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Abstract. The purpose of this study is to describe a coupled presswwedisolution algorithm
to model interface capturing problems for multiphase flowsrerheither of the phases can be
regarded as dominant. As to a segregated approach usingeaatiie solution scheme consi-
sting of successive solutions of the transport equatiore&mh phase, the phase for which the
equation is solved first dominates the phases for which tmsprart equations are solved later.
This is the result of the requirement of a bounded solutionife phase fraction variables. A
cell which is already completely filled with one phase cannatt@io any more fluid of any
other phase. In the present study, a coupled solution agprofthe equations to describe the
transport of the phases and the pressure equation is predefhis coupled approach avoids
the predescribed numerically induced predominance of glsiphase which may occur if a
common segregated algorithm is used.

The system is described by the continuity equation, thetemsato model the transport of the
volume fractionsy; and the volumetrically averaged momentum equation. Byogyalith the
derivation of the pressure equation in PISO or SIMPLE, tteeditised momentum balance is
inserted in the equations to describe the transport offhghases. While the volume fractions
of (N — 1) phases are gained by solving the transport equations, thenafraction of the
N-th phase is calculated by applying the closure equation.

In contrast to segregated approaches, the equations fagure and volume fractions are now
solved simultaneously in one single step. Therefore the gtaiables can implicitly depend on
other state variables. To achieve a strong coupling betwieewnolume fractions and the pres-
sure, the pressure is treated implicitly in the equationgHtie volume fractions and the volume
fractions are equally treated implicitly in the pressureuatjon. The coupled approach with
the additional implicit dependencies leads to a matrix wheclarger and has more non-zero
entries than the matrices of a segregated approach. Theré¢fie effort to solve the equation
system increases significantly. The system is solved agplye block matrix implementation
by Jasak:
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1 INTRODUCTION

Interface capturing is an active area of research in contipat fluid dynamics. The cur-
rent study deals with the problem of describing a multipHase system with more than one
phase, where neither of the phases can be regarded as domisam a segregated approach
using an iterative solution scheme consisting of succes®lutions of the transport equation
for each phase, the phase for which the equation is solvetisidominating the phase for
which the transport equation is solved later. This is a tesuthe requirement to preserve
the boundedness of the volume fraction values. If a cellrisaaly completely filled with one
fluid, it cannot receive any more fluid of any other phaseah# MULES (Multidimensional
Universal Limiter with Explicit Solution) solver, implemeed in OpenFOANP, is enhanced
to model a system with more than two immiscible fluids, itsisture enforces the dominant
behaviour of the first phase. This is due to the fact that MSLdlips the fluxes transporting
the second phase in dependency of the value in the consideltéd avoid an unbounded solu-
tion. The following approach tries to avoid this phenomehgrintroducing a better coupling
of the equations.

In the following section 2 the governing equations that &exlin the new coupled approach
will be presented. In section 3 the numerical solution f@sthequations and its implementa-
tion will be described. Finally section 4 contains the resaf different test cases.

2 GOVERNING EQUATIONS

The governing equations for this multiphase flow problem e equation of continuity,
momentum and of the transport of the volume fraction digtrdns. In the current study the
fluid is assumed to be incompressible and Newtonian. Hehesg;ontinuity equation reads

V-U=0 1)
and the momentum equation reads

aU N N
4V (pUU) = —Vp+V-r+pf+ > Y Fa @)

t
0 i=1 k=i+1

Herer describes the viscous stress tensorBjd= fS ok d (X —X') dS is the influence on
the momentum due to the surface tension forces o? the nmteliatween the phases indexed
by i andk respectively. The surface tension force is only presemiatex’ of the free surface.
This is ensured by the Dira&-distribution. The number of phases is described\byurtherf
describes an arbitrary mass-related force, here the gtavial force. Density and viscosity

w1 are treated as volumetric mixture values obtained by

N
pP= Z(%‘Pi) (3)
and N
n= Z(%Mz‘)- (4)
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The transport equation for thith volume fractiony; reads

8041'
ot

The volume fractionsy; are coupled by the normalization:

N
dai=1, a€l01].
=1

(5)

(6)

To model the influence of the surface tension, the ContinBurface-Force Model of Brack-
bill? is used. Brackbill interpreted the surface tension as awoatis, three-dimensional ef-
fect across an interface. This approach is applied here smmnterface-capturing methods
the interface is neither tracked explicitly nor shape oatmn are known. Therefore, an ex-
act boundary condition cannot be applied to the interfa@ndd, the influence of the surface

tension formulated as volumetric force reads:
Fir = oikkik (Voz)ik )
where(Va),, is calculated as

(Va),, = aVa; — ;Vay,.

