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(a) & = Qaiag

Av | tol=1le—1 | tol=1e -2 | tol =1e —3 | tol = 1le — 4

5° 1 1223 | 976 | 1160 | 852 | 1060 | 716 | 861 | 502

15° | 1131 | 797 | 1002 | 623 | 781 | 399 | 568 | 255

25° | 1064 | 686 | 878 | 479 | 583 | 262 | 356 141

35° | 953 | 556 | 701 | 342 | 447 | 187 | 221 84

(b) &= Gsym

Av | tol=1e—1 | tol=1e -2 | tol =1e —3 | tol =1le — 4

5° 1 1102 | 717 | 982 | 526 | 835 | 355 | 633 191

15° | 929 | 462 | 748 | 268 | 475 122 | 292 58

25° | 793 | 301 | 542 140 | 305 61 137 24

35° | 671 198 | 409 87| 177 31 82 14

Table 4.3: Computational savings for computing éfa\}yg(u) (first columns) as well as é%c(u) plus
Aé\;g(u) (second columns) in dependency on Av and tol, where N = N(tol) and

¢ = ((tol) are chosen, such that Aé\;j’c(,u) < tol é%(u) for all p € Ztrain DSZAV.

N

s (1) (again except for the eval-

comprises all remaining computations needed for evaluating A
uation of B (1))

Incited by these factors, we want to determine in the next subsection whether it is beneficial
to pursue another way of treating quadratic outputs that works without extending P(x) and

D() to one big problem.

4.6.2.2 Non-Extended Formulation

The second method for obtaining an improved a-posteriori error estimator for quadratic outputs
is more intuitive, which is why it turned out to be the predecessor of the method presented in
the last section and can be found e.g. in [23]. The reason for presenting the predecessor after
the successor is quite simple. The method presented in the last section efficiently eliminates the
quadratic non-linearity in the output by shifting the output bi-linear form b to the left hand side
allowing us to tackle the transformed problem with what we already knew to that point, whereas
the method to be presented next requires a new way of proceeding.

As for non-compliant linear outputs we start by introducing a dual problem, which reads as

follows.

Definition 4.6.9. Let u(p) € X be the solution of P(u) and @™ (u) € XV be the solution of
PN (p).
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4 Model-Order Reduction for Linear PPDEs

1. Then, finding ™ (n) € X, such that

a(v, N (u); ) = b(u(p) + @™ (p), v;p), v € X, (DN (n))

is called Dual Problem for the quadratic output sp(p).

2. Let a be as in Definition 4.2.1 and b¢ be as in Assumption 4.6.2. Moreover, let XN =
span{¢',... N} C X. Then, finding N (u) € XN, such that

a (v, SN (); ) = 020N (), 03 ), v € XV, (DN (1))

18 called the corresponding Dual Reduced-Order Model.

Before we continue, we have to comment on this definition. In contrast to the adjoint equation
from the last section, i.e. (4.6.25b), D (1) not only depends on the solution of the primal problem
P(u), i.e. u(p), but additionally on the solution of the primal reduced-order model PN (p), i.e.
@™ (), which we will also see in Chapter 6 when dealing with quadratic non-linearities in the
left hand side of the equation. Moreover, one obviously wants to avoid a build up of a reduced-
basis approximation space for each 1 < N < N™#* which is why XV does not depend on N
in the definition of ﬁN’N(u). In order to achieve this, let SN = {it, ... ,[/\7} denote the set of
(identified) parameters as usual. Then, for X% one chooses the span of solutions of DN ()

for all values in S’N, i.e.

XN = span{pN" (7Y, N (@),

which also implies that the construction of the bases for P(u) and DV (1) has to be performed
one after another which at least could be avoided for non-compliant linear outputs (c.p. Sec-
tion 4.6.1.2). Finally, while comparing DV (1) and ﬁN’N(u) one observes that in the first argu-
ment of b the term €™ (1) (c.p. (4.5.1)) has been left out, as

w(p) + " (n) = 28N () + e (), (4.6.32)

since it involves the solution of P(u), i.e. u(x). Hence, this omission has to be taken into account

while developing an a-posteriori error estimator for

In order to do so, we start again by defining in analogy to (4.5.2) and (4.5.4):

fﬁN(v;u) = 60 (20N (1), 05 1) — a® (0, DN () o), Rﬁ’ﬁ(u) _||~NN(,M)||X,, (4.6.33a)

-N,N -N,N -N,N 5N, N _N,N /.
Tss, (Vi) =757 (vy ) — 77 (03 1), Ry s, (1) = |I75,75, (5 1) | xr, (4.6.33b)
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4.6 Output Approximation

where §1 > 02 > 0, v € X and p € D,q, and in analogy to (4.5.23):

AN IN,N
BN () a1 (2fa” ()llx + [ (1)l x), 62 =0,
oozt BN, =N,
Ry s, (k) + Es g (1), 02> 0.
Having these quantities at hand, we can again present the a-posteriori error estimator for &V N (1)

in the following proposition.

