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Abstract. The Expectation-Maximization (EM) algorithm is widely used

also in industry for parameter estimation within a Maximum Likelihood (ML)
framework in case of missing data. However, to the best of our knowledge, pre-

cise statements concerning the connections of the EM algorithm to other ascent
methods are only available for specific probability distributions. In this paper,

we analyze the connection of the EM algorithm to other ascent methods as well

as the convergence rates of the EM algorithm in general and apply this to the
PMHT model. We compare the EM with other known iterative schemes such

as gradient and Newton-type methods. It is shown that EM reaches Newton-

convergence in case of well-separated objects and a Newton-EM combination
turns out to be robust and efficient even in cases of closely-spaced targets.

1. Introduction

Maximum Likelihood (ML) estimation is a wide-spread tool in parametric sta-
tistics. In many cases of practical interest, an analytical computation of an ML
estimator is not possible so that one has to resort to numerical approximation
methods. These methods need to be fast (efficient), robust and accurate, where
efficiency is particularly important for large data sets, robustness is a key issue in
case of perturbed data and accuracy is crucial when decisions need to be based upon
numerical simulations. Hence, the choice of a numerical method for ML estimation
is an important issue for a problem at hand. The intention of this paper is to
analyze some widely used computational schemes in the particular case of missing
data with respect to the three mentioned criteria and to establish similarities and
differences that can guide the choice.

Given a probability space (Ω,A,P) and an (observable) random variable Y : Ω→
Rn, n ∈ N. The associated probability density function gYφ : Rn → R

+
0 := [0,∞)

is assumed to be parameter-dependent with some parameter φ ∈ Φ ⊆ RP , P ∈ N.
The Likelihood function L : Φ → R

+
0 for an observed realization y = Y (ω) of a

(fixed) event ω ∈ Ω is then defined as L(φ) := gYφ (y), φ ∈ Φ. The ML estimator is
usually computed for the log-Likelihood function L := log L and reads

(1.1) φ̂ML = arg sup
φ∈Φ

L(φ).

As long as L is explicitly known, the computation of φ̂ML reduces to an optimization
problem which can be solved numerically by any scheme known from numerical
optimization.
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We are particularly interested in the context of missing data, where the par-
ticular form of L might not be known (since the full data x = X(ω) may not be
observable) or at least not be efficiently computable in general. In this framework,
the Expectation-Maximization (EM) algorithm is a widely used scheme. The main
reason is that EM does neither require the analytic expression of the log-Likelihood
function nor of the gradient, the function L does not even need to be differentiable.
This makes EM a good “black box” method.

However, in many applications, there is some knowledge on L, its gradient or
smoothness properties, even though it might be cumbersome to retrieve this in-
formation at a first glance. In terms of the properties efficiency, robustness and
accuracy, however, it might pay off to use this information so that numerical meth-
ods other then EM (and possibly superior) could in principle be used.

This is the motivation for a theoretical analysis of the relationship of EM to
other numerical optimization schemes. Similar comparisons of the performance of
the EM algorithm with unconstrained optimization methods have been performed
e.g. in [20, 21, 22, 28]. We will detail the relations of our results to existing ones
in literature later on in Section 3.2.

The remainder of this paper is organized as follows. In Section 2 we describe
the ML framework of missing data, collect some general assumptions and introduce
the EM algorithm. The connections of the EM algorithm to other ascent methods
and a linearized fixpoint scheme for the Euler-Lagrange equation are in general
derived in Section 3. Subsequently, in Section 4, we examine the convergence of
iterative schemes and discuss the implications for the EM algorithm. This is then
applied to the PMHT model analyzing a specific tracking scenario in Section 5. The
theoretical results are supplemented by numerical experiments and a discussion on
their relevance for practical applications, at the end of that section.

2. Preliminaries

In this section, we collect some basic notation and facts that will be needed
throughout the paper.

2.1. ML estimation for missing data. Let (Ω,A,P) again be a probability
space, i.e., a sampling space. Given two random variables X : Ω → Rm and
Y : Ω → Rn, m ≥ n, let D := {X(ω) : ω ∈ Ω} ⊂ Rm, O := {Y (ω) : ω ∈ Ω} ⊂ Rn

denote the corresponding data and observation space, respectively. It seems natu-
ral to assume that both D and O are bounded (since unbounded observations are
usually truncated to a finite computational domain anyway). We assume that the
density functions are given in terms of a parametric model with parameter space
Φ ⊆ RP . Denote the probability density functions by fXφ and gYφ , respectively.

We may think of x ∈ D as the complete data and y ∈ O as the observed or
incomplete data. This is in special cases indicated by writing D = O×M, x = (y, z),
where z ∈ M is interpreted as missing data. This can also be expressed by a “many-
to-one”-mapping ` : D → O, `(x) := y. More general, given the observed data
y, the unknown complete data is only known to be in the subset of D given by
{x ∈ D : y = `(x)} =: `−1(y), the preimage of `. In particular ,`−1(y) is assumed
to be uniformly bounded for any observation y ∈ O.
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The relation between observed and complete data (in terms of their probability
density functions -PDF- fXφ and gYφ , respectively) can be written as

(2.1) gYφ (y) =

∫
`−1(y)

fXφ (x) dx.

Further, let h
X|Y
φ denote the conditional density of the complete data x given the

observation y, i.e.,

(2.2) h
X|Y
φ (x|y) :=

fXφ (x)

gYφ (y)
, x ∈ `−1(y),

for gYφ (y) 6= 0. Note, that by definition we have
∫
`−1(y)

h
X|Y
φ (x|y) dx = 1 and

this normalization will be frequently used in the sequel. One approach to “fill in”

the missing data is to use an estimate φ̂ for the unknown parameter φ given the

observation y and then to use φ̂ to retrieve some statistics for the unknown full

data x. One option for φ̂ is a standard ML estimate, i.e.,

(2.3) φ̂ML = arg sup
φ∈Φ

gYφ (y).