=9 (war)

where the unit normal vectaryields

The curvature is defined as

Kip, = —V - N.
As only Newtonian fluids are modelled, the viscous stressdeis given by
‘TZ,U(VU—FVUT).
The divergence of the viscous stress terl8orr can be reformulated as
V.-r=V.(uVU)+ (VU -Vpu).

Moreover, the pressugecan be substituted by

p=p" +pf-x
wherepf - X represents the hydrostatic pressure. This leads to theiequa

dpU
ot

i=1 k=i+1

N N
——+V-(pUU) = =Vp*"+V-(uVU)+(VU - Vu)—f-XVp—FZ Z ok (Va),, .

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)
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3 NUMERICAL SOLUTION

The following procedure is due to Welfet. It is reviewed here, since it is the basis of the
derivation of our coupled solution method. The momentunmaéqu is discretised not taking
into account all terms that are proportional(f@c ), or Vp. The resulting system of linear
algebraic equations is denoted by

a={[ %]+ [7- (pro101)] =19 v 01+ (VU)W |, a9

where[:| stands for an implicit discretisation operator and the xnflelenotes values at the
cell faces. Note thatd contains the full system of equatioA%) = b including the matrixA,
the vectorU of unknown velocities and the source vedbor

This system of equations can further be reformulated wighutbe of some operators acting
on.A. The following operators are provided in the library Idukbatvithin the OpenFOANP
distribution:

e the D-Operator defined ad, := diag(A),
e the N-Operator asdy := A — diag(A),

e the S-Operator which isds := b and

e the H-Operatordy; :=b — AyU = ApU

With these operators at hand, the linear equation systeran be written as
(AD + AN) U= As. (16)

for the solution vectol.* This leads to the semi-discretised form of the momentumtemua

N N
ApU = Ay —Vp = f-xXVp+ > > ok (Va)y,. (17)

i=1 k=i+1

A rearrangement yields

U=

Ay _Vpr f-xVp n sz\il Z]kvziﬂ oirkin (V)
Ap, Ap Ap Ap '

Since velocity and pressure are normally solved in a setgdggproach, an iterative scheme
is used which starts with the flux predictot which is later corrected in order to obtain the
flux ¢ after having solved the pressure equation. By interpolatiagnomentum equation with
central differences the flux predictor and corrector caol@ined by

(18)

b=g (%D) S| Vi, (19)
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Here, the operatdvj% denotes the gradient normal to the cell faces [@hts the magnitude of
the area vector of the regarded cell face. In this equati@nfitst term on the right-hand side
¢* can be formulated as

o — (j_l;f)f.s_ (ALD) (f-x), 18|V} p+Z Z (( ) (oirkin) ;1S (VJ%O‘),k)

=1 k=i+1
(20)
The second term on the right-hand side of (19) is the fluxeziar. The continuity equation is
formulated at the cell faces and the flux is substituted intdhis yields

V-¢=0. (21)

Inserting (19) into (21) and rearranging leads to the pressquation:

v ((}D)pr*]ﬂ s (22)

The equation describing the transport of the volume fracisotaken and reformulated ac-
cording to Welleg resulting in conservative forms of all terms. Note thatcsin; € [0, 1],

1 < ¢ < N, the terms are bounded from below and above. For a two-phasens, this
equation reads:

9
% + V- (Uay) + V- (Uraras) = 0, (23)

whereU, describes the relative velocity at the free surface. It eambdelled as
U, = min (¢, |U|, max (|U])) - n, (24)

wherec, is the compression coefficient for the interface. (See &vefor details.) After dis-
cretisation it reads:

