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Abstract— Modern engineering analysis requires accurate, reli-
able and efficient evaluation of outputs of interest. These outputs
are functions of “input” parameter that serve to describe a
particular configuration of the system, typical input geometry,
material properties, or boundary conditions and loads. In many
cases, the input-output relationship is a functional of the field
variable - which is the solution to an input-parametrized partial
differential equations (PDE). The reduced-basis approximation,
adopting off-line/on-line computational procedures, allows us
to compute accurate and reliable functional outputs of PDEs
with rigorous error estimations. The operation count for the
on-line stage depends only on a small number N and the
parametric complexity of the problem, which make the reduced-
basis approximation especially suitable for complex analysis such
as optimizations and designs. In this work we focus on the
development of finite-element and reduced-basis methodology for
the accurate, fast, and reliable prediction of the stress intensity
factors or strain-energy release rate of a mode-I linear elastic
fracture problem. With the use of off-line/on-line computational
strategy, the stress intensity factor for a particular problem can
be obtained in miliseconds. The method opens a new promising
prospect: not only are the numerical results obtained only in
miliseconds with great savings in computational time; the results
are also reliable - thanks to the rigorous and sharp a posteriori
error bounds. The practical uses of our prediction are presented
through several example problems.

Index Terms— reduced-basis approximation, a posteriori error
estimation, linear elasticity, stress intensity factor, brittle failure

I. I NTRODUCTION

Fracture Mechanics [6] provides the theory of failure anal-
ysis of material and structures containing cracks; the stress
intensity factor (SIF) is a key quantity because it indicates
the singular intensity of linear elastic crack field. SIF plays a
dominant role in many fracture mechanics applications such as
fatigue crack growth prediction or analysis of ultimate crack
instability and failure.

However, exact solution of the SIF can be obtained for
just a few problems, even in such cases, SIF data are usually
presented in either tabular form or graphic diagrams [9], which
make it difficult to extract the information accurately by either
correlations or interpolations. For complicated problems, SIF
solutions are sought by numerical methods such as finite
element method and boundary element method, which are
usually very expensive [12]. Hence current SIF procedures
are either fast but not necessarily reliable− the former−
or reliable but not very fast− the latter. Because practical
applications usually involve a real-time context (such as non-
destruction evaluation (NDE) or online safely monitoring) or

a many-query context (such as robust sensitivity/uncertainty
analysis or fatigue analysis), current SIF procedures are often
adequate.

We present in this paper a technique for the rapid and
reliable prediction of the SIF outputs of a crack model
with parameter dependence. The essential ingredients are (i)
rapidly convergent reduced-basis approximations that provide
inexpensive solution by Galerkin projection onto a space
WN spanned by solutions of the governing partial differential
equation (PDE) atN selected points in parameter space; (ii )
a posteriori error estimation that provides inexpensive yet
sharp bounds for the error in the output of interest; and (iii )
offline/online computational procedures− method that decou-
ple the generation and projection stages of the approximation
process− which allow us to calculate the output of interest
and associated error bound in very few operations (depending
only onN , typically small).

This paper is organized as follows. In the next section
we will present the formulation of our linear-elastic Mode-
I fracture problem. The reduced-basis approximation and our
a posteriori error estimation is discussed in Section III and
Section IV, respectively. Several fracture mechanics applica-
tions are given in Section V. Finally, Section VI provides some
brief concluding remarks.

II. M ODEL PROBLEM

A. Problem description

We consider a linear elasticity problem corresponding to a
crack notch inside a two-layer materials plate. The left material
may be viewed as a coating providing protection. We show in
Figure 1 the original domain of the problem,Ω0(d), consisting
of two layersΩ0

1 andΩ0
2 corresponds to two different materials

with Young modulusẼ1 and Ẽ2, respectively and the same
Poisson’s ratioν1 = ν2 = ν. The two layersΩ0

1 and Ω0
2 are

of width t̃ and4t̃, respectively. The crack is of length̃d, the
plate is of lengthw̃ ≡ 5t̃ and of height4w̃. We impose traction
σ̃0 at the topΓT , Neumann symmetry condition of the plate
centerlineΓC , and Dirichlet boundary condition on the right
side of the plateΓR. The displacement field̃ue(x̃e;µ) satisfies
the (plain strain) linear elasticity equation inΩ0. Using non-
dimensional terms,

E1,2 ≡ Ẽ1,2
1−ν2 x ≡ x̃

t̃
d ≡ d̃

t̃
u ≡ ũẼ1

σ̃0 t̃
, (1)
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Fig. 1. Fracture problem: (a) Reference domain, and (b) Original
domain

we can write the non-dimensional governing equation for the
displacement fieldue(xe;µ) ∈ Xe(µ) as

a(ue, v;µ) = f(v;µ),∀v ∈ Xe (2)

whereXe is the appropriate Hilbert space defined over the
physical domainΩ0, anda andf are continuous bilinear and
linear forms given by

a(ue, v;µ) =
∫

Ω1

∂ue
i

∂xj
E

(1)
ijkl

∂vk

∂xl
+

∫
Ω2

∂ue
i

∂xj
E

(2)
ijkl

∂vk

∂xl
(3)

f(v;µ) =
∫

Γa

v. (4)