Taking the logarithm on both sides of (2.2) and denoting

`full(x;φ) := log fXφ (x), `obs(y;φ) := log gYφ (y), `miss(x|y;φ) := log h
X|Y
φ (x|y),

equation (2.2) reads after reordering

(2.4) L(φ) := Lmd(φ) := `obs(y;φ) = `full(x;φ)− `miss(x|y;φ).

This decomposition has a useful interpretation. If we aim at maximizing gYφ (y) (or

its log `obs(y;φ), i.e., the log-Likelihood Lmd in the missing data-case) w.r.t. φ, we
can hope that `full(x;φ) is relatively easy to maximize w.r.t. φ and can be used as
approximation for L(φ). This is a framework particularly appropriate for the EM
algorithm to be described in Section 2.3 below.

2.2. Some general assumptions. Before we continue, let us collect some general
assumptions. Since we are concerned with observed data, it is by no means a
restriction to assume that X : Ω → D and Y : Ω → O, where D ⊂ Rm, O ⊂
Rn are bounded and closed domains (one may think of an observation window).
Consequently, we have that fXφ : D→ R

+
0 . For later convenience, let us specify our

general assumptions.

Assumption A. Let fXφ : D → R
+
0 , D ⊂ Rm compact, be a probability density

function such that

(A1) fXφ (x) > 0 for all x ∈ D;

(A2) fXφ (x) ∈ C1(Φ) for all x ∈ D;

(A3) ∂
∂φf

X
φ ∈ L∞(D).

Remark 2.1. Since D is assumed to be compact, (A1) implies the existence of a
R 3 f−φ > 0 such that

fXφ (x) ≥ f−φ > 0, x ∈ D.

Obviously, Assumption A is a general assumption on the model for the full data.
We will also pose the following assumption on the observations.
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Assumption B. For any given observation y = Y (ω), ω ∈ Ω, let `−1(y) ⊂ D ⊂ Rn
be a set of positive measure.

Remark 2.2. Assumption B implies that gYφ (y) > 0 for all y ∈ O.

Assumption B excludes such observations that cannot be associated to data in
a meaningful way. Since any data processing includes a pre-selection of meaningful
data, this is no restriction at all in practice. Sometimes, we need more regularity,
which is reflected by the following assumption.

Assumption C. In addition to Assumptions A and B assume that fXφ (x) ∈ C2(Φ)

for all x ∈ D and ∂2

∂φ2 f
X
φ ∈ L∞(D).

2.3. The EM algorithm. The EM algorithm was initially introduced in [5] and
is by now a widely used black box method for ML estimation in case of missing
data. The main idea to obtain an iterative procedure for approximating the ML
estimate in (2.3) is to replace Lmd(φ) = `obs(y;φ) by successive maximizations of
the conditional expectation Q(φ, φ(m)) of the log-Likelihood function `full(x;φ) for
the complete data given the observation y and the current parameter value φ(m),
i.e.,

(2.5) Q(φ, ψ) := E

[
`full(·;φ)

∣∣y, ψ] =

∫
`−1(y)

(
log fXφ (x)

)
h
X|Y
ψ (x|y) dx.a

Since the observation y is assumed to be given and fixed, we do not explicitly denote
the dependence of Q w.r.t. y. Then, Q : Φ× Φ→ R. With these preparations, the
scheme consists of two steps:

Given an initial guess φ(0) ∈ Φ, for k = 0, 1, 2, . . . do

(E) Compute Q(φ, φ(k));

(M) Update φ(k) by computing a maximizer φ(k+1) of Q(φ, φ(k)) w.r.t. φ, i.e.,

(2.6) φ(k+1) := arg max
φ∈Φ

Q(φ, φ(k)).

In order to shorten notation, we abbreviate for any F : Φ×Φ→ R with F (·, ψ) ∈
C1(Φ), ψ ∈ Φ,

D10F (φ̃, ψ) :=
∂

∂φ
F (φ, ψ)|φ=φ̃, φ, ψ, φ̃ ∈ Φ,

with obvious extensions to other partial derivatives. Note, that we interpretD10F ∈
RP as well as ∂

∂φF ∈ R
P as a column vector. Moreover, we set

C10(Φ) := {F ∈ C(Φ× Φ) : D10F ∈ C(Φ× Φ)},

again with (almost) obvious extensions to other partial derivatives. As an example,

we just note that D11F (φ̃, ψ̃) := ∂
∂ψ

∂
∂φF (φ, ψ)|φ=φ̃,ψ=ψ̃ and C11(Φ) accordingly.

Lemma 2.3. Let Assumptions A and B hold. If fXφ (x) ∈ Ck(Φ), k ∈ N, for all

x ∈ D, then Q ∈ Ckk(Φ).

aIn the EM literature, often the notation Q(φ|ψ) is used. We avoid the vertical bar here in
order to avoid possible misunderstandings with conditional expectations, densities etc.
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Proof. First, note that

Q(φ, ψ) =
1

gYψ (y)

∫
`−1(y)

fXψ (x) log fXφ (x) dx.

By assumption, we have gYψ (y) 6= 0 and fXφ (x) > 0, by (2.1) and Remark A.2 we

have gYψ (y) ∈ Ck(Φ), so that Q is a combination of Ck-functions w.r.t. φ and ψ. �

Remark 2.4. For later reference, let us remark that

(2.7) ∇Lmd(φ) = ∇φ`obs(y;φ) = D10Q(φ, φ),

provided that Assumptions A and B hold.

Proof. By definition, we have that

D10Q(φ, ψ) =
∂

∂φ
Q(φ, ψ) =

∂

∂φ

∫
`−1(y)

(log fXφ (x))h
X|Y
ψ (x|y) dx.