{%} +[V - (Uay)] + [V (Urasaz)] = 0 (25)

For multiphase-systems the same reformulation leads to

oy
002 LV (Uay) + V- ( Z akU”k) —0, (26)

k=1,k#1

whereU,. ;. is the relative velocity between the phasesidk. The next step is to restrict (26)
to the cell faces. Hence an equation for the volumetric fluxhencell faces is obtained. The
equation is discretised yielding

%] [T (eles)] ¢

Since the volumetric mixture fluy satisfies the continuity of the mixture velocity, the
second term is bounded i, 1]. Problems for the boundedness of the variables arise frem th

V- <[o¢i] Dy ak,fgzsr,ik)] = 0. (27)

k=1,ki
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third term. The bounding af; is achieved by using the relative face flgx;; to interpolate
«a; to the face while-¢, ;. is used to interpolate;, to the face. Using First Order Upwind as
a convection scheme, the solution is bounded, but might haearious diffusivity while the
usage of higher order convection schemes might reduce thenal diffusion but impact the
boundedness of the solutidMoreover, the third term is nonlinear in The flux ¢ is defined
as

¢=S-Uy, (28)

but here a different approach is taken. Instead (19) andg@e pressure-velocity coupling
are substituted into (27). In this way the flux predictor dhd flux corrector are both taken
into account. Furthermore, the value of the fluand the fulfilment of continuity are no longer
dependent on the choice of the interpolation scheme.

) o () 50 3 (), 55,

i=1 k=i+1

_ (ALD)f(f.x)f S v#) [ai]f>
_ [V. ((ALD)fV[p*] Oéi,f> V- ([ai]f ﬁ: Oéwd)m)] _o

k=1,k#i
In this equation, however, new terms appear that are naalifreorder to linearize those terms
only one variable can be chosen to be treated implicitly evthie other variables need to be
treated explicitly. The first nonlinear term of the equati®n

v. ((i i ((A%))f (o), 1S (v;a)ik» o] f> . (30)

i=1 k=i+1

(29)

+

In this termq; is chosen to be treated implicitly, while all the other vhles that appear in
V]%a are treated explicitly. The term

v ( (AiD)f V] ow) (31)

can be treated either explicitly in the pressure and inthfian the volume fraction or vice
versa. To achieve a better coupling between the equatiensréssure is treated implicitly. In
the last term

N
& ([Oéi]f Z ak,f¢r,ik> (32)

k=1k+i

it would be desirable to implicitly model; while keepinga; explicit to strongly couple the
volume fraction distributions. However, this is impossibince the diagonal dominance is ser-
iously weakened, and convergence is no longer guarantéedefbre, the coupling between
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the single phases is only achieved by the closure equati@nenddl terms are treated impli-
citly. To achieve an additional coupling between the statéables, the flux predictor in the
pressure equation is formulated in artificial dependerid¢h® volume fractions:

N
¢ =) (33)
=1
The pressure equation for the coupled approach now yields:
1 N
[v ((A—D)prﬂ) - V-;m ¢". (34)
The complete system reads:
1. Pressure equation:
1 N
[V- ((A—D)fv [p*]) =V Zl [ci] 9" (35)

2. Pressure based equation for the volume fractions:

] (G, = £ 2 (G) s
_ (ALD)f(f.x)f S| V}p) [ai]f>
(), )] oo 5 )

k=1,k+#i
3. Closure equation:

(36)

_|_

D i =1 (37)

i=1
3.1 THE BLOCK MATRIX STRUCTURE

In this section the implementation of the described syste@penFOAM with the use
of the block matrix structureis explained. Due to the previously mentioned discretisatie
obtain equations for each cell which can be described inat@ting form

AiX; + Z AnX, = bi7 (38)

wherex; are variable values in the considered cell andre the variable values of the neigh-
bour cells. Correspondingly; describes the influence of the considered cell and thezefor
the diagonal elements whike, describes the offdiagonals which couple the single celtb wi
each neighbour. Finallyp; is the explicit source term for the considered cell. In casitito