In our plain-strain assumption,E(1,2)
ijkl = c̃

(m)
1 δijδkl +

c̃
(m)
2 (δikδjl + δilδjk) is the constitutive tensor, wherẽc(1,2)

1

and c̃(1,2)
2 are Lame’s constants, related to Poisson’s ration,

ν, and the ratio of the two non-dimensional Young modulus,
κ = Ẽ1/Ẽ2, by

c̃
(1)
1 =

κν

(1 + ν)(1− 2ν)
, c̃

(1)
2 =

κ

2(1 + ν)
(5)

c̃
(2)
1 =

ν

(1 + ν)(1− 2ν)
, c̃

(2)
2 =

1
2(1 + ν)

. (6)

We shall considerP = 2 parameters,µ1 ≡ d (non-dimensional
length of the crack) andµ2 ≡ κ (ratio of the two non-
dimensional Young modulus), for the parameter domainD =
[2.0, 4.0]× [0.1, 10].

In order to apply our methodology we mapΩ0(d) → Ω̃ ≡
Ω0(d = dref = 3). The domainΩ2 is further divided into
three domainsΩa

2 , Ωb
2 andΩc

2. The transformation is piecewise
affine: an identity forΩ1, Ωb

2; and dilations forΩa
2 and Ωc

2.
In these mapped coordinates,a(ue, v;µ) and f(v;µ) can be

expressed as

a(ue, v;µ) =
Qa∑
q=1

Θq
a(µ)aq(ue, v) (7)

f(v;µ) =
Qf∑
q=1

Θq
f (µ)fq(v), (8)

whereQa = 6, Qf = 3.

B. Output definitions

The methods for extracting SIF from a finite element
solution fall into two categories: displacement matching meth-
ods (such as the displacement correlation technique [7]) and
energy based methods (including the J-integral approach [8]
and the virtual crack extension approach [10]). In the former
category, the displacement values of nodes near the crack are
used to extracted the coefficients of the asymptotic expansion,
assumed that the form of the local solution is already known.
In the latter category, SIF is related directly to the energy
release rate (ERR).

The displacement matching methods have some advantages
over the energy based methods, such that that they are usu-
ally much simpler and easier to derive, but they have some
drawbacks as well. One of the major disadvantages of these
methods is that the form of the output functional is usually
unbounded, thus leading to difficult theoretical and numerical
questions. The energy based method, in the other hand, usually
provide bounded output functional form, so the convergence
is at least guaranteed. There are a number of energy-based
approaches to compute the ERR; for example, Parks [10] used
matrix stiffness derivatives to compute ERR by taking note that
the contribution to ERR is only from elements near crack-tip
region. In this paper, we will directly compute the ERR by
taking advantage of our parametrized form.

For Mode-I fracture problems, the SIFK can in fact
be extracted directly from the ERR. ERR is defined by
Ge = −∂Πe

∂d , where Πe is the total potential energy; the
total potential energy of our finite element model is given
by Πe(µ) = 1

2a(u
e(µ), ue(µ);µ)−f(ue(µ);µ). We can write

(non-dimendional)G and (dimensional)K as

G

(
d̃

t̃
,
Ẽ2

Ẽ1

)
= −1

2
∂

∂d
a(·, ·;µ) +

∂

∂d
f(·;µ) (9)

K̃(σ̃0, d̃, t̃, Ẽ1, Ẽ2) = σ̃0

√
t̃

√
G

(
d̃

t̃
,
Ẽ2

Ẽ1

)
, (10)

respectively. Note that∂∂d is the differentiation with respect to
only d.

We define our output of interestse(µ) = Ge(µ), and hence

se(µ) = se
1(µ) + se

2(µ) (11)

where

se
1(µ) = l(ue(µ), µ) (12)

se
2(µ) = p(ue(µ), ue(µ), µ), (13)

where l and p are continuous (bounded) linear and bilinear



forms defined by

l(·;µ) =
∂

∂d
f(·;µ) (14)

p(·, ·;µ) = −1
2
∂

∂d
a(·, ·;µ). (15)

Our (output) bilinear and linear form are also affine in the
parameters

l(v;µ) =
Qf∑
q=2

[
∂Θq

f (µ)
∂a

]
fq(v) (16)

p(w; v;µ) =
Qa∑
q=3

[
− ∂Θq

a(µ)
∂a

]
aq(w, v)

=
Qp∑
q=1

Θq
p(µ)pq(w, v), (17)

wherew, v ∈ Xe. We note that∂Θq
a

∂a = 0 for q = 1, 2 so
Qp = Qa − 2.

C. Finite element formulation

The singular crack-tip stress and strain fields cause a very
difficult problem for solving fracture mechanics problem by
finite element method. The polynomial basis spaces used for
most conventional elements cannot capture these behaviours,
and thus the finite element solution converges very slowly
to the theoretical solution when the mesh is refined. To
overcome this difficulty, various attempts have been made to
include these singularities in the element formulation. The two
most common treatments for this difficulty are the “quarter-
point” element suggested by Barsoum [2] and Shaw [5], or
the enriched finite element method [12] and more recent
generalization [3].

The “quarter-point” element captures the singularity of the
stress and strain fields by moving the element’s mid-side node
to the position one quarter of the way from the crack tip to
the far end of the element. Although it is accurate and easy
to use, the crack tip field is not reproduce exactly, and the
method does not have a firm theoretical ground.

