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Abstract—Modern engineering analysis requires accurate, reli- a many-query context (such as robust sensitivity/uncertainty

able and efficient evaluation of outputs of interest. These outputs analysis or fatigue analysis), current SIF procedures are often
are functions of “input” parameter that serve to describe a adequate

articular configuration of the system, typical input geometry, . . . .
re]aterial proper?ies, or boundaryyconditioﬁz and Igadsg In mar?y We present in this paper a technique for the rapid and
cases, the input-output relationship is a functional of the field reliable prediction of the SIF outputs of a crack model
vgriable.- which i.s the solution to an input-parametrized.part'ial with parameter dependence. The essential ingredients)are (
differential equations (PDE). The reduced-basis approximation, rapidly convergent reduced-basis approximations that provide

adopting off-line/on-line computational procedures, allows us . . . . L
to compute accurate and reliable functional outputs of PDEs inexpensive solution by Galerkin projection onto a space

with rigorous error estimations. The operation count for the W~ Spanned by solutions of the governing partial differential
on-line stage depends only on a small number N and the equation (PDE) afV selected points in parameter spade);, (
parametric complexity of the problem, which make the reduced- a posteriori error estimation that provides inexpensive yet
basis approximation especially suitable for complex analysis such sharp bounds for the error in the output of interest; &gl (

as optimizations and designs. In this work we focus on the . . : )
development of finite-element and reduced-basis methodology for offline/online computational proceduresmethod that decou

the accurate, fast, and reliable prediction of the stress intensity Pl€ the generation and projection stages of the approximation
factors or strain-energy release rate of a mode-I linear elastic process— which allow us to calculate the output of interest

fracture problem. With the use of off-line/on-line computational and associated error bound in very few operations (depending
strategy, the stress intensity factor for a particular problem can only on N, typically small).

be obtained in miliseconds. The method opens a new promising Thi . ized foll In th t i
prospect: not only are the numerical results obtained only in IS paper 1S organized as follows. In the next section

miliseconds with great savings in computational time; the results W€ Will present the formulation of our linear-elastic Mode-
are also reliable - thanks to the rigorous and sharp a posteriori | fracture problem. The reduced-basis approximation and our
error bounds. The practical uses of our prediction are presented a posteriori error estimation is discussed in Section Ill and
through several example problems. Section IV, respectively. Several fracture mechanics applica-

Index Terms— reduced-basis approximation, a posteriori error  tions are given in Section V. Finally, Section VI provides some
estimation, linear elasticity, stress intensity factor, brittle failure  prjef concluding remarks.

I. INTRODUCTION

Fracture Mechanics [6] provides the theory of failure anal- [I. MODEL PROBLEM
ysis of material and structures containing cracks; the stress o
intensity factor (SIF) is a key quantity because it indicated Problem description

the singular intensity of linear elastic crack field. SIF plays a \e consider a linear elasticity problem corresponding to a
dominant role in many fracture mechanics applications such@gck notch inside a two-layer materials plate. The left material
fatigue crack growth prediction or analysis of ultimate cracay pe viewed as a coating providing protection. We show in
instability and failure. . Figure 1 the original domain of the problefa?(d), consisting
However, exact solution of the SIF can be obtained fQj two layersn? and corresponds to two different materials
just a few problems, even in such cases, SIF data are usugljy, Young modulusE; and E,, respectively and the same
presented in either tabular form or graphic diagrams [9], whighyisson's ratia, = v, = v. The two layersQ9 and Q9 are
make it difficult to extract the information accurately by eithegt width 7 and 47, respectively. The crack is of length the
correlations or interpolations. For complicated problems, SB'_rate is of lengthd = 57 and of heightiw. We impose traction
solutions are sought by numerical methods such as fingg at the top[', Neumann symmetry condition of the plate
element method and boundary element method, which &ighterlinel'., and Dirichlet boundary condition on the right
usually very expensive [12]. Hence current SIF procedurggje of the platd’ z. The displacement field® (i<; 1) satisfies

are either fast but not necessarily reliablethe former—  {he (plain strain) linear elasticity equation @f. Using non-
or reliable but not very fast- the latter. Because practicalgimensional terms

applications usually involve a real-time context (such as non-

destruction evaluation (NDE) or online safely monitoring) or Eio = 1E_1—VZ T = £ (1)
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<~ el 3 a(u®,v;p) = Z@q Yad(u®,v) @)

f(v; )