Due to Lemma A.6, we can interchange differentiation and integration. Moreover,
since fXφ (x) > 0, x ∈ D, we get by (2.1) and (2.2)

D10Q(φ, φ) =

∫
`−1(y)

∂

∂φ
fXφ (x)(fXφ (x))−1 h

X|Y
φ (x|y) dx

=

∫
`−1(y)

( ∂

∂φ
fXφ (x)

)
(gYφ (y))−1dx = (gYφ (y))−1

∫
`−1(y)

∂

∂φ
fXφ (x)dx

= (gYφ (y))−1 ∂

∂φ
gYφ (y) =

∂

∂φ
log gYφ (y) = ∇φ`obs(y;φ),

where we have used Remark A.2 in the last row. This proves (2.7). �

Before we continue, let us collect one more well-known and useful fact. Defining

H(φ, ψ) := E(log h
X|Y
φ (·)|y, ψ) = E(`miss(·|y;φ)|y, ψ)(2.8)

=

∫
`−1(y)

(log h
X|Y
φ (x|y))h

X|Y
ψ (x|y) dx,

we get (recall (2.4))

(2.9) L(φ) = Q(φ, ψ)−H(φ, ψ), ψ ∈ Φ.

In fact, using the respective definitions and the integral normalization of the PDF

h
X|Y
φ , we get by (2.2)

Q(φ, ψ)−H(φ, ψ) =

∫
`−1(y)

(log fXφ (x)− log h
X|Y
φ (x|y))h

X|Y
ψ (x|y) dx

=

∫
`−1(y)

(log gYφ (y))h
X|Y
ψ (x|y) dx = L(φ)

∫
`−1(y)

h
X|Y
ψ (x|y) dx

= L(φ).

In the following, we will omit the subscript “md” and just write L instead of Lmd.

Lemma 2.5. Let Assumptions A and B hold. If fXφ (x) ∈ Ck(Φ), k ∈ N for all

x ∈ D, then L ∈ Ck(Φ) and H ∈ Ckk(Φ).
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Proof. By definition, we have for given y ∈ O that L(φ) = log gYφ (y). By Assump-

tion B, it holds that gYφ (y) > 0 so that L inherits its regularity w.r.t. φ from those

of fXφ . With the same reasoning and Assumption B we get h
X|Y
φ (x|y) 6= 0 so that

H is a combination of Ck-functions. �

For later reference, let us collect some basically straightforward facts. We start
by showing some relations for derivatives.

Lemma 2.6. Let Assumption C hold true, then D11H(φ, φ) = −D20H(φ, φ) for
all φ ∈ Φ.

Proof. By Corollary A.8, we get for φ, ψ ∈ Φ that

D10H(φ, ψ) =
∂

∂φ

∫
`−1(y)

(
log h

X|Y
φ (x|y)

)
h
X|Y
ψ (x|y) dx(2.10)

=

∫
`−1(y)

∂
∂φh

X|Y
φ (x|y)

h
X|Y
φ (x|y)

h
X|Y
ψ (x|y) dx

and consequently by Lemma A.9 with q = ∂
∂φh

X|Y
φ (h

X|Y
φ )−1

D11H(φ, ψ) =

∫
`−1(y)

∂
∂φh

X|Y
φ (x|y)

h
X|Y
φ (x|y)

( ∂

∂ψ
h
X|Y
ψ (x|y)

)T
dx,

D20H(φ, ψ) =

∫
`−1(y)

(
∂2

∂φ2h
X|Y
φ (x|y)

)
h
X|Y
φ (x|y)−

(
∂
∂φh

X|Y
φ (x|y)

)2
(h
X|Y
φ (x|y))2

h
X|Y
ψ (x|y) dx, b

where the second statement is implied by Lemma A.10. This implies by Corollary
A.5 that

D20H(φ, φ) =

∫
`−1(y)

( ∂2

∂φ2
h
X|Y
φ (x|y)

)
dx−

∫
`−1(y)

(
∂
∂φh

X|Y
φ (x|y)

)2
h
X|Y
φ (x|y)

dx

=
∂2

∂φ2

∫
`−1(y)

h
X|Y
φ (x|y) dx−D11H(φ, φ) = −D11H(φ, φ)

since
∫
`−1(y)

h
X|Y
φ (x|y) dx = 1. �

Lemma 2.7. Let φ ∈ Φ and let Assumptions A and B hold.
(a) ∇L(φ) = D10Q(φ, ψ)−D10H(φ, ψ) for all ψ ∈ Φ.
(b) If in addition fXφ (x) ∈ C2(Φ) for all x ∈ D, then we have for all ψ ∈ Φ that

∇2L(φ) = D20Q(φ, ψ)−D20H(φ, ψ).
(c) D01Q(φ, ψ) = D01H(φ, ψ) for all ψ ∈ Φ.
(d) For the EM iterates φ(k), we have ∇L(φ(k+1)) = −D10H(φ(k+1), φ(k)).
(e) D11H(φ, ψ) = D11Q(φ, ψ) for all ψ ∈ Φ.

Proof. (a) and (b) follow directly from (2.9) by differentiating w.r.t. φ and (c) by
differentiating w.r.t. ψ. By definition of the M-step, we have D10Q(φ(k+1), φ(k)) = 0
so that (d) is a consequence of (a) using φ = φ(k+1) and ψ = φ(k). Finally, (e) follows
from (c). �

bWe use the notation (·)2 := (·)(·)T .
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Corollary 2.8. Under the assumptions of Lemma 2.6, we have D20H(φ, φ) =
−D11Q(φ, φ).

Proof. By Lemma 2.3 we have that Q ∈ C11(Φ). Then, the claim follows directly
from Lemma 2.6 and Lemma 2.7 (e). �

Lemma 2.9. Let Assumptions A and B hold. Then, for φ ∈ Φ

(a) D10H(φ, φ) = 0.
(b) If φ(k) → φ∗ and φ∗ is a critical point of L, we have D10Q(φ∗, φ∗) = 0.

Proof. By definition and Corollary A.8, we obtain for φ, ψ ∈ Φ

D10H(φ, ψ) =
∂

∂φ
H(φ, ψ) =

∫
`−1(y)

∂
∂φh

X|Y
φ (x|y)

h
X|Y
φ (x|y)

h
X|Y
ψ (x|y) dx.