The enriched finite element method exploits the partition
of unity property of finite elements identified by Melenk
and Babuska [1] which allows local enrichment functions
to be incorporated into a finite element approximation. For
fracture mechanics problems, the region around the crack-tip
is enriched by the the local function of the asymptotic fields,
and thus can capture the singularity of the fields exactly if
correct enriched functions are used.

We define our finite element approximation space as

XN = X1 ×X2, (18)

whereu ≡ (u1, u2) ∈ XN , and

X1 = X1h,p + span{ΥΨj,1≤j≤4}
X2 = X2h,p + span{ΥΨj,1≤j≤4}, (19)

whereX(12)h,p is our usualpth order finite element space,Υ
is the partition of unity function valid in a small “enriched”

region around the crack tip, andΨj is the enriched function
defined based on the asymptotic fields. For homogeneous
material around the crack [3],

Ψj(r, θ) =
{√

r sin
θ

2
,
√
r cos

θ

2
,
√
r sin

θ

2
sin θ,

√
r cos

θ

2
sin θ

}
,

(20)
where(r, θ) are the local polar co-ordinates at the crack tip.

In general, we cannot find the exact solution for (2),
hence we replacese(µ), ue(µ) with a Galerkin finite element
approximation,s(µ) ≡ sNt , u(µ) ≡ uNt : given µ ∈ D,

a(u(µ), v;µ) = f(v),∀v ∈ XNt ≡ X (21)

and
s(µ) = s1(µ) + s2(µ), (22)

where

s1(µ) = l(u(µ);µ), s2(µ) = p(u(µ), u(µ);µ),∀v ∈ X. (23)

HereX ⊂ Xe is our finite element approximation subspace
of dimensionN defined above. We assume thatN is large
enough so our approximate solution is near to the “truth”
solution. Note our online complexity will be independent of
N .

We denote the inner product and norm associated with our
Hilbert spaceX(≡ XNt) as(w,w)X and‖v‖X =

√
(v, v)X ,

respectively. We further define the dual norm for any bounded
linear functionalh as

‖h‖′X ≡ sup
v∈X

h(v)
‖v‖X

; (24)

In our case, we may choose

(w, v)X =
∫

Ω

∂wi

∂xj
E1

ijkl

∂vk

∂xl
. (25)

We next introduce the linear operatorTµ : X → X such that,

Fig. 2. Finite element mesh

for anyw in X,

(Tµw, v)X = a(w, v;µ),∀v ∈ X. (26)

We can then define a symmetric positive-semidefinite eigen-
value problem related to the (squared of the) singular values



of out partial differential operator: givenµ ∈ D, (Φi(µ)i ∈
X, ρi(µ) ∈ R, i = 1, . . . ,Nt, satisfies

(TµΦi(µ), Tµv)X = ρi(µ)(Φi(µ), v)X ,∀v ∈ X; (27)

the eigenvalues are ordered such that0 ≤ ρ1 ≤ ρ2 ≤ . . . ρNt .
We normalize our eigenfunctions as‖Φi(µ)‖X = 1, i =
1, . . . ,Nt, and hence orthogonality reads

(TµΦi(µ), TµΦj(µ))X = ρi(Φi(µ),Φj(µ))X

= ρiδij , 1 ≤ i, j ≤ Nt, (28)

whereδij is the Kronecher-delta symbol. We may then identify
βNt(µ) ≡ β(µ) =

√
ρ1(µ) andγNt(µ) ≡ γ(µ) =

√
ρNt

(µ)
whereβ(µ) is the continuity parameter

β(µ) ≡ inf
w∈X

sup
v∈X

a(w, v;µ)
‖w‖X‖v‖X

≡ inf
w∈X

‖Tµw‖X

‖w‖X
(29)

andγ(µ) is the usual continuity parameter,

γ(µ) ≡ sup
w∈X

sup
v∈X

a(w, v;µ)
‖w‖X‖v‖X

≡ sup
w∈X

‖Tµw‖X

‖w‖X
. (30)

For our problem, we observe thata is symmetric and coercive.
Our truth approximation spaceX = XNt is a (quadratic)

finite element space of dimensionN = Nt = 2450. The finite
element mesh in Figure 2 is chosen as a mesh refined around
the crack-tip to obtain better accuracy. The enrichment region
is chosen as two nodal layers around the crack-tip.

We illustrate the convergence in term of|E−Eh|/Eh) of our
finite element model for the caseµ = [3.0, 1.0] in Figure 3,
whereh is the average mesh lengthh = N−1/2 andE denote
our energy norm. The reference solutionEh is chosen as the
solution of a very fine mesh whereNh = 51845. We note
that the convergence of the model is improved relative to the
classical FEM model as it correctly captures the singularity
fields around the crack. The convergence rate of the model
using linear elements is of order 2, which is equivalent to the
analytical prediction. However, the convergence of the model
using quadratic elements is only of order 3, which may be
due to the fact that only the first singularity in the enrichment
functions was used.
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Fig. 3. Finite element convergence

III. R EDUCED-BASIS APPROXIMATION

In this section, we shall build our reduced-basis approxima-
tion using the “truth” approximation and we shall evaluate the
error in our reduced-basis approximation with respect to this
“truth” approximation. We will only consider the quadratic
output s2(µ) in this section. The linear outputs1(µ), and
the reduced-basis approximation (and itsa posteriori error
estimation) associated with it is discussed in details in [13].