Proposition 4.6.10. Let B(u) denote the same positive lower bound for the inf-sup stability
factor B(1) as in Proposition 4.5.1 and Ay(11) an upper bound for vy (11). Moreover, let 0 < § < €.
Then, the a-posteriori error estimator

A () = (RN () + B (1) + 3000 (1)

for (1NN (1) 1 x is

1. rigorous, i.e. we have

2. and effective, i.e. we have

N () < L) 1) (4.6.34)

~§gﬁ(u) + () AN () < &) BYY (). (4.6.35)

Proof. Apart from some modifications the proof can be done along the lines of the proof for
Proposition 4.5.1. For proving the rigorousity of A?%N(u) we start by observing that similar to
(4.5.9) it holds true that

a(v, %N (); 1) = alv, N () 1) — a(os PV (u); )

= bu(p) + @™ (1), v5 1) — a(o, NN (); )

= b(2i™ (), v ) — (o, §NN () ) + 0N (1), 05 1) (4.6.36)
v ) + b(eN (), vs )

vi ) + 7o (s 1) + b(EN (1), v ),

where we have used the definition of D™ (y), (4.6.32) and (4.6.33). From applying (4.6.8) for
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4 Model-Order Reduction for Linear PPDEs

(4.6.36) we obtain

BU)IIENN ()llx < NlalE% () w)llx
5NN A
<R ) + R () + An () 1™ (o)l
which already yields rigorousity, as 1eN ()|l x < AN(u) by Proposition 4.5.1, 3(1) < 8(u) by

assumption and R%N(u) < E?%’N(u) by construction.

In order to keep the proof of (4.6.34) more compact we introduce the following abbreviation:

E() = BN (1) + 30 (1) AV (1),

Then, in analogy to (4.5.11) from (4.6.35) we infer that

(1= &) (BN () + B(w)) < (1+ ) (RN (1) — B(w)). (4.6.37)

Moreover, by the same arguments used in (4.5.12)-(4.5.14) we obtain

R?’N(M) - RQ’N(M) <AIENY () lx + A6 ()N (1)l x
NN ()1 x + A () AN (),

=

)

<(wle

where for the last inequality we have again used Proposition 4.5.1. Next, shifting A () AN (1)
to the other side of this inequality and recalling that R?%N(,u) < E?%’N(M) yields

RN () = B() < A1V ()] x- (4.6.38)
Finally, using the definition of Aé\%N(,u), (4.6.37) and (4.6.38) yields the claim, as
(1= a()B(AYN (1) = (1 = &) (RE™ (1) + E ()
< (L+ &) (RYN (1) — B(u))
N

O

Before we are going to use this result for deriving an improved output approximation and a
corresponding a-posteriori error estimator for s,(u), we comment on the offline- /online decom-
position as well as the (automatic) adjustment of the approximation and estimation tolerances €
and 4. Starting with the first, we note that for fixed @V(x) the right hand side of DNN(N) is a
(parametric) linear form. Hence, the offline- /online decomposition for assembling D N (1) works
basically as described in Section 4.2, which yields an online complexity of O(leNN + M§N2)
By (4.6.33a) the same argument also holds true for the offline-/online decomposition for enabling

the rapid evaluation of A?SN(/;) Hence, we can again proceed as described in Section 4.5, which
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4.6 Output Approximation

yields online complexities of O((M{N + MEN)2) and O(((Mg — M{)N + (MS — MZ)N)?) for
evaluating R?’N(u) and E?%N(u). Recalling that we have postponed the rapid evaluation of
(1) to Section 4.7, we can turn to the (automatic) adjustment of the approximation and es-
timation tolerances € and 4. For this task the result we have obtained in Proposition 4.6.10 is
somewhat unhandy if we want to proceed in the same way as described in Section 4.5.1, as the
summand (1) AN (1) in (4.6.35) does neither depend on € nor 5. On the other hand, we can
divide A?féN(,u) up into

W AN (), (4.6.39)

whereas by Corollary 4.6.5

is a rigorous a-posteriori error estimator for || (1) fﬂN’N(u) ||x if we would have stated D]\f(u)
right from the start w.r.t. 2u’¥ (i) rather than u(p) 4+ 4™ (). Moreover, in this context A?SN(M)

is effective, if there exists a constant é(p) € [0,1), such that

Consequently, for A?%N(u) we can proceed as described in Section 4.5.1 in order to obtain

approximation and estimation tolerance adapted to N in an optimal way, such that in the sequel
we abbreviate

AN (1) = Aé\(f}irvmax,N),S(Nm“,N) (1), (4.6.40a)
ANF () = ANF () 1 75((#)) AN (), (4.6.40Db)
W

Note, that we have used N™#* rather than N for the same reasons XV is spanned by solutions
of DN™ (1), namely that we want to avoid deriving a reduced-order model for each 1 < N <
Nmax independently, which then would naturally lead to é(N, N) and 6(N, N) in (4.6.40a), too.
Moreover, there is even a stronger argument for dividing up A?%N(u), which, however, cannot be
presented until we have investigated the improved output approximation and the corresponding

a-posteriori error estimator for s,(u), which we want to do next.

