. M, and/or M, are too large, we need to approximate P (u)

in a first step, what is formalized by the definition to follow.

Definition 4.2.1. Let a*(-,;u): X x X = R and f(-;u) € X', such that for all i € Dyq

a(w,v; p) — a(w,v;p) < ellwllxvllx, w,veX, (4.2.12)
fosp) = (v n) < eflvllx, veX. (4.2.1b)

Moreover, let a®(-,-; 1) and f€(-,-;u) be affine separable w.r.t. the parameter p € D,gq, i.e. for
w,v € X and p € Dyq we have

Mg

a(w, vy p) = Z I (1) a™(w,v), (4.2.2a)
77]’:4—;1

Fosp) =Y 0 (u) f™(v), (4.2.2b)
m=1

where a™: X x X — R, 9%,: Dag — R, 1 <m < M, and f™ € X', 9: Dag — R, 1 <m < M,

and for given € > 0 the number of summands in (4.2.2), i.e. Mg, M3 € N, is chosen as small as
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possible, such that (4.2.1) holds true. Then, finding 4 () € X, such that

a“(a(p),v;p) = f(osp), veX, (P(p))

1s called Approximated Primal Problem.

Note, that p (1) is set up for theoretical purposes, only. Moreover, we want to emphasize that
regardless of the way p enters the forms a and f as well as how the approximations a¢ and f¢
are obtained, the a-posteriori error estimator to be derived in Section 4.5 remains valid as it only
relies on (4.2.1) and (4.2.2). One particular way of obtaining these approximations is presented
in Section 4.3, where p is assumed to enter the coefficients of the PDE. Another possibility is to

consider a truncated Karhunen-Loéve expansion in case of stochasticity in the coefficients of the
PDE.

Having P () at hand (although not by construction but at least by definition), we can intro-
duce the reduced-order model by Galerkin projection of P (1) onto a low-dimensional subspace

of X as already announced in Section 4.1.

Definition 4.2.2. Let a and f¢ be as in Definition §.2.1 and X := span{¢!,... . ¢V} C X.
Then, finding o™ (1) € XV, such that

a“(@ (), vsp) = f(vsp), ve XV, (PN (1))

1s called Primal Reduced-Order Model.

At this point it is not clear how to choose the basis functions £, 1 < n < N, in order to
obtain a good reduced-basis approximation space X*V. This issue, however, will be dealt with
in Section 4.4, where we describe POD as well as a prototype of the standard greedy algorithm
usually used in the context of RBM.

Finally, we consider the offline-/online decomposition. By the bi-linearity of a(-,-; ) and the
linearity of f€(-; 1) the coefficients of the solution @V (p) = SN 4N (u)e™ € XN of PN(p), ie.

n=1"n

v (p) = (ﬁnN(u))iLl € RY, can be computed by solving

A ()i () = F(n), (4.2.3)
where
Ap) = (ae(gn,’gn;'u))Kn n/<N e RV,
Fu) o= (F€m) € BV,

which is of complexity O(N?3) as A°(u) usually is a dense matrix. Moreover, from (4.2.2) we
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infer that in the online phase we can assemble (4.2.3) in O(M}N + MEN?) as
Mg
A(p) =Y () A™,
m=1

My
F(p) =Y 05 (p) F™,

m=1
where
AT . ( m n/’ n) RNXN’ 1< <M6,
a™ (¢ &)KWSNG <m < Mg
m._ m(¢n N < < €
F U({»K@NGR, 1<m< M,

can be precomputed in the offfine phase in O((M§N + MEN?)N). Hence, the complexity of the

online phase is A-independent and @ (1) can be computed rapidly.

4.3 Non-Affine Function Approximation

In this section we focus on obtaining approximations for the forms a and f used in Definition 4.2.1,
i.e. a® and f€ satisfying (4.2.1) and (4.2.2), where we assume that the parametric dependency of
a and f on p takes the form

a(w,v; p) = a(w,v; A(5 ),
flusp) = f(v; E(5 p),

where (-, A): X x X — R and f(;F) € X’ are linear in their last argument, i.e. 4 and
F, respectively, too. Moreover, A(z;u) and F(z; ) may consist of several components, where
each component is in L () for fixed p € D,q and sufficiently smooth in D,q for fixed z € Q.
We will subsequently give a particular example. Now, we assume that we can derive constants

Ya, V§ < 00, such that for w,v € X

a(w,v; A) < val All Lo lwllx [0l x,

f; E) < 37l El Lo llvllx,

where e.g. ||Al|. (o) denotes the maximum value of || - ||, () applied to each component of A,
see also (4.3.17). Then, the problem of deriving the desired approximations a¢ and f¢ reduces

to (due to the linearity of a in A and f in F) deriving approximations for A(z;p) and F(z;p)
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