7
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a segregated approach, the equations for pressure ancfeolime fractions are all solved
simultaneously and can implicitly depend on other statéabdes. Therefore, the equations
for pressure and the volume fractions in every cell form deysof equations in whick; is
not only a scalar variable value but a vector of len@th+ 1) for the pressure value and the
values of the volume fractions in the regarded cell. The eslior the neighbour cells ix,
have the same structure. In the same WagndA,, are not only scalar coefficient values, but
(N +1) x (N + 1)-matrices where all implicit dependencies of the equataresstored. De-
pending on the discretisation schemes the single termsoavealistributed into the diagonals
and the off-diagonals of the tensar All the coefficients of the pressure equation are located
in the first row and the coefficients fgrV — 1) phase equations in the following rows. The
last equation is the closure equation. Due to the coupletbapp and the additional implicit
dependencies the resulting matrix is larger and has moreeanentries. Therefore, the effort
to solve the equation system increases significantly. Toekimatrix structure in the imple-
mentation stores the entries in three arrays, the diagonal, the lotaergle and the upper
triangle. This is represented in Figure 1.

Celli-T

Coefficients pEqn P pEqn.source()
i Coefficients o, Eqn ® a, = | |o,Eqn.source()

Coefficients Closure a, Closure.source(|

N

Figure 1: Representation of the block matrix structure

Cell i

Cell i+l

3.2 THE ALGORITHM

Now the full algorithm can be described in detail. The basrofat resembles the SIMPLE
(Semi-Implicit Method for Pressure-Linked Equations)aalthm® with the difference that the
solution is obtained by simultaneously solving for pressaand volume fractions, as mentioned
before. After the time loop has been started, the mater@gties in the mixture approach
need to be updated to the actual distribution of the volumetnase fractions, as described
in (3) and (4). Next, the modified transient SIMPLE loop iargtd. The governing equations
are established at this point, but not solved. In this wag,dbefficients which are now fed
into the block matrix structure are obtained. Using a GMRE&n@alized Minimal Residual)
solver, the system is solved. The fluxes are corrected anpréssure is explicitly relaxed. The
interfaces are corrected before the velocity is updatedeBéing on the number of correctors
for the SIMPLE loop, this procedure is repeated. The alboriis visualised in Figure 2.
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begin time loop

v

runTime++

v

v

update mixture properties——»{ begin SIMPLE loop

A

v
assign block matrix

solve block matrix

v

error tolerance
no correct fluxes no

relax p

update U

update mixture properties

Time loop complete* IMPLE loop complete~

number of correctors

Figure 2: Solution algorithm

9



Kathrin Kissling, Julia Springer, Hrvoje Jasak, Steffeii8z, Karsten Urban, Manfred Piesche

4 TEST CASES

The presented algorithm is validated regarding differesittases taken from literature. The
first testcase describes the collapse of a liquid coldfhA.second test case covers sloshing of
aliquid wave in atank.® The last test case is presented to show the applicabilityeofdncept
to test cases with more than two phases as well as three donen$he case is similar to the
first test case but with two collapsing liquid columns.

4.1 Collapse of a liquid column

A classical validation test case of the mathematical modglf free surface flow is the
collaps of a liquid columr:® Unfortunately measurements of the exact interface corsrge
not available. However, Koshizukavaluated the speed of the wave and the reduction of the
column height from photographs. The experiments wereexhiout in a glass tank with a
base length of 0.584 m, while the water column has a baselei@t.146 m and a height of
0.292 m. Due to the gravitational acceleration, the wat&rma collapses to seek the lowest
level of potential energy. The dimensions are relativetgeéa Hence surface tension effects
can be neglected. At first the flow is dominated by inertia dsrcThe viscous forces gain
importance, when the flow is settling at the bottom of the tafke glass walls have been
modelled with no-slip boundary conditions. The numerieaults for the velocity field and
the position of the fluid at six different times are shown igue 3. Figures 4 and 5 show
the numerical results compared to experimental resultsdshikuka’ The numerical results
obtained with the coupled appoach are in excellent agreemiin the experimental data.
Therefore the coupled solution approach for pressure ahanéfraction equations can be
regarded as justified.