Z 0% (1) (), ®)
T'n =
b whereQ, =6, Q¢ = 3.
o o og o
' B. Output definitions

The methods for extracting SIF from a finite element
solution fall into two categories: displacement matching meth-
ods (such as the displacement correlation technique [7]) and
: energy based methods (including the J-integral approach [8]
T - and the virtual crack extension approach [10]). In the former

—d Sl category, the displacement values of nodes near the crack are

: ! used to extracted the coefficients of the asymptotic expansion,

0O(p) o Q assumed that the form of the local solution is already known.

L In the latter category, SIF is related directly to the energy

Fig. 1. Fracture problem: (a) Reference domain, and (b) Origin&lease rate (ERR).

domain The displacement matching methods have some advantages
over the energy based methods, such that that they are usu-

ally much simpler and easier to derive, but they have some
drawbacks as well. One of the major disadvantages of these

methods is that the form of the output functional is usually

nbounded thus leading to difficult theoretical and numerical
guestions. The energy based method, in the other hand, usually
a(u®,v;u) = flo;p), Yo € X° (2) provide bounded output functional form, so the convergence

here X¢ is th . Hilb defined his at least guaranteed. There are a number of energy-based
where IS t_e gppmp”ate libert space defined over t gpproaches to compute the ERR; for example, Parks [10] used
physical domairf2”, anda and f are continuous bilinear and

i ; . b matrix stiffness derivatives to compute ERR by taking note that
inear forms given by the contribution to ERR is only from elements near crack-tip
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we can write the non-dimensional governmg equation for tHe
displacement field:®(z¢; u) € X¢(u) a

e B oug (1) Ovg, ou§ _ 2y Ovy, region. In this paper, we will directly compute the ERR by
a(ut,vip) = /Q1 Ox; Eij“&Tq * /92 oz E”’”H@ taking advantage of our parametrized form.
For Mode-I fracture problems, the SIK can in fact
floip) = / v (4)  pe extracted directly from the ERR. ERR is defined by
Fa G¢ = —%L;, where I1¢ is the total potential energy; the
In our plain-strain assumptionE(jlk?) = égm)éijékl + total potential energy of our finite element model is given

&™) (81051 + 0ud,x) is the constitutive tensor, whe@"? by TI°(k) = 5a(u®(n), u®(p); p) — f(u®(p); 11). We can write
and &%) are Lame’s constants, related to Poisson’s ratioflon-dimendionalX> and (dimensional)s as
v, and the ratio of the two non-dimensional Young modulus, (d E2> 19 b

/{:E~1/E~2, by ;vETl _5% (7 a/J’) ad ( ,U,) (9)
A = (1+yf(y1f2u) &= 2(111/) ®) S e = d E,
K(60,d,t, E1, E2) — 50Vl G (~, = >7 (10)
52 _ v O ©6) t B

T A2 2 T :
(L+v)(1 = 2v) 2(1+v) respectively. Note thag is the differentiation with respect to
We shall considef” = 2 parametersy, = d (non-dimensional only 4.

length of the crack) andi; = ~ (ratio of the two non-  \we define our output of interest (1) = G°(x), and hence
dimensional Young modulus), for the parameter donfais . . .
[2.0,4.0] x [0.1,10]. 5°(1) = s1(p) + s3(w) (11)

In order to apply our methodology we m&p (d) — Q = where

Q0(d = d*f = 3). The domain(, is further divided into sS(p) = L(uf(p), p) (12)
. . . . . 1 ’

three domain$§4, Q4 and2s. The transformation is piecewise s(w) (W (), u (1), 1) (13)

affine: an identity forQ;, Q5; and dilations forQ2¢ and Q5. 2\H PRUA), W), 1)

In these mapped coordinategu®, v; 1) and f(v; ) can be wherel and p are continuous (bounded) linear and bilinear



forms defined by region around the crack tip, an#l; is the enriched function

D) defined based on the asymptotic fields. For homogeneous
I(sp) = 2 () (14) material around the crack [3],
. 1o _ .0 0 A 0 .
p(-,-,u)—fi%a(-,-,u). (15) w,(r,0) = {\/;sm2,\/770082,\/7751n251n9,\/77“cos2sm9},
Our (output) bilinear and linear form are also affine in the ) (20)_
parameters where(r,6) are the local polar co-ordinates at the crack tip.