A. Preliminary definitions

We first defineN = (Npr, Ndu) whereNpr andNdu refer to
the size of our primal and dual reduced-basis approximation
spaces. We also specifyNpr,max andNdu,max as the upper
limits on the dimensions of the primal and dual spaces,
respectively.

We next introduce sets of primal and dual parameter points,
µpr

n , 1 ≤ n ≤ Npr,max andµdu
n , 1 ≤ n ≤ Ndu,max, repectively.

Our primal reduced-basis nested approximation spaces are
then given byW pr

Npr
≡ span{u(µpr

n ), 1 ≤ n ≤ Npr}, 1 ≤
Npr ≤ Npr,max, where theu(µpr

n ), 1 ≤ n ≤ Npr,max are our
“snapshot”. In actual practive we expressW pr

Npr
in terms of

the basisζpr
n , 1 ≤ n ≤ Npr, where theζpr

n , 1 ≤ n ≤ Npr,max,
are generated from theu(µpr

n ), 1 ≤ n ≤ Npr,max, by a Gram-
Schmidt orthogonalization process relative to the(·, ·)X inner
product.

For givenµ ∈ D, our primal approximationuNpr ∈ W pr
Npr

satisfies
a(uNpr , v;µ) = f(v),∀v ∈W pr

Npr
; (31)

we denote the primal residual is

rpr
Npr

(v;µ) = f(v)− a(uNpr , v;µ),∀v ∈ X (32)

and the primal error isepr(µ) = u(µ)− uNpr(µ).
Our dual problemψNpr ∈ X satisfies

a(v, ψNpr(µ);µ) = p(uNpr(µ) + u, v;µ),∀v ∈ X. (33)

We then define our dual reduced-basis nested approximation
spaces asW du

Ndu
≡ span{ψNpr,max(µdu

n ), 1 ≤ n ≤ Ndu} ≡
span{ζdu

n , 1 ≤ n ≤ Ndu}, 1 ≤ Ndu ≤ Ndu,max, where our
dual approximation,ψNpr

Ndu
∈W du

Ndu
,satisfies

a(v, ψNpr
Ndu

(µ);µ) = p(2uNpr(µ), v;µ),∀v ∈W du
Ndu

(34)

and the dual residual is

rdu
Npr,Ndu

(v;µ) = p(2uNpr(µ), v;µ)−a(v, ψNpr
Ndu

, v;µ),∀v ∈ X.
(35)

We consider our quadratic output

s2(µ) = p(u(µ), u(µ);µ) (36)

wherep(u(µ), u(µ);µ) can be represented in the parametrized
form as in (15). Our reduced-basis output approximation
s2,N (µ) is defined as

s2,N (µ) ≡ p(uN (µ), uN (µ)) + rpr
Npr

(ψNpr
Ndu

(µ);µ). (37)

We can then prove

s2(µ)− s2,N (µ) = a(u− uNpr , ψ
Npr − ψ

Npr
Ndu

;µ),∀µ ∈ D,
(38)



which is the usual “quadratic” result [11].

B. Offline/Online approach

Even thoughNpr, Ndu may be small, the elements ofW pr
Npr

and W du
Ndu

are in some sense “large”: for exampleζpr
n ≡

u(µpr
n ) will be represented in terms ofN � Npr truth finite

element basis functions. To eliminate theN -dependence, we
employ the offline/online computational strategy.

To begin, we expand our reduced-basis approximaion as

uNpr(µ) =
Npr∑
j=1

uNprj(µ)ζj (39)

ψ
Npr
Ndu

(µ) =
Ndu∑
j=1

ψ
Npr
Nduj(µ)ζdu

j (40)

Follows from (37) that the reduced-basis output can be ex-
pressed as

s2,N (µ) =
Npr∑
j=1

Npr∑
j′=1

Qp∑
q=1

uNprj(µ)uNprj′(µ)Θq
p(µ)pq(ζpr

j , ζpr
j′ )

+
Ndu∑
j=1

Qf∑
q=1

ψNduj(µ)Θq
f (µ)fq(ζdu

j ) (41)

−
Npr∑
j=1

Ndu∑
j′=1

Qa∑
q=1

uNprj(µ)ψNduj′(µ)Θq
a(µ)aq(ζpr

j , ζdu
j′ )

where the coefficientsuNprj , 1 ≤ j ≤ Npr andψNpr
Nduj , 1 ≤ j ≤

Ndu satisfy theNpr × Npr andNdu × Ndu linear algebraic
systems

Npr∑
j=1

{ Qa∑
q=1

Θq
a(µ)aq(ζpr

j , ζpr
i )

}
uNprj(µ) =

Qf∑
q=1

Θq
f (µ)fq(ζpr

i ),

1 ≤ i ≤ Npr, (42)

and

Ndu∑
j=1

{ Qa∑
q=1

Θq
a(µ)aq(ζdu

i , ζdu
j )

}
ψ

Npr
Nduj(µ) =

2
Npr∑
j=1

{
uNprj(µ)

Qp∑
q=1

Θq
p(µ)pq(ζpr

j , ζdu
i )

}
,

1 ≤ i ≤ Ndu.

The offline/online decomposition is now clear. For simplicity,
below we assume thatNpr = Ndu = N .