This implies by Lemma A.4 D10H(φ, φ) =
∫
`−1(y)

∂
∂φh

X|Y
φ (x|y) dx = 0. Hence, (a)

is proven. Finally, (b) follows from Remark 2.4 by passing to the limit φ→ φ∗ �

3. EM Algorithm and Ascent as well as Quasi-Newton methods

The precise form of the target function Q(φ, φ̃) in the optimization of the M-
step (2.6) obviously depends on the specific form of the log-Likelihood function `full.
This, in turns, implies the precise form of the EM algorithm. The EM iteration
φ(k) → φ(k+1) in (2.6) can be written as φ(k+1) = M(φ(k)) with M : Φ→ Φ defined
as M(φ) := arg maxψ∈ΦQ(ψ, φ). It is well-known that convergence properties of
the EM algorithm depend on properties of the (fixpoint) function M . It is obvious
that statements in the most general case are difficult if not impossible. In many
cases, however, the EM iteration turns out to coincide with iterative schemes that
are well-investigated in numerical analysis. The aim of this section is to show some
of these similarities and relationships.

We first note a result which is known from the literature [5, Theorem 4] and
include a proof since our findings slightly differ from those in [5].

Proposition 3.1. If Assumption C holds and φ∗ ∈ Φ is a fixpoint of M , then

∇M(φ∗) = (D20Q(φ∗, φ∗))−1D20H(φ∗, φ∗).

Proof. We start by the Taylor expansion for φ1, φ2 ∈ Φ, i.e.,

D10Q(φ2, φ1) = D10Q(φ∗, φ∗) +D20Q(φ∗, φ∗)(φ2 − φ∗)
+D11Q(φ∗, φ∗)(φ1 − φ∗) + o(‖φ1 − φ∗‖+ ‖φ2 − φ∗‖).

Let ψ(`) := φ∗ + h(`)e for h(`) ∈ R+, h(`) ↘ 0, ` → ∞, e ∈ Φ, ‖e‖ = 1, be an
arbitrary sequence converging to φ∗. Setting φ1 = ψ(`), φ2 = M(ψ(`)) and recalling
that D10Q(M(ψ(`)), ψ(`)) = 0 by definition of the M-step yields

0 = D20Q(φ∗, φ∗)(M(ψ(`))− φ∗) +D11Q(φ∗, φ∗)(ψ(`) − φ∗)

+ o(‖ψ(`) − φ∗‖+ ‖M(ψ(`))− φ∗‖)

= D20Q(φ∗, φ∗)(M(ψ(`))−M(φ∗)) +D11Q(φ∗, φ∗)(ψ(`) − φ∗) + o(‖ψ(`) − φ∗‖).
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Dividing by h(`), passing to the limit ` → ∞ and noting that e ∈ Φ, ‖e‖ = 1 can
be chosen arbitrarily yields

0 = D20Q(φ∗, φ∗)∇M(φ∗) +D11Q(φ∗, φ∗)

= D20Q(φ∗, φ∗)∇M(φ∗)−D20H(φ∗, φ∗),

where we have used Corollary 2.8 in the last step. �

Remark 3.2. Let us briefly comment on the relationship of the above result to [5,
Theorem 4], which reads in our notation ∇M(φ∗)=D20H(φ∗, φ∗)(D20Q(φ∗, φ∗))−1.
Thus, both statements coincide if and only if the two matrices D20H(φ∗, φ∗) and
(D20Q(φ∗, φ∗))−1 are normal, which -at least in general- might not be the case.

3.1. Ascent methods. In some cases, the EM iteration can be written as an
updating procedure, i.e.,

(3.1) φ(k+1) = φ(k) + d(k),

where the update d(k) is a projection applied to the gradient of the log-Likelihood
function, i.e.,

(3.2) d(k) = η P (φ(k))∇L(φ(k)),

η > 0 is a fixed step size parameter and P (φ) ∈ Rn×n is some matrix uniformly
bounded in the parameter φ ∈ Φ, i.e. ‖P (φ)‖ ≤ C for all φ ∈ Φ. The specific form
of the EM algorithm in this case depends on the particular choices of P and η.

If the EM algorithm takes the form (3.1), the scheme is an ascent method with
ascent direction d(k). If in addition (3.2) is true, then the EM algorithm is a
Quasi-Newton (sometimes also called gradient akin) method where P (φ) acts as an
approximation of the inverse of the Hessian ∇2L of the log-Likelihood function and
can thus be interpreted as a preconditioner. The step size is up to the choice of the
user.

3.2. Preconditioning ascent methods. In order to study the convergence prop-
erties of (3.1, 3.2), one needs to ensure that P (φ) is s.p.d. – at least acting on
the current gradient (see also Proposition 4.2 below). The following result in that
regard is well-known.

Theorem 3.3 ([22, §2]). Let the Assumptions A and B hold. Assume for (3.1)
and (3.2) that φ(k) 6= φ(k+1), k ∈ N, holds and that D10Q(φ, φ(k)) = 0 if and only
if φ = φ(k+1). Then,

(3.3) ∇L(φ(k))T P (φ(k))∇L(φ(k)) > 0 ∀φ(k) ∈ Φ,

i.e., P (φ(k)) is positive definite along the direction ∇L(φ(k)). �

Let us briefly recall from the literature under which circumstances (3.1) and (3.2)
hold true. The explicit form of the matrix P (φ(k)) for the EM algorithm is given
in [20, 21, 28] for some specific cases. These are in [28, Theorem 1] the Gaussian
Mixtures model, in [21, Appendix] and [20, §2] the Mixture of Factor Analyzers
model and moreover in [20, §§2,3] the Factor Analysis model, the Hidden Markov
model and the Exponential Family models. Yet, a uniform derivation of P (φ(k))
for more general cases is not given in literature. Furthermore, the existence of an
EM preconditioner P (φ(k)) is postulated in these papers without statements under
which circumstances this assumption is actually justified. Hence, we generalize the
statements on existence, derivation and special properties of the projection matrix
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for all problems where the M-step consists in solving a linear system of equations.
In addition, the given derivation of P (φ(k)) will identify a connection between the
EM scheme and the Fisher Information Matrix (FIM) of the complete data which
in turns establishes a relation to Scoring algorithms, see Section 3.3 below.