In general, we cannot find the exact solution for (2),

21 100% (1) h lace® (), u® (1) Wi in fini
. - o ence we replace®(u), u¢(p) with a Galerkin finite element
Wosp) = Z [ 94 ]fq(“) (16) approximation,s(u) = sVt, u(p) = w*: given u € D,
q=2
Q59 a(u(p),vip) = f(v),Yv € XN = X (21)
pwivin) = 3 | = 20 a0 .
g a an
o, () = s1(1) + s2(n), (22)
= 07 (1)p?(w,v), (17) where

s s1(p) = Wulp); p), s2(p) = plu(p), u(p); 1), Vo € X. (23)

wherew,v € X¢. We note that =0 forq=1,2 so

Q, = Qo —2 9a Here X C X¢ is our finite element approximation subspace
P “ of dimension\ defined above. We assume thét is large

enough so our approximate solution is near to the “truth”

C. Finite element formulation solution. Note our online complexity will be independent of

The singular crack-tip stress and strain fields cause a vé\’/;/ i ) i
difficult problem for solving fracture mechanics problem by W& denote the inner product and norm associated with our

L. . . i = xM _
finite element method. The polynomial basis spaces used ffPert spaceX (= X*) as(w, w)x and|jv]x = v/(v,v)x,
most conventional elements cannot capture these behaviolffSPectively. We further define the dual norm for any bounded
and thus the finite element solution converges very slowfj€ar functional as
to the theoretical solution when the mesh is refined. To ;o h(v)

- . 17 = sup ——; (24)
overcome this difficulty, various attempts have been made to vex |[vllx
include these singularities in the glemgnt formulatlonl.‘ The MR our case, we may choose
most common treatments for this difficulty are the “quarter-

point” element suggested by Barsoum [2] and Shaw [5], or (w, ) x :/ ow; ;kl%' (25)
the enriched finite element method [12] and more recent ’ o Oz " Oz
generalization [3]. We next introduce the linear operatbt : X — X such that,

The “quarter-point” element captures the singularity of the
stress and strain fields by moving the element’s mid-side node
to the position one quarter of the way from the crack tip to
the far end of the element. Although it is accurate and easy
to use, the crack tip field is not reproduce exactly, and the
method does not have a firm theoretical ground.

The enriched finite element method exploits the partition
of unity property of finite elements identified by Melenk
and Babuska [1] which allows local enrichment functions
to be incorporated into a finite element approximation. For
fracture mechanics problems, the region around the crack-tip
is enriched by the the local function of the asymptotic fields,
and thus can capture the singularity of the fields exactly if
correct enriched functions are used.

We define our finite element approximation space as

XN:X1 x X, (18)

Fig. 2. Finite element mesh
whereu = (uy,u;) € XV, and

X1 = Xipp+span{TV; <jca} for anyw in X,
Xo = Xopp+span{YV,<j<a}, 19) (THw, v)x = alw,v; 1), Yo € X, (26)

whereX(%)hvp is our usualpt™ order finite element spac& We can then define a symmetric positive-semidefinite eigen-
is the partition of unity function valid in a small “enriched”value problem related to the (squared of the) singular values



of out partial differential operator: givep € D, (®;(u); € [1l. REDUCED-BASIS APPROXIMATION

X, pi(p) € Ryi =1,..., NV, satisfies In this section, we shall build our reduced-basis approxima-
(T#®, (1), TH0) x = pi()(®:(1),v)x, o € X;  (27) tion using the “truth” approximation and we shall evaluate the
_ error in our reduced-basis approximation with respect to this
the eigenvalues are ordered such that p; < p, “truth” approximation. We will only consider the quadratic
We normalize our eigenfunctions &gb;(u1)|x = 1,4 = outputsy(x) in this section. The linear output; (), and
1,..., N, and hence orthogonality reads the reduced-basis approximation (and dsposteriori error
estimation) associated with it is discussed in details in [13].
(T90,(0), 740, () x = pu(®a(10). B (10) x ) 3]