4.2 Sloshing of a liquid wave in a tank

The sloshing of a liquid wave in a tank is used as a test case sin analytical solution
for the period of the sloshing wave exists. This case wasrfieghematically investigated by
Tadjbakhsh and Kellét and applied as a test case for numerical simulations by Raadi
Ubbink® The wave in the test case shows a low amplitude and the dotdnaeleration force
is the gravitational force. The test case enables the validavith respect to the numerical
dissipation introduced by the discretisation and the igtwfithe method to conserve the energy
of the system, especially during transfer of potential gnénto kinetic energy and vice versa.
The simulation setup consists of a tank with a base lengtld@iim and a height of 130 mm.
The domain is uniformly discretised with 40 cells in the ontal direction and 104 cells in
the vertical direction resulting in, = 0.625 mm and, = 1.25 mm. The walls on the left,
the right and the bottom sides of the domain are treated @dslindaries whereas at the top
an atmosphere boundary is specified. The fluid has an aveeggle df 50 mm. Its surface is
initially defined by one half of a cosine wave with an ampléuaf 5 mm. The densities of
the fluids water and air are definedas= 1000kg/m? andp, = 1kg/m? respectively, while
the viscosities are taken as zero. Due to the gravitatioell, fihe fluid begins to slosh. The
gravitational acceleration is set to 9.8sh The first mode of the sloshing has the theoretical
period of

P = 2r [gktanh(kh)]~/* = 0.3739s (39)

10
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Figure 3: Numerical results of the collapsing water column
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Figure 4: Position of the leading edge versus time
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Figure 5: Height of the collapsing water column versus time
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with the wave numbet and the average fluid depth The numerical results are shown in
Figure 6.

t=0.0s

t=1/2P

Figure 6: Wave position and velocity vectors for the firstipeiof the sloshing

Raad introduced a definition for the temporal error which is defias

(ts - tt)

e = 100 ;
t

(40)

with the theoretical time; calculated as the amount of periods multiplied by the petiine
and the time gained from the simulation The time of the simulations represents the time

13
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| Theoretical Time| Raad | Ubbink® | Coupled Approach

2P -0.44 0.0 -0.37
4P -0.39 | -0.75 -0.19

Table 1: Temporal error in %

when the interface reaches its highest point at the left daryn The temporal error for the
first two even periods are presented in Table 1.

As can be seen in Table 1, the results of the coupled soluppnoach show very good
agreement with the data from literatéifer the first two even periods. However, the dam-
ping effect of the discretisation becomes significant stgrat the 5th period which makes an
evaluation for higher periods impossible.

4.3 Dam break with three phases in 3d

A dam break case with three phases in 3d was considered ttheestehaviour of the
presented method for more than two phases. The variety astndl applications with more
than two phases is numerous and the applicability of theepted method for more than
two phases has been shown in the theoretical part. Howeehrmoblems have not yet been
subject to extensive tests, which causes the absence idagplvalidation data in literature.
Therefore the following test case can merely be seen as d pf@oncept and is set up as
an extension of the dam break case presented in 2d with tweephBue to the gravitational
acceleration, two water columns collapse as presentedeoéiibe computational domain has
a length, width and height of 0.584 m and initially the watelucnns are positioned at the left
and the right boundary of the domain. Slightly appart fromnfddle of the domain there is a
small obstacle placed in the way of the wave fronts whichddad mixing of the two liquid
phases due to the asymetric arrangement. The simulatiohs@se shown in Figure 7.

5 CONCLUSIONS

A coupled pressure based solution algorithm was developddvalidated on test cases.
The calculated results agree well with experimental ddtertdrom literature. The test cases,
however, have also revealed that the implicit coupling & #guations seriously weakens
the diagonal dominance of the system matrix, which has at grgzact on the stability of
the simulation results. Therefore further effort has to beipto the development of suitable
solvers for systems with block matrices. Moreover, the @flgm needs to be enhanced to
capture multiphase flow where the surface tension effeetd@minant.
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t=1.5s t=20s

Figure 7: Dam break in3dfort=0s,t=0.1s,t=0.5s,t=1.25s]lt5sandt=2.0s
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