Let us start with the particular situation where the M-step amounts solving a
linear system. This case, however, will be important also for the general under-
standing.

Theorem 3.4. Let Assumptions A and B hold and Q(·, ψ) is assumed to have a
unique local maximum. If

(3.4) D10Q(φ, ψ) = −A(ψ)φ+ b(ψ)

with a regular A(ψ) ∈ Rn×n and b(ψ) ∈ Rn. Then, the EM algorithm can be written
in the form (3.1), (3.2) with

(3.5) P (φ(k)) =
[
ηA(φ(k))

]−1
= [−ηD20Q(φ(k), φ(k))]−1.

Moreover, P (φ(k)) is s.p.d. provided that in addition fXφ (x) ∈ C2(Φ) for all x ∈ D.

Proof. By Remark 2.4 we have that

∇L(ψ) = D10Q(ψ,ψ) = −A(ψ) ψ + b(ψ), ψ ∈ Φ.(3.6)

For the EM iterates φ(k), we hence get that

φ(k+1) − φ(k) =
[
A(φ(k))

]−1
b(φ(k))− φ(k) =

[
A(φ(k))

]−1 (
b(φ(k))−A(φ(k)) φ(k)

)
=
[
A(φ(k))

]−1 ∇L(φ(k)),(3.7)

i.e., ηP (φ(k)) =
[
A(φ(k))

]−1
. From assumption (3.4), we immediately obtain

D20Q(φ, ψ) =
∂

∂φ

(
−A(ψ) φ+ b(ψ)

)
= −A(ψ),(3.8)

so that (3.5) is proven.
If in addition fXφ (x) ∈ C2(Φ) for all x ∈ D, we obtain Q ∈ C20(Φ) by Lemma

2.3, and then the Hessian D20Q(φ, ψ) is symmetric and so is P (φ(k)). Note that the
Hessian in (3.8) does not depend on φ which means that −A(ψ) also corresponds to
the Hessian at the unique local maximum of Q(·, ψ), where the Hessian is symmetric
and negative semidefinite. Since A(ψ) is assumed to be regular, we deduce that
A(ψ) is s.p.d. which by (3.5) implies that P (φ(k)) is s.p.d. �

Of course, the assumption (3.4) is very specific and will not hold true in general.
There are two separate issues. First, (3.4) may not be true at all and second, (3.4)
may not be valid for all ψ ∈ Φ. The latter one is not serious since a closer look
to the proof shows that we only need (3.4) for the specific choice ψ = φ(k) and
arbitrary φ ∈ Φ, i.e.,

(3.9) D10Q(φ, φ(k)) = −A(φ(k))φ+ b(φ(k)).

Obviously, such an assumption is delicate to check a-priorily since the iterates φ(k)

are unknown, which is the reason for the general formulation (3.4). However, even
if (3.9) is not true, we get at least an approximation as the following statement
shows.
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Proposition 3.5. Let Assumption C hold and ‖(D20Q(φ, φ))−1‖ < ∞ uniformly
for φ ∈ Φ. Then, the EM iteration satisfies

φ(k+1) = φ(k) − [D20Q(φ(k), φ(k))]−1∇L(φ(k)) + o(‖φ(k+1) − φ(k)‖),

i.e., P (φ(k)) ≈ [−ηD20Q(φ(k), φ(k))]−1.

Proof. We use Taylor’s expansion (e.g. [13, XVI, §6]), i.e.

D10Q(φ, ψ) = D10(φ0, ψ) +D20Q(φ0, ψ)(φ− φ0) + o(‖φ− φ0‖).

The assertion follows using φ0 = φ(k), φ = φ(k+1) and ψ = φ(k) recalling that the
M-step implies D10Q(φ(k+1), φ(k)) = 0 and that D10Q(φ(k), φ(k)) = ∇L(φ(k)). �

This latter statement shows that the EM iteration asymptotically behaves like
an EM algorithm for the specific case in Theorem 3.4.

We continue with some statements on the matrix P . Additionally, the remaining
part of this section shall serve to give an overview on similarities and differences to
existing literature. We start by a well-known short-hand notation.

Definition 3.6. The Loewner ordering of symmetric matrices, i.e. A � B, for
A,B ∈ Rn×n symmetric, means that A−B is positive definite.

Lemma 3.7. Let Assumptions A and B hold and fXφ (x) ∈ C2(Φ) for all x ∈ D.

If the series {φ(k)}k∈N of EM iterates for which (3.1), (3.2) hold converges towards
some φ∗ ∈ Φ such that D10Q(φ(k+1), φ(k)) = 0 and D20Q(φ, φ(k)) ≺ 0, then

P (φ∗) = −(ηD20Q(φ∗, φ∗))−1.

Proof. For φ ∈ Φ, we have M(φ)−φ = ηP (φ)∇L(φ) and due to differentiability of
M , P and ∇L (at least locally) we have

∇M(φ)− I = η∇P (φ)∇L(φ) + ηP (φ)∇2L(φ).

By assumption the iteration converges, i.e., ∇L(φ∗) = 0 and by passing to the limit
φ → φ∗, we obtain ∇M(φ∗) = I + ηP (φ∗)∇2L(φ∗), so that P (φ∗) = (∇M(φ∗) −
I)(η∇2L(φ∗))−1. Using Proposition 3.1, we arrive at

(3.10) P (φ∗) = [(D20Q(φ∗, φ∗))−1D20H(φ∗, φ∗)− I](η∇2L(φ∗))−1.