= pidij,1<4,5 <N;, (28) A. Preliminary definitions

wheres; ; is the Kronecher-delta symbol. We may then identify \We first defineV = (N, Na.) whereN,, andNq, refer to
BN () = Blu) = /pr(p) and N (1) = (i) = ow, (1) the size of our primal and dual reduced-basis approximation

where 3(y) is the continuity parameter spaces. We also specifyf,; max and Nqumax as the upper
limits on the dimensions of the primal and dual spaces,

Il IA
S
2

. T,u .
B(u) = inf sup o) e Tl (29) respectively. . .
weX pex [lwlxllvllx — wex w|x We next introduce sets of primal and dual parameter points,
and~(u) is the usual continuity parameter, B, 1< < Normax andpg, 1 < n < Nau,max, repectively.
(w,v; 1) I THu| Our primal reduced-basis nested approximation spaces are
~(1) = sup sup O GH) gy WX (30) then given byWy' = spafu(ub?),1 < n < Ny}, 1 <
wexvex wlxllvlx — wex [lwllx Npr < Npr max, Where theu(uP"), 1 < n < Np; max are our

For our problem, we observe thais symmetric and coercive. “snapshot”. In actual practive we expreBsy in terms of
Our truth approximation spac& = X+ is a (quadratic) the basis(i',1 <n < Ny, where the(?*, 1 <n < Npr max,
finite element space of dimensidvi = \; = 2450. The finite are generated from the(u}"), 1 < n < Ny max, by @ Gram-
element mesh in Figure 2 is chosen as a mesh refined aros§éimidt orthogonalization process relative to the) x inner

the crack-tip to obtain better accuracy. The enrichment regigroduct.

is chosen as two nodal layers around the crack-tip. For givenu € D, our primal approximation.y,, € Wy
We illustrate the convergence in term|&—Ey|/E,) of our ~Satisfies o
finite element model for the cage = [3.0,1.0] in Figure 3, a(un,,, v p) = f(v),Yv e Wy (31)

whereh is the average mesh length=A"~'/2 andE denote e denote the primal residual is

our energy norm. The reference solutiBp is chosen as the .

solution of a very fine mesh whetk}, = 51845. We note N, (Vip) = f(v) —alun,,,vip),YveX  (32)
that t_he convergence of the model is improved relat_|ve to t &d the primal error igP (1) = u(p) — un. (1).
classical FEM model as it correctly captures the singulari Y our dual problem)Ner € X satisfies pr
fields around the crack. The convergence rate of the model
using _Iinear ele_m_ents is of order 2, which is equivalent to the a(v, Y™ (u); ) = p(un,, (1) +u,v;p), Vo € X, (33)
analytical prediction. However, the convergence of the mo e then define our dual reduced-basis nested approximation
using quadratic elements is only of order 3, which may b grdn — Normwx (100 | < 1 < Noo} =

due to the fact that only the first singularity in the enrichmerfP2®S 8%V, = spar{Termex ("), 1 < < Naw} =
functions was used. Spar{(n 71 S n S N]%u}:l S Ndu S Ndu,maxa where our
dual approximationy > € Wj%gu,satisfies

du

\ \ a(v, Y7 (1); 1) = p(2un,, (1), v; ), Yo € WS (34)

and the dual residual is
107t E
Np:
T?\}ir’Nd“(U; ©) = p(2un,, (1), v; u)—a(v,deu,v; w), Vv e X.
" (35)
O We consider our quadratic output
ol , s2(p1) = plu(p), u(p); p) (36)
wherep(u(p), u(u); 1) can be represented in the parametrized
107 ] form as in (15). Our reduced-basis output approximation
so.n () is defined as
v ¢ Npr
e " = s2.n (1) = plun (), un (1) + iy, (nln (w)ip). (37)

We can then prove

Fig. 3. Finite element convergence sa(p) — S2,N(,u) =a(u— uNpr,¢Np,. _ w%g:;u)ﬁu €D,

(38)



which is the usual “quadratic” result [11].

B. Offline/Online approach

Even thoughV,,,, Na, may be small, the elements W‘”
and W' are in some sense “large”: for examplg” =
u(pbr) will be represented in terms of > N, truth finite

element basis functions. To eliminate thé&dependence, we

employ the offline/online computational strategy.