In the offline stage− performed once− we first solve
for the ζpr

i , ζdu
i , 1 ≤ n ≤ N ; we then form and store

fq(ζpr
i ), fq(ζdu

i ), 1 ≤ i ≤ N , 1 ≤ q ≤ Qq
f ; and

aq(ζpr
i , ζpr

j ), aq(ζdu
i , ζdu

j ), aq(ζpr
i , ζdu

j ), 1 ≤ i, j ≤ N ,
1 ≤ q ≤ Qa; and finally Qp(ζ

pr
i , ζpr

j ), Qp(ζ
pr
i , ζdu

j ),
1 ≤ i, j ≤ N , 1 ≤ q ≤ Qp. Note all the quantities
computed in the offline stage are independent of the pa-
rameterµ. In the online stage− perform many times, for
each newµ - we first form and invert theN × N matrix∑Qa

q=1 Θq
a(µ)aq(ζdu

i , ζdu
j ), solve for uNj(µ), and then form

TABLE I

REDUCED-BASIS APPROXIMATION CONVERGENCE

N E1,N E1,N ηs
1,N

5 1.65E-02 2.46E+00 96.4

10 2.23E-03 5.21E-02 48.6

15 3.89E-05 6.93E-04 41.6

20 5.13E-06 1.28E-04 43.5

N E2,N E2,N ηs
2,N

5 1.60E+00 1.07E+03 5915.2

10 2.91E-01 2.56E+01 1509.3

15 9.42E-04 5.21E-02 1218.4

20 3.53E-04 2.57E-02 770.1

25 1.50E-04 6.35E-03 538.5

30 9.39E-06 8.95E-04 443.7

35 4.57E-06 4.55E-04 520.5

40 8.99E-07 1.40E-04 589.4

and invert theN × N matrix
∑Qa

q=1 Θq
a(µ)aq(ζdu

i , ζdu
j ), and

then form
∑Qp

q=1 Θq
p(µ)pq(ζpr

j , ζdu
i ), which together will give

us ψNj(µ). We then perform the summation (41)− this
yields sN (µ). The operation counts for the online stage is
O((Qp +Qa)N2) andO(N3), respectively, to form and invert
the necessary matrices; andO((Qp + Qa)N2) + O(QfN)
to evaluate the output. The essential point is the the online
complexity is independence ofN . We expect significant
computational savings sinceN � N .

C. Numerical results

We present in Table I the convergence of our outputs. We
present the results in term ofN = Npr = Ndu. The errorE1

2,N

is the maximum of the relative error,|s1
2
(µ)−s1

2,N (µ)|/|s1
2
(µ)|,

over a random parameter test sampleΞtest ∈ D, of size
ntest = 1089, where s1(µ) and s2(µ) are defined by (23).
We observe very rapid convergence withN .

IV. A POSTERIORIERROR ESTIMATION

A. Error estimation

We now assume that we are givengK
∗ (µ) and τK

∗ (µ), two
positive functions which will be defined in the next section.

We now define our output error bound as

∆s2
N (µ) =

(
τK
∗ (µ)
gK
∗ (µ)

)2

‖rpr
Npr(·, µ)‖2X′ (43)

+
1

β(µ)gK
∗ (µ)

‖rdu
Npr,Ndu(·;µ)‖X′‖rpr

Nrp(·;µ)‖X′ ,

whereβ(µ) is defined in (29).
It can be shown that

|s(µ)− sN (µ)| ≤ ∆s
N (µ),∀µ ∈ D. (44)



TABLE II

COMPUTATIONAL COST TO EVALUATE sN,2 , ∆s2
N , AND sNt

2 AS A

FUNCTION OFN (N = Npr = Ndu); THE RESULTS ARE NORMALIZED

WITH RESPECT TO THE TIME TO CALCULATEsN FOR N = 5.

N
Online Time Time

sN,2 ∆s2
N sNt

2

5 1.00 52.31

3900

10 1.20 53.81

15 1.45 55.23

20 1.98 57.01

25 2.25 59.23

30 2.71 61.81

35 3.52 64.71

40 4.44 67.87

B. Construction ofgK
∗ (µ) and τK

∗ (µ)

We turn to the development of our functionsgK
∗ (µ) and

τK
∗ (µ), which was used in our error estimation.

1) Construction ofgK
∗ (µ): We define local natural-norm

inf-sup and continuity parameters as

βµ(µ) ≡ inf
w∈X

sup
v∈X

a(w, v;µ)
|||w|||µ‖v‖X

≡ inf
w∈X

‖Tµw‖X

‖Tµw‖X
(45)

γµ(µ) ≡ sup
w∈X

sup
v∈X

a(w, v;µ)
|||w|||µ‖v‖X

≡ sup
w∈X

‖Tµw‖X

‖Tµw‖X
, (46)

respectively. It is clear the forµ = µ, βµ = γµ = 1. We can
also related the new norm with the original norm by proving
that

β(µ)βµ(µ) ≤ β(µ) ≤ γ(µ)βµ(µ). (47)

We further define

βµ(µ) ≡ inf
w∈X

(Tµw, Tµw)X

|||w|||2µ
. (48)

By Cauchy-Schwarz inequality, we can prove that

βµ(µ) ≤ βµ(µ). (49)

or βµ is an approximation ofβµ.