Lemma 4.6.11. Let 4™ (u) and ﬂN’N(,u) denote the solutions of PN(u) and ﬁN’N(M), and
¢ > 0. Then, the improved output approximation for sy(u) takes the form

soi (1) = 80 () + Y NN () o),
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4 Model-Order Reduction for Linear PPDEs

and

AN () = Bl) AN () AN (1)

SN2 ~N IN,N IN,N (46.41)
+ (™ )l + 1™ ()l ™ ()l + 167 ()1 x)

is a rigorous a-posteriori error estimator for |sy(u) — éivéN(u)L

Proof. For proving that Aé\i’?(u) is an a-posteriori error estimator for |s,(u) — éivéN(u)\ we infer
from (4.6.21) and the definition of D™ (u) that

sp(i) = 8pc(p) — (0= 09) (@™ (), @™ (n); p) = a(e™ (), 9™ (); ).

Using this, the definition of ééV&N(u) and (4.5.2b) yields

so() — 82" (1) — (b — b) (@ (), @™ (); 1) — 2NN (); )
= sl(p) = 80 (1) = (0= 0) (@™ ), 0™ () ) = 7 (N () ) (16.42)
= a(e™ (), N () 1) — ale™ (), PN (1) )
= a(eN (1), &% (u): ).

The remaining part works along the lines of the proof of Lemma 4.6.6. First, we use Proposi-
tion 4.6.10 and (4.5.10) in order to estimate the absolute value of the right hand side of (4.6.42),

which yields the first part of the a-posteriori error estimator Aé\;’?(,u), as

Ja(e™ (1), N (); )] < lla(eN (), -5 i) llx [ENN () | x

. o (4.6.43)
< B) AN () ANN ().

For the second part we use (4.2.1) and (4.6.3b), which yields

& NN () 1) <1 = FODNN () )] + (@ — a€) (@ (), SN (); )|
< 1PN () x + <l () e[ () |1, (4.6.44)
(b= 6 (@™ (), &N (u); )] < Clla™ ()15

Hence, the claim again follows from (4.6.42), the triangle inequality as well as (4.6.43) and
(4.6.44). O

For the rapid evaluation of éé\fg(,u) and rév(z&N’N(u);,u) we just note that this has already
been investigated in (4.6.22)-(4.6.24) and (4.6.13)-(4.6.14), which leaves us with the argument
for dividing up A?%N(u) by (4.6.39). This, however, turns out to be quite natural if we think

of a strategy similar to the one presented in Section 4.6.1.1 in order to guarantee a prescribed
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4.6 Output Approximation

output approximation accuracy at least in 23 as

A ~ N7 N 2 A ~
Bl AN () AN () = A (1) (AN (1)) + B) AN () AN (). (4.6.45)
Hence, we can proceed as follows:
1. Specify tol > 0, =" C D,q and some weights w1 (0.6), w2(0.3) > 0, such that wy +ws < 1.

2. Stop Algorithm 4.5.1 for P(u) as soon as

max_ () (AN(M))2 < wy tol.

HeEtrain

3. Stop Algorithm 4.5.1 for D™ (p) as soon as

max_ B(u) AN (1) ANN (1) < ws tol.

#GEtrain
4. Choose (, such that

¢ max (™ ()13 + 18" ()l x [DVN ()| x + 16NN () x) < (1= wr —ws) tol.

m eEtrain

Note that we can tackle relative approximation accuracies as well, again by dividing (4.6.41)
and (4.6.45), respectively, by a low accurate approximation of |sy(u)|, e.g. |§l])V§(N) (u)] is a rea-

sonable choice.

Numerical Experiments’
In this paragraph we again perform several numerical experiments using the approach presented
above for our particular application at hand, i.e. for approximating the quadratic output derived
from the output bi-linear form b (c.p. (4.6.30)). Moreover, at the end of this paragraph we
want to pick that method for dealing with quadratic outputs which is more advantageous in our
situation.

As in the previous paragraphs of numerical experiments we start by presenting in Figure 4.24

the minimum number of reduced-basis functions for PV (1) as well as DN’N(M), such that

(1) (AN (1)) < wr tol 8 () and  B() AN (1) AN (1) < watol 5 (1) (4.6.46)

holds true for all € Z%#", The basic observation is that N(tol) is much larger than N (tol),
which, however, is not surprising considering the factors in front of the (products of the) a-
posteriori error estimator for the field(s) as 4,(x) takes much larger values than 3(u). Moreover,
we have to comment on the way these numbers are actually obtained, as this is the first time

we deal with a dual problem, i.e. D™ (u), depending on both u(u), i.e. the solution of P(u),

T All numerical experiments have been performed using MATLAB® R2007a and COMSOL Multiphysics® 3.4.
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