To begin, we expand our reduced-basis approximaion as

Npr
p) =Y un, ()¢ (39)
=1
Nju
Z DN (gt (40)

Follows from (37) that the reduced-basis output can be ex-

pressed as

Npr Npr Qp

DID DY BLEMID
j=1j'=1q¢=1

Nau Qr

Z Z UNawi (1

j=1g=1
NPF Ndu Qa

= 20D umln

Jj=1j'=1¢=1

s2.n () un,, g (1) OF (1)p? (¢}

F) fAG)

)N (1)OF (1)a’

where the coefficientsy, ;, 1 < j < Ny, andwN‘“ 1<5<
Ny, satisfy the Ny, x Ny, and Ngy X Nay I|near algebraic
systems

Z (3 08007 ") 1) Z 0% (1) F(CF"),
j=1 gq=1
1 § i < Ny, (42)
and

Nau
Z { Z @q u du }¢Nduj

Nopr

2 Z {UNprJ Z @q Cdu)}
j=1
1 <i< Ndu-

L Gr)
J

(41pnd invert theN x N matrix ZQ“ 04 (p)ad(¢d

TABLE |
REDUCED-BASIS APPROXIMATION CONVERGENCE

N Ein &N N
5 | 1.65E-02 | 2.46E+00| 96.4
10 | 2.23E-03| 5.21E-02| 48.6
15| 3.89E-05| 6.93E-04| 41.6
20 | 5.13E-06| 1.28E-04| 43.5
Ex v &N N
5 | 1.60E+00| 1.07E+03| 5915.2
10 | 2.91E-01| 2.56E+01| 1509.3
15| 9.42E-04 | 5.21E-02| 1218.4
20| 3.53E-04| 2.57E-02| 770.1
25| 1.50E-04 | 6.35E-03| 538.5
30 | 9.39E-06 | 8.95E-04 | 443.7
35| 4.57E-06| 4.55E-04| 520.5
40 | 8.99E-07| 1.40E-04| 589.4

¢, and
then formZQP O (1)p(¢5 Cd“) which together will give
us ;). We then perform the summation (41) this

CJ )ylelds sy(u). The operation counts for the online stage is

O((Q,+Q.)N?) andO(N?), respectively, to form and invert
the necessary matrices; afe((Q, + Q.)N?) + O(Q¢N)
to evaluate the output. The essential point is the the online
complexity is independence aofV. We expect significant
computational savings sind¥ < N.

C. Numerical results

We present in Table | the convergence of our outputs. We
present the results in term of = Ny, = Ngy. The errorEé,N
is the maximum of the relative errdg, (1) —s1 n (1)[/[s1 (1),
over a random parameter test samflg, € D, of size
ntest = 1089, where s;(u) and so(p) are defined by (23).
We observe very rapid convergence with

IV. A POSTERIORERROR ESTIMATION

A. Error estimation

The offline/online decomposition is now clear. For simplicity, We now assume that we are giveft (1) and 75 (u), two

below we assume thaV,, = Ngq, = N.

In the offline stage— performed once— we first solve
for the ¢, ¢v,
FUET), fq(Cid“), 1 < i < N 1 < ¢q < Qf, and

at(¢, ¢, at(¢ M), at(¢h cd“),l < 4j < N,
1 < ¢ < Qg and finally Qp( LG, QL G,
1 <47 <N, 1 < q < Q.

1 < n < N; we then form and store

Note all the quantltles

positive functions which will be defined in the next section.
We now define our output error bound as

ARG = (gg ;) 752 o )]

’ pr,, . ,
* ﬁ(u)g*( FagE o s (sl IKies (5 )l

(43)

computed in the offline stage are independent of the pgheres(x) is defined in (29).

rameter . In the online stage- perform many times, for

each newy - we first form and invert theV x N matrix
ZQ“ 02 (pu)a? (¢, ¢M), solve foruy;(p), and then form

It can be shown that

ls(p) = sn ()| < AN (p), Vi € D. (44)