It can be further shown that|βµ−βµ(µ)| ∼ |µ−µ|2, µ→ µ,
where| · | refers to the usual Euclidean norm. The result is that
βµ(µ) is a second-order accurate approximation toβµ(µ).

We next introduce a set of parameter pointsVK ≡ {µ1 ∈
D, µ2 ∈ D, . . . , µK ∈ D} an an associated “indicator”
function µK

∗ : D → VK which maps any givenµ ∈ D to the
appropriate local approximation. Our global piecewise natural
norm inf-sup parameter is then

βK
∗ (µ) = βµK

∗ (µ)(µ). (50)

We now turn to the construction of this lower bound approx-
imation.

We begin with a local lower bound. For givenµ ∈ D, we

introduce the functiongµ : D → R

gµ(µ)= max
κ∈RP

{
1 +

P∑
p=1

min[κp(µp−µp)λp
µ,max,κp(µp−µp)λp

µ,min]

+
Q∑

q=1

min
[(

Θq(µ)−Θq(µ)−
∑P

p′=1
∂Θq

∂µ
p′

(µ)κp′ (µp′−µp′ )

)
ξq

µ,max,(
Θq(µ)−Θq(µ)−

∑P
p′=1

∂Θq

∂µ
p′

(µ)κp′ (µp′−µp′ )

)
ξq

µ,min

]}
(51)

where, forp = 1, . . . , P,

λp
µ,min(max) = min

w∈X
(max
w∈X

)

∑Q
q=1

∂Θq

∂µp
(µ)aq(w, Tµw)

|||w|||2µ
(52)

and, forq = 1, . . . , Q,

ξp
µ,min(max) = min

w∈X
(max
w∈X

)
aq(w, Tµw)
|||w|||2µ

. (53)

We can then prove, for givenµ ∈ D, gµ(µ) ≤ βµ(µ),∀µ ∈ D.
That makesgµ(µ) a lower bound approximation ofβµ(µ).

To computegµ(µ), we note that we can write it in the form

gµ(µ) = 1 + max
κ∈RP

P+Q∑
m=1

min[Fm(κ), Gm(κ)] (54)

where theFm, Gm, 1 ≤ m ≤ P + Q are affine functions of
κ. The sum (54) is essentially a Linear Program.

We can further enhance the sharpness of our lower bound
for βµ(µ) by optimally locally align a parameter coordinate
with the largest gradients inβµ [13].

Our global lower bound,gK
∗ : D → R, is then given by

gK
∗ (µ) = max

µ∈VK
gµ(µ), (55)

we further definegK
∗,min ≡ minµ∈D g

K
∗ (µ) and specify our

indicator functionµK
∗ : D → VK as

µK
∗ (µ) = arg max

µ∈VK
gµ(µ), (56)

in terms of which our lower bound may be expressed as

gK
∗ (µ) = gµK

∗ (µ)(µ). (57)

We can prove that, for any given set of pointsVK ,

gK
∗ (µ) ≤ βK

∗ (µ),∀µ ∈ D. (58)

We finally propose a procedure to determine the set of param-
eter pointsVK so that our lower bound is of value. We first
introduce a large parameter sampleΞg ∈ D of sizeng � 1.
We next setK = 1 and select a tolerance0 < g∗,tol < 1;
we then chooseµ1 which definesg1

∗(µ). We now proceed to
calculate forK = 1, ...

µK+1 = arg max
µ∈Ξg

min
µ′∈Ξg|gK

∗ (µ′)≥g∗,tol

|µ− µ′| (59)

where the|·| norm can be chosen as the usual Euclidean norm,
until

min
µ′∈Ξg

gK
∗ (µ) ≥ g∗,tol. (60)



We note that the new proposed procedure above to both
construct the offline data− set of parameter pointsVK and
their associated data− and online evaluation can be done
automatically.

2) Construction ofτK
∗ (µ): For eachµ ∈ D, we define

τ2
µ(µ) = sup

v∈X

p(v, v;µ)
‖Tµv‖2X

. (61)

The upper bound ofτµ can be taken as

τ2
µ(µ) =

Qp∑
q=1

|Θq
p(µ)| sup

v∈X

pq(v, v)
‖Tµv‖2X

. (62)

Our parameterτK
∗ : D → R is then given by

τK
∗ (µ) = τµK

∗ (µ)(µ). (63)

C. Offline/Online approach

We first demonstrate the offline/online decomposition for
the term‖rpr

Npr(·, µ)‖X′ .

To begin, we note that from duality argument that

‖rpr
Npr(·, µ)‖X′ = sup

v∈X

rpr
Npr(v, µ)
‖v‖

= (ê(µ), v), v)X (64)

whereê(µ) ∈ X satisfies

(ê(µ), v), v)X = rpr
Npr(v, µ). (65)

It follows from

rpr
Npr(v, µ) =

Qf∑
q=1

Θq
f (µ)fq(v)