Now we use Lemma 2.7 and get D20H(φ, ψ) = D20Q(φ, ψ)−∇2L(φ) so that

P (φ∗) = [(D20Q(φ∗, φ∗))−1(D20Q(φ∗, φ∗)−∇2L(φ∗))− I](η∇2L(φ∗))−1

= [−(D20Q(φ∗, φ∗))−1∇2L(φ∗)](η∇2L(φ∗))−1 = −(ηD20Q(φ∗, φ∗))−1.

This proves the lemma. �

Remark 3.8. Equation (3.10) should also be valid at least approximately by re-
placing the fixpoint φ∗ by φ(k) for sufficiently large k. If this is so, then the result is
the same as in the affine case in Theorem 3.4, (3.5). The interpretation of (3.10)
in [22] reads: “When the missing information is small compared to the complete
information, EM exhibits approximate Newton behavior and enjoys fast, typically
superlinear convergence in the neighborhood of φ∗”.
It should be noted, however, that our derivation differs from [22] in two ways. First,
[5, Theorem 4] was used there, so that the comments in Remark 3.2 apply. Second,
the derivation in [22] is done basically along the lines described above, with φ∗ re-
placed by φ(k), however. Since ∇L(φ(k)) 6= 0 and [5, Theorem 4] is only given for
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φ = φ∗, the substitution can not be performed straightforwardly. In [22] no justifica-
tion to use [5, Theorem 4] for φ = φ(k) and no approximation quality for their result
is given. Yet, we will see within the proof of the next Proposition that given some
additional assumptions on ∇2L and ∇L we can derive a similar approximation for
P (φ(k)) with approximation quality o(1).

We are now going to make the approximate representation of Proposition 3.5
rigorous.

Proposition 3.9. Assume Assumption C. Let M(φ) := φ + ηP (φ)∇L(φ), P ∈
C1(Φ) be the fixpoint scheme of an EM algorithm. Moreover, assume the estimates
‖(∇2L(φ(k)))−1‖ = O(1) and ‖∇L(φ(k))‖ = o(1), k →∞. Then, as k →∞

P (φ(k)) = −
(
ηD20Q(φ∗, φ∗)

)−1
+ o(1).

Proof. By assumption, we have ∇M(φ) = I + η∇P (φ)∇L(φ) + ηP (φ)∇2L(φ) for
all φ ∈ Φ, ‖∇M(φ∗)−∇M(φ)‖ = o(1) as φ→ φ∗ and in particular

ηP (φ(k))∇2L(φ(k))−
(
∇M(φ∗)− I

)
= −η∇P (φ(k))∇L(φ(k)) + o(1) = o(1)

which finally leads to P (φ(k)) = (∇M(φ∗)− I)(η∇2L(φ(k)))−1 + o(1). Now, we use
Proposition 3.1 so that the first term on the right-hand side reads

(∇M(φ∗)− I)(η∇2L(φ(k)))−1 =

=
(

(D20Q(φ∗, φ∗))−1D20H(φ∗, φ∗)− I
)

(η∇2L(φ(k)))−1

=
(

(D20Q(φ∗, φ∗)−1[D20Q(φ∗, φ∗)−∇2L(φ∗)]− I)
)

(η∇2L(φ(k)))−1

= −(D20Q(φ∗, φ∗))−1∇2L(φ∗) (η∇2L(φ(k)))−1,

where we have used Lemma 2.7. Since L ∈ C2(Φ) by assumption, we finally get
∇2L(φ∗)∇L(φ(k))−1 = I + o(1) so that the claim is proven. �

This allows now for the following convergence statements:

Theorem 3.10. Under the assumptions of Proposition 3.9, we have

(a) φ(k+1) − φ(k) = −(D20Q(φ∗, φ∗))−1∇L(φ(k)) + o(1)
(b) φ(k+1)− φ∗ = [I − (D20Q(φ∗, φ∗))−1∇2L(φ∗)](φ(k)− φ∗) + o(||φ(k)− φ∗||).

Proof. Using the above definitions and Proposition 3.9, it holds

φ(k+1) − φ(k) = ηP (φ(k))∇L(φ(k)) = −(D20Q(φ∗, φ∗))−1∇L(φ(k)) + o(1),

which is (a). As for (b), we have by Taylor’s expansion that

φ(k+1) − φ∗ = φ(k) − φ∗ + ηP (φ(k))∇L(φ(k))

= φ(k) − φ∗ + ηP (φ(k))∇2L(φ∗)(φ∗ − φ(k)) + o(‖φ(k) − φ∗‖)
=

(
I − (D20Q(φ∗, φ∗))−1∇2L(φ∗)

)
(φ(k) − φ∗) + o(‖φ(k) − φ∗‖),

where we have used Proposition 3.9 in the last step. �

Remark 3.11. The approximation of Theorem 3.10 (a) can even be improved
yielding an approximation quality of o(‖φ(k)−φ∗‖) instead of o(1). A proof therefore
is given in [9, Appendix A.1]. The approximation is used in [9] to show that the EM
step can approximately be viewed as a generalized gradient of the log-Likelihood L(φ)
which is hence employed for conjugate gradient acceleration of the EM algorithm.



12 THERESA SPRINGER AND KARSTEN URBAN

A corresponding approximate representation of (b) using FIMs instead of Hessians
can also be found in [17, (12)]. Yet, without a rigorous statement or proof on the
approximation quality.

3.3. Fisher Scoring Algorithm (FSA). The Fisher Scoring Algorithm (FSA) is
a Newton-type method to compute a numerical approximation of an ML estimate
in terms of a root of the score which is typically defined as V := ∇L, the parametric
derivative of the log-Likelihood function [14, 15]. The basic idea is to replace the
Hessian ∇2L(φ(k)) in Newton’s method (i.e., the observed information) by the
expected information.