TABLE I

COMPUTATIONAL COST TO EVALUATE 5,2, A}Z, AND sg‘ff AS A introduce the funCtloryﬁ :D—R
FUNCTION OF N (N = Np;y = Ngy); THE RESULTS ARE NORMALIZED P
WITH RESPECT TO THE TIME TO CALCULATEsy FORN = 5. gﬁ(ﬂ): né%)é {1 + Z mjn[ﬂ.p(Mp_ﬁp)xgmx,,@p(,bp_ﬁp),\%mm]
K p:l
N Online Time Time Q
sne A% Y +) min K@w—@%m—z - g@",(u)n,,/mp/—up/))sg,m,
5 1.00 5231 -
10 1.20 53.81 <@"<n>@"<u>25=1 &‘ﬁ(u)w(wum)sz,nm,] } (51)
15 145 55.23 where, forp=1,..., P,
20 1.98 57.01 R _
3900 . Y 22 (@)at (w, THw)
25 2.25 59.23 P = min(max) z 5 (52)
fymin(max) e e Ny e [[|w]||%
30 271 61.81 ®
35 352 64.71 and, forg =1,..., @,
q g
40 4.44 67.87 & = min (max) at(w, T w) Qw) (53)
F;min(max) weX weX |||w|||ﬁ

We can then prove, for givela € D, gp(u) < BF(M)B//J e D.
B. Construction ofyX (1) and 75 (1) That makesyz(1) a lower bound approximation gf(x).

i To computegz (1), we note that we can write it in the form
We turn to the development of our functiop$ (1) and
7K (1), which was used in our error estimation. Pro

ga(p) =1+ max min[Fy, (), Gm (k)] (54)

1) Construction ofgX(1): We define local natural-norm KERP
inf-sup and continuity parameters as

m=1

where theF,,, G,,, 1 < m < P + @ are affine functions of
a(w,vip) o [[THw]x (45) - The sum (54) is essentially a Linear Program.

Oz(p) = inf sup ——————— = —
Pl) = Il SO Tl — bk [Tl

a(w, v; p) [T"w]|x
Yz(p) = sup sup ————— = sup ——, (46)
a weX vexX [[[wllzllvllx — wex [TFw]x

We can further enhance the sharpness of our lower bound
for 3;(1) by optimally locally align a parameter coordinate
with the largest gradients if; [13].

respectively. It is clear the fon = i, Bz = vz = 1. We can Our global lower boundgX : D — R, is then given by
also related the new norm with the original norm by proving

that 9 () = max gr(n), (55)
I < <@ . _ .
B(m)Br(n) < Bk) < ~(7)Balr) “7 we further defineg’, ;, = min,cp gX (1) and specify our
We further define indicator functionz® : D — VX as
— ) THw, TFw K( .\ _
Br(w) = inf W‘ (48) to (1) = arg max 97 (1), (56)

By Cauchy-Schwarz inequality, we can prove that in terms of which our lower bound may be expressed as

Bor(1t) < Balp). (49) 9 (1) = ggxe () (). (67)

or Bg is an approximation off;. We can prove that, for any given set of poit§,

It can be further shown thas; — B, (u)| ~ |[p—7%, 1 — T, 9 (1) < BE (), Vi € D. (58)

vﬁvhere|:| refers to the usual Euclidean norm. The resultis th\"}\tle finally propose a procedure to determine the set of param-
Pu(u) is a second-order accurate approximationsjg.). eter pointsVX so that our lower bound is of value. We first

We next introduce a set of parameter poibitS = {f € introduce a large parameter samg € D of sizen? > 1.
D,fiy, € D,...,lixy € D} an an associated “indicator’ \ne next setX’ — 1 and select a tolerande < Getol < 1

function 7z : D — VX which maps any givep € D t0 the e then choos@, which definesg! (1). We now proceed to
appropriate local approximation. Our global piecewise naturg|cylate fork — 1.

norm inf-sup parameter is then

— . li
7] = arg max min W= (59)
B () = By (1) (50) e P e, By, T
We now turn to the construction of this lower bound approvhere the-| norm can be chosen as the usual Euclidean norm,

imation. until o
We begin with a local lower bound. For givgnc D, we R g (1) = s tol- (60)