−
Qa∑
q=1

Npr∑
n=1

Θq
a(µ)uNprna

q(ζNpr
n , v), (66)

and linear superposition that

ê(µ) =
Qf∑
q=1

Θq
fC

q +
Qa∑
q=1

Npr∑
n=1

Θq
auNprnLq

n, (67)

whereCq ∈ X, 1 ≤ n ≤ Qf andLq
n ∈ X, 1 ≤ n ≤ Qa, 1 ≤

n ≤ Npr satisfies the parameter-independence problems
(Cq, v) = fq(v),∀v ∈ X and(Lq

n, v) = −aq(ζpr
n , v),∀v ∈ X,

respectively. We then obtain

‖rpr
Npr(·, µ)‖2X′ =

Qf∑
q=1

Qf∑
q′=1

Θq
f (µ)Θq′

f (µ)(Cq, Cq′)X

+ 2
Qf∑
q=1

Qa∑
q′=1

Npr∑
n=1

Θq
f (µ)Θq′

a (µ)uNprn(Cq,Lq′

n )X

+
Qa∑
q=1

Qa∑
q′=1

Npr∑
n=1

Npr∑
n′=1

Θq
f (µ)Θq′

a (µ)uNprnuNprn′(Lq
n,L

q′

n′)X .

(68)

Similarly, we can obtain

‖rdu
Npr,Ndu(·;µ)‖2X′ =

Qp∑
q=1

Qp∑
q′=1

Npr∑
n=1

Npr∑
n′=1

Θq
p(µ)Θq′

p (µ)uNprn(µ)uNprn′(µ)(Qq
n,Q

q′

n′)X

+2
Qp∑
q=1

Qa∑
q′=1

Npr∑
n=1

Ndu∑
n′=1

Θq
p(µ)Θq′

a (µ)uNprn(µ)ψNdun′(µ)(Qq
n,M

q′

n′)X

+
Qa∑
q=1

Qa∑
q′=1

Ndu∑
n=1

Ndu∑
n′=1

Θq
a(µ)Θq′

a (µ)uNdun(µ)ψNdun′(µ)(Mq
n,M

q′

n′)X .

(69)

whereQq
n ∈ X, 1 ≤ n ≤ Qp, 1 ≤ n ≤ Npr andMq

n ∈
X, 1 ≤ n ≤ Qa, 1 ≤ n ≤ Ndu satisfies the parameter-
independence problems(Qq

n, v) = pq(2ζpr
n , v),∀v ∈ X and

(Mq
n, v) = −aq(ζdu

n , v),∀v ∈ X, respectively.
For the sake of simplicity below, we assume thatN =

Ndu = Npr. The offline-online decomposition is now iden-
tified. In the offline stage− performed once− we first solve
for Cq, 1 ≤ q ≤ Qf andLq

n, 1 ≤ q ≤ Qa, 1 ≤ n ≤ N andQq
n,

1 ≤ q ≤ Qp, 1 ≤ n ≤ N andMq
n, 1 ≤ q ≤ Qa, 1 ≤ n ≤ N ;

we then evaluate and store all the parameter-independence in-
ner products(Cq, Cq)X , (Cq,Lq′

n )X , (Lq
n,L

q′

n′)X , (Qq
n,Q

q′

n′)X ,
(Qq

n,M
q′

n′)X , (Mq
n,M

q′

n′)X , 1 ≤ n, n′ ≤ N , 1 ≤ q, q′ ≤
Qf , Qa, Qp. In the online stage− performed many times,
for any new value ofµ − we simply evaluate‖rpr

Npr(·, µ)‖X′

and |rdu
Npr,Ndu(·;µ)‖X′ in terms ofΘq

f ,Θ
q
a,Θ

q
p, uNn(µ) and

ψNn(µ) and the precomputed and stored(·, ·)X inner products.
The operation count for the online stage isO((Q2

a + Q2
p +

QaQp)N2) − independent ofN − and commensurate with
the online cost to evaluatesN (µ).

D. Sampling procedure

Our error estimation procedures also allow us to con-
struct good parameter samplesSpr

Npr
, Sdu

Ndu
(and hence spaces

W pr
Npr

,W du
Ndu

). We only present the procedure to construct
Spr

Npr
here, sinceSdu

Ndu
can be constructed in a similar manner.

We first introduce a large parameter sampleΞtest in D of
size ntest � 1. We then setN = 1 and chooseµpr

1 which
defines the first basisζpr

1 . We now then proceed forN =
1, ..., Npr

µpr
N+1 = arg max

µ∈Ξtest,µ/∈Spr

1√
β(µ)gK

∗ (µ)
‖rpr

N (·;µ)‖X′ (70)

where β(µ) is defined in (29). The crucial point is that
the terms that appear in the right hand side of (70) can
be computed “online-inexpensively” and presented the true
primal error‖u(µ)−uN (µ)‖X . This permit us perform a very
exhaustive(ntest � 1) search for the best sampleSpr

N , S
du
N

and, hence, determine the smallestN for which we achieve
the desired accuracy.

E. Numerical Results

We first apply algorithm (59) for the uniform gridΞg over
D of size ng = 1089; we satisfy the desired tolerance for
K = 11 for the criteriag∗,tol = 0.5.