We start by describing the FSA in the general case of observed data and will
then detail the connections to the EM algorithm in the case of missing data. The
variance of the score, also known as the Fisher Information Matrix (FIM),

(3.11) F(φ) := Var[∇L(φ)|φ],

replaces the negative Hessian. The FSA then reads

(3.12) φ(k+1) = φ(k) + F−1(φ(k))∇L(φ(k)).

This construction obviously offers two advantages from a numerical point of view.
First, F(φ) is positive semidefinite by construction and second it avoids possibly
cumbersome computations of second derivatives (as required in Newton’s method).

Lemma 3.12. If Assumption A holds, if gYφ (y) ∈ C2(Φ) for all y ∈ O and ∂
∂φg

Y
φ ∈

L∞(O), then we have

F(φ) = Var[∇L(φ)|φ] = E[(∇L(φ))2|φ] = −E[∇2L(φ)|φ].

Proof. First, note that (recalling that O ⊂ Rn is the observed data space)

E[∇L(φ)|φ] =

∫
O

( ∂

∂φ
log gYφ (y)

)
gYφ (y) dy =

∫
O

∂
∂φg

Y
φ (y)

gYφ (y)
gYφ (y) dy

=

∫
O

∂

∂φ
gYφ (y) dy =

∂

∂φ

∫
O

gYφ (y) dy = 0

by Remark A.2. This means that the score has vanishing expectation. Then,

F(φ) = E[(∇L(φ))2|φ]− E[∇L(φ)|φ]2 = E[(∇L(φ))2|φ]

= − ∂

∂φ

∫
O

∂

∂φ
gYφ (y) dy + E[(∇L(φ))2|φ]

= −
∫
O

∂2

∂φ2
gYφ (y) dy +

∫
O

( ∂

∂φ
log gYφ (y)

)2

gYφ (y) dy

= −
∫
O

( ∂2

∂φ2
log gYφ (y)

)
gYφ (y) dy = −E[∇2L(φ)|φ],

which proves the claim by Remark A.2 and Lemma A.3. �

Lemma 3.12 shows that the Jacobian in Newton’s method is replaced by the
expectation of the Jacobian of the score, i.e., the expectation of the Hessian of the
log-Likelihood [15]. This is the reason why F in (3.11) is sometimes called expected
FIM as opposed to the negative Hessian I = −∇2L of the log-Likelihood (i.e.,
standard Newton’s method) which is called observed FIM [6]. We use the letter F
for expected and I for observed information matrices.
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Let us now establish the connection of the above definitions to the case of missing
data and the EM algorithm. In a missing data model we have only access to the
observed data y and know that there exists a relation to the complete data x which
can, however, not be observed. We can thus fabricate a kind of mixture of the
observed and expected FIMs. This is done building the FIM of the complete data
Likelihood conditioned on the observed data y. Hence, it seems appropriate to
replace F by

(3.13) Ifull(φ) := E

[(
∇`full(·;φ)

)2∣∣∣y, φ] =

∫
`−1(y)

( ∂

∂φ
log fXφ (x)

)2

h
X|Y
φ (x|y) dx.

Note that Ifull(φ) contains both expected and observed information. The use of
the conditioned expectation implies that the available observed information is used,
whereas the expectation is performed for the missing information. Thus, we use the
letter I to indicate observed information. A very similar reasoning as for proving
Lemma 3.12 yields

(3.14) Ifull(φ) = −E
[ ∂2

∂φ2
log fXφ (·)

∣∣∣y, φ]
and the variant of FSA reads

φ(k+1) = φ(k) + Ifull(φ
(k))−1∇Lmd(φ(k)).

Interchanging expectation and differentiation (Lemma A.6 and Corollary A.7) in
(3.14) together with (2.5) results in

(3.15) Ifull(φ) = −D20Q(φ, φ).

In view of (3.2) and Theorem 3.4, the FSA variant hence coincides with the EM
algorithm for the particular choice P (φ(k)) = [ηIfull(φ

(k))]−1. This motivates a
closer look towards the properties of Ifull.

Lemma 3.13. Let Assumption C hold true. Then, the observed FIM for the com-
plete data Likelihood Ifull reads

Ifull = Fmiss + Iobs,

where Fmiss(φ) := Var[∇`miss(·|y;φ)|y, φ] = E
[
−∇2`miss(·|y;φ)

∣∣y, φ] is the expected
FIM of the missing data Likelihood (cf. Lemma 3.12).

Proof. We first note that fXφ ∈ C2(Φ) implies that gYφ , h
X|Y
φ ∈ C2(Φ). This, in

turns, ensures that `full(x; ·), `obs(y; ·), `miss(x|y; ·) ∈ C2(Φ). From (2.4), we then
deduce

∂2

∂φ2
`full(x;φ) =

∂2

∂φ2
`obs(y;φ) +

∂2

∂φ2
`miss(x|y;φ).
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Now, we form the expectation on both sides to obtain

Ifull(φ) = −
∫
`−1(y)

( ∂2

∂φ2
log fXφ (x)

)
h
X|Y
φ (x|y) dx

= −
∫
`−1(y)

( ∂2

∂φ2
log gYφ (y)

)
h
X|Y
φ (x|y) dx

−
∫
`−1(y)

( ∂2

∂φ2
log h

X|Y
φ (x)

)
h
X|Y
φ (x|y) dx

= − ∂2

∂φ2

(
log gYφ (y)

)
+ E

[
− ∂2

∂φ2
log h

X|Y
φ (x|y)

∣∣∣y, φ]
= Iobs(φ) + Fmiss(φ),

which proves the claim. �

It is well-known that the convergence-properties of an iteration of the form
(3.1,3.2) crucially depend on the positivity properties of the matrix P (φ), φ ∈ Φ,
i.e., in the FSA-variant of EM we have to investigate the positivity of Ifull.

Remark 3.14. Let Assumption C hold. Then, Ifull(φ) is positive definite for some
φ ∈ Φ provided that (recall Definition 3.6)

(3.16) Fmiss(φ) � −Iobs(φ).