We note that the new proposed procedure above to b&hmmilarly, we can obtain
construct the offline data- set of parameter points® and
their associated data and online evaluation can be done [[7br yau (1[5 =
automatically. Qp Qp Npr Npr
’ q/
2) Construction ofrX (11): For eachi € D, we define Z Z Z Z O3 (1) (1) UNen (1) un,n (1)L Q) x

qg=1¢'=1n=1n'=1

72 su p(v, v',u)' 61 @p Qa Npr Ngu ,
G & T O 2y S S 086 (hrny () (1)( 28 ME )
The upper bound of; can be taken as a=lg'=ln=ln'=1
Qa Qa Nau Nau
Z p?(v,v) +Z Z Z Z Ol (u ,U JUNgun ()Y Ny (M)(M%vMZ’)X
1O (1 T (62) — —
||T;L || g=1q¢'=1n=1n'=1
(69)
Our parameterX : D — R is then given by where Q1 € X,1 < n < Q,,1 < n < N, and Mg €
Tf(u) :TﬁK(p,)(;u')' (63) X, 1 <n < Q41 <n < Ngu satisfies the parameter-
. independence problen’(Q v) = p?(2¢P*,v),Yv € X and
(M3, v) = —a?(¢3%,v), Vo € X, respectlvely
For the sake of simplicity below, we assume thét =
_ _ Ngu = Np:. The offline-online decomposition is now iden-
C. Offline/Online approach tified. In the offline stage- performed once- we first solve
forCi,1<g<QrandLy, 1 <qg<Qq1<n<NandQyf,
We first demonstrate the offline/online decomposition for< ¢ < Q,, 1 <n < NandM?,1<qg<Q,,1<n<N;
the term||rR. (-, )| x- we then evaluate and store all the parameter-independence in-
To begin, we note that from duality argument that ner productsC?, C?)x., (CQ,E%/)X, (L2, L%)x,(Q%,97)x,
rRee (0, 1) (Q1 ML) x, (MELML)x, 1 <nn' <N, 1<qq <
7R (-5 1) |7 = sup 2 = (é(p), 0),0)x  (64) Qf Qa,Q,. In the online stage- performed many times,
vex ol for any new value of:s — we simply evaluaté)r,. (-, u) | x-
whereé(u) € X satisfies and \r%;r nau (5 1) || x in terms of@},@ ,OF, unn(p) and
(E(1),0),0)x = 120 (0, 1), (65) ¥nn (1) and the precomputed and stoifed) x inner products.

The operation count for the online stage(%(Q2 + Q> +
It follows from Q.Q,)N?) — independent of\" — and commensurate with
the online cost to evaluatey (u).

(I
river (v, 1) Z@ D. Sampling procedure
Our error estimation procedures also allow us to con-
a Pr
struct good parameter sampl6§ , S (and hence spaces
=303 O (uuny (e, v), (66) SHUCtgood p PIB,,. S, ( P
WN L WRL)- We only present the procedure to construct

Sy, here, smceSj‘lvu can be constructed in a similar manner.
We first mtroduce a large parameter samplg,; in D of

g=1n=1
and linear superposition that

Qa Nor size n*** >> 1. We then setN = 1 and choose.}" which
é(p) = ZG"C‘J + ) Ouy,nLl (67) defines the first basig}". We now then proceed foN =
q=1n=1 1, Ny
wherqueX1<n<Qfand£‘1eX1<n<Qa,1< 1 o
n < N, satisfies the parameter- mdependence problems‘Nﬂ arguegfslﬁfgsprm”ﬁv(ﬁﬂ)”)@ (70)
(C1,v) = fi(v),Yv € X and (L%, v) = —a?(¢P",v),Vv € X, *
respectively. We then obtain where (@) is defined in (29). The crucial point is that
the terms that appear in the right hand side of (70) can
Qr G be computed “online-inexpensively” and presented the true
R G )3 =Y > ©% )(C7,e7)x primal error||u(z) —ux (1)|| x . This permit us perform a very
¢=1¢'=1 exhaustive(n®®* > 1) search for the best sampk&;, S
Qs Qa Ner , and, hence, determine the smalléétfor which we achieve
+23 3N 04w (Wun,. (€7, LY) x the desired accuracy.
g=1q¢'=1n=1
Qa Qa Npr Npr / E. Numerical Results
+ Z Z Z Z @} I)UNnUNer (L3, L30) X - We first apply algorithm (59) for the uniform grid, over
a=lg¢'=ln=ln'=1 D of sizen, = 1089; we satisfy the desired tolerance for

(68) K — 11 for the criteriag, to1 = 0.5.