We present in Table I the convergence of our output. We
present the results in term ofN = Npr = Ndu. The errorE1

2,N

is the maximum of the relative error,|s1
2
(µ)−s1

2,N (µ)|/|s1
2
(µ)|,

and the error boundE1
2,N is the maximum of the relative error

bound,|∆s1
2

N (µ)|/|s1
2
(µ)|, over a uniform parameter test sample

Ξtest ∈ D, of size ntest = 1089; the effectivity ηs
N is the

average of the effectivity,ηs
N (µ) = ∆s

N (µ)/|s(µ) − sN (µ)|,
over the parameter test sampleΞtest. We observe that the
effectivities of the linear outputs1(µ) are good, but the
effectivities of the quadratic outputs2(µ) are quite high. The
reason is maybe due to the large ratioτK

∗ (µ)/gK
∗ (µ) (which

is order of ten) which appears in our error estimation.
We also present in Table II the online reduced-basis compu-

tational cost to evaluatesN,2(µ) and its error bound∆s2
N to the

finite element cost to evaluatesNt
2 for any givenµ. Although

we expect that the online times to calculatesN,2 and ∆s2
N

should be commensurate with each other, we observe that the
∆s2

N computational time is much more than that ofsN,2. The
reason is that the online time to calculate∆s2

N is “polluted”
by a poor LP solver for computing thegK

∗ (µ) (55); 70% of
the time is due to the LP.

V. A PPLICATIONS

To demonstrate the advantage of our method, we apply our
results to some simple fracture mechanics problems. We only
focus on using our technique to predict failure for simple
brittle material in this paper, but other applications include
fatigue crack growth, and prediction crack instability based
on “R” curves [6].

The theory of fracture of brittle materials is developed
by Griffith, who proposed his well-known Griffith’s theory.
Griffith formulated the concept that a crack in a component
will propagate if the total energy of the system is lowered
with crack propagation. That is, if the change in elastic strain
energy due to crack extension is larger than the energy required
to create new crack surfaces, crack propagation will occur.

Previously, we have constructed the reduced-basis approx-
imation to estimate SIFs for the two-layers plate problem. In
short, the reduced-basis approximation can be estimate SIFs
in real-time for an arbitrary parameterµ ∈ D, whereD =
[2.0, 4.0]×[0.1, 10.0]. For a given set of “inputs”(d̃, t̃, Ẽ1, Ẽ2),
we can estimate the ERR as the outputG̃ ≡ s(µ). Moreover,
if we define

ŝ(µ) =
√
s(µ), (71)

then the reduced-basis approximationŝN (µ) and its error
estimation∆ŝ

N (µ) are given by

ŝN (µ) = 1
2

{√
sN (µ)−∆s

N (µ) +
√
sN (µ) + ∆s

N (µ)
}

∆ŝ
N (µ) = 1

2

{√
sN (µ) + ∆s

N (µ)−
√
sN (µ)−∆s

N (µ)
}
.

(72)
We consider an uncertainty parameter region

[d̃, t̃, Ẽ2] ∈ D̃u, whereD̃u ≡ [2.8, 3.2](mm) ×[0.8, 1.2](mm)
×[50, 500](GPa) where Ẽ2 is the Young’s modulus of the
coating material. We use the material SilicateSiO2 S100a,
with material properties areK̃IC = 0.73MPa

√
m and

Ẽ1 = 79.23GPa [4], for the simulation. Physically, the
Young’s modulusẼ2 of the coating region changes due to
environmental conditions [4]. We are interested in finding
the maximum applied tractionσ̃0 so that the condition
K̃worstcase = 0.5K̃IC is still satisfied. This condition is
equivalent to the condition that the crack will not propagate
with safety factor0.5 according to Griffith’s theory.

From (10), we can write

σ0 ≤
0.5KIC

√
t̃

√
G

(
d̃
t̃
, Ẽ2

Ẽ1

) = F(d̃, t̃, Ẽ2), (73)

which gives

σ0,max = min
(d̃,t̃,Ẽ2)∈D̃u

F(d̃, t̃, Ẽ2). (74)

Denote

FN (d̃, t̃, Ẽ2) =
0.5KIC

√
t̃

[
ŝN

(
d̃
t̃
, Ẽ2

Ẽ1

))
+ ∆ŝ

N

(
d̃
t̃
, Ẽ2

Ẽ1

)] (75)

whereŝN and∆ŝ
N are defined in (72), then our approximation

optimization is

σ0,max,N = min
(d̃,t̃,Ẽ2)∈D̃u

FN (d̃, t̃, Ẽ2). (76)

By solving the above optimization problem, the “feasibil-
ity/safety” condition is ensured thanks to oura posteriori
error estimation. We note that the ERR for our problem is
not monotonically increasing with̃d, since it is affected by
the Dirichlet boundary conditions onΓR, hence a search is
necessary. We will apply a “brute-force” method to search for
the minimum value ofFN (d̃, t̃, Ẽ2) for a very fine grid points,
even though more general optimization algorithms are appli-
cable. We consider8000 sample points and obtain the max-
imum applied traction forcẽσ0,max,N = 7.6266N/m where
the parameter is[d̃, t̃, Ẽ2] = [2.8(mm), 1.2(mm), 500(GPa)].
This critical point is clearly not obvious. The simulation takes
less than 5 minutes in total, which is about 40 miliseconds
for each parameter test point on a P4 1.5GHz computer. This
demonstrates that in many-query applications, our method will
work very efficiently.

VI. CONCLUSIONS

In this study, we show that, with the use of our reduced-
basis approximation, fracture parameters - SIF and ERR values
- can be calculated rapidly yet rigorously by certified error
estimation. This offers a new, very promising approach for
many failure analysis applications that require both real-time
and/or many-query evaluations.
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