We present in Table | the convergence of our output. W8, = 79.23GPa [4], for the simulation. Physically, the
present the results in term 8f = N, = Nq,. The errorE; y Young's modulusE, of the coating region changes due to
is the maximum of the relative errdg, (1) —sy n(p)|/[s3 ()|, environmental conditions [4]. We are interested in finding
and the error boundé’N is the maximum of the relative errorthe maximum applied tractionr, so that the condition
bound,\Afé(u)|/|sl(M)|,overauniform parameter test sampldtworstcase = 0.5Kjc is still satisfied. This condition is
S € D, Of size et = 1089; the effectivity 7% is the equwalent to the condition .that the 'cr'ac’k will not propagate
average of the effectivitypl, (1) = A% (1)/|s(1) — sn ()], with safety factor0.5 accprdmg to Griffith’s theory.
over the parameter test sampi..;. We observe that the From (10), we can write
effectivities of the linear outputs;(p) are good, but the 0.5K;¢
effectivities of the quadratic output () are quite high. The g0 .
reason is maybe due to the large rati (1)/gX (1) (which Vi G(%, E2>
is order of ten) which appears in our error estimation.

We also present in Table Il the online reduced-basis compuhich gives
tational cost to evaluatey > (1) and its error bound\}; to the
finite element cost to evaluataé\/f for any givenu. Although 70,max = (d.i.Fa)eD
we expect that the online times to calculatg » and A% v
should be commensurate with each other, we observe that bnote
A3 computational time is much more than thatsgf . The v (d, T By) = 0.5K;¢ (75)

f‘
reason is that the online time to calculals? is “polluted” = . (i B s (d E
\/Z{ <£ 2 ) )+ A% (4 2

= F(d,i, Es), (73)

by a poor LP solver for computing thg® (1) (55); 70% of

the time is due to the LP. wheresy andA$, are defined in (72), then our approximation

optimization is
V. APPLICATIONS _

To demonstrate the advantage of our method, we apply our Tomax,N = s Bayeb

results to some simple fracture mechanics problems. We o@y solving the above optimization problem, the “feasibil-

focus on using our technique to predict failure for simplc? N e o
brittle material in this paper, but other applications includ'eylsafety. co.nd|t|on is ensured thanks to oar posteriori .
’ eyror estimation. We note that the ERR for our problem is

fa“‘%“? crack growth, and prediction crack instability basenot monotonically increasing witk, since it is affected by
on “R” curves [6].

. . . H’le Dirichlet boundary conditions ohig, hence a search is
The theory of fracture of brittle materials is deveIOpenecessar We will anolv a “brute-force” method to search for
by Griffith, who proposed his well-known Griffith’s theory. Y- PPl ~

Griffith formulated the concept that a crack in a componeme minimum value ofFy (d, , ) for a very fine grid points,

: . ; ven though more general optimization algorithms are appli-
will propagate if the total energy of the system is IOWere@able. We conside8000 sample points and obtain the max-

with crack propagation. That is, if the change in elastic Strafrq]élm applied traction forceg ..y — 7.6266N/m where

energy due to crack extension is larger than the energy requi{ﬁe parameter i$ci 7 Ez] — [2.8(mm), 1.2(mm), 500(GPa)].

to create new crack surfaces, crack propagation will occur.__ > "~ .~ LT ) i .
) : This critical point is clearly not obvious. The simulation takes
Previously, we have constructed the reduced-basis apprl;x-

imation to estimate SIFs for the two-layers plate problem. €ss than 5 minutes in total, which is about 40 miliseconds

. T . each parameter test point on a P4 1.5GHz computer. This
short, the reduced-basis approximation can be estimate Slfs . L .
. . . emonstrates that in many-query applications, our method will
in real-time for an arbitrary parameter € D, whereD =

[2.0,4.0]x[0.1, 10.0]. For a given set of “inputs(d, t, E1, E), work very efficiently.
we can estimate the ERR as the outplt s(u). Moreover,
if we define VI. CONCLUSIONS

8(p) = Vs(p), (71)  In this study, we show that, with the use of our reduced-

basis approximation, fracture parameters - SIF and ERR values

- can be calculated rapidly yet rigorously by certified error

estimation. This offers a new, very promising approach for

4 1 — A" + TAS many failure analysis applications that require both real-time
Von () = A3 () + Vv ) + Ay (1) and/or many-query evaluations.

then the reduced-basis approximatién (¢) and its error
estimationA% (1) are given by

)
2
=

Il
Nl

Vv () + A% (1) — sn(p) — A% (w)
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