Note, that (3.16) is satisfied if Iobs(φ) is s.p.d. since Fmiss is s.p.d. as a covariance
matrix in view (3.11).

Proposition 3.15. Let Assumption C hold and let φ∗ ∈ Φ be a non-degenerate
local maximal point of L. Then, the matrix Ifull(φ

∗) is s.p.d.

Proof. Under the above assumptions, the Hessian ∇2L(φ∗) is negative definite.
Hence, the matrix Iobs(φ

∗) = −∇2L(φ∗) is s.p.d. so that (3.16) holds true which
proves the claim. �

3.4. A linearized fixpoint scheme for the Euler-Lagrange equation. If the

log-Likelihood function L is smooth, i.e., L ∈ C1(Φ), the ML estimate φ̂ML is a
critical point of L, i.e.,

∇L(φ̂ML) = 0.

In other words, φ∗ = φ̂ML is a root of the Euler-Lagrange equation (first-order
necessary condition).

Let us consider the case in which the assumption of Theorem 3.4 holds, i.e., the
affine assumption on D10Q(φ, ψ) in (3.4). Then, we are looking for a root φ∗ of the
function

F (φ) := ∇L(φ) = D10Q(φ, φ) = b(φ)−A(φ)φ,

i.e., A(φ∗)φ∗ = b(φ∗). Since A and b in general depend in a nonlinear way on
the argument, the latter equation is nonlinear. A simple numerical scheme is a
linearized fixpoint-type method, where φ(k+1) is determined as the solution of the
linear system

(3.17) A(φ(k))φ(k+1) = b(φ(k)), k = 0, 1, 2, . . .

given some initial guess φ(0) ∈ Φ. If the iteration (φ(k))k∈N0 converges towards
some φ∗, this φ∗ is a root of F = ∇L and hence coincides with the limit of the
EM algorithm. According to Theorem 3.4, the EM iteration reads (under the
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corresponding assumptions) −A(φ(k))φ(k+1) + b(φ(k)) = D10Q(φ(k+1), φ(k)) = 0, so
that in fact the two schemes coincide. We may summarize these observations as
follows.

Proposition 3.16. Let the assumptions of Theorem 3.4 hold. Then, the EM it-
eration coincides with the linearized fixpoint scheme (3.17) for the Euler-Lagrange
equation. �

4. Convergence

We found several statements in the literature concerning convergence properties
of the EM algorithm somehow incomplete since often only very specific cases have
been investigated or the statements themselves seem to be somewhat vague. With
the results of the previous section at hand, we can derive statements concerning
convergence and rate of convergence of the EM algorithm. In fact, if we know
that the EM algorithm coincides with a particular iterative scheme (under certain
assumptions), we can use convergence properties of these schemes in order to derive
corresponding results for the EM algorithm. We start by reviewing some more
or less well-known general considerations concerning convergence and convergence
rates of iterative schemes and will apply these results then to the EM algorithm.

4.1. Convergence of iterative schemes.

4.1.1. Fixpoint schemes. Let M ∈ C1(Φ), φ(0) ∈ Φ, and consider the fixpoint
iteration

(4.1) φ(k+1) := M(φ(k)), k = 0, 1, 2, . . .

It is well-known that the convergence properties of (4.1) crucially depend on prop-
erties of the fixpoint function M . If M ∈ Cp+1(Φ), p ≥ 1, and

∇`M(φ∗) = 0, 1 ≤ ` ≤ p, ∇p+1M(φ∗) 6= 0,

then (4.1) converges locally with order p + 1. If M ∈ C1(Φ), ∇M(φ∗) 6= 0,
‖∇M(φ∗)‖ < 1, then the iteration (4.1) is locally linear convergent. In this case,
the speed of convergence is also influenced by the error reduction factor %, i.e.,

(4.2) ‖φ(k+1) − φ∗‖ ≤ %‖φ(k) − φ∗||, k ≥ K0.

In the above framework, the error reduction factor is hence % = ‖∇M(φ∗)‖. Since
this situation is particularly important for the EM algorithm, let us formulate the
above observations.

Proposition 4.1. Let M ∈ C1(Φ) with ∇M(φ∗) 6= 0. If the spectral radius sat-
isfies ρ(∇M(φ∗)) < 1, then (4.1) is locally linear convergent with % = ρ(∇M(φ∗))
(cf.[18]).

Proof. By Taylor’s expansion, we have

φ(k+1) − φ∗ = M(φ(k))−M(φ∗) = ∇M(φ∗)(φ(k) − φ∗) + o(‖φ(k) − φ∗‖).

Hence, for sufficiently large k, ‖φ(k+1)−φ∗‖ ≤ ‖∇M(φ∗)‖ ‖φ(k)−φ∗‖ for any norm.
Choosing an appropriate norm, we get ‖∇M(φ∗)‖ = % so that convergence is proven
in this particular norm. Finally, the claim follows from the equivalence of all norms
on a finite-dimensional space. �
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4.1.2. Quasi-Newton methods. The convergence analysis of Quasi-Newton methods
is well-established and can be found in several text books. One way to establish
corresponding results is to rewrite Quasi-Newton schemes as fixpoint iteration and
to use the statements of the previous section. Usually, full Newton exhibits (at
least) locally quadratic convergence, Quasi-Newton locally linear.

4.1.3. Preconditioned gradient ascent methods. Let us consider a preconditioned
gradient ascent scheme with fixed step size η > 0 and some preconditioner B, i.e.,

(4.3) φ(k+1) = Mη(φ(k)) := φ(k) + η B(φ(k))∇L(φ(k)),

i.e., Mη(φ) := φ+ η B(φ)∇L(φ), ∇Mη(φ) = I + η∇B(φ)∇L(φ) + η B(φ)∇2L(φ).
In general, we expect locally linear convergence so that we have to ensure error
reduction, i.e.,

%η := %η(φ∗) < 1, where %η(φ) := ρ(∇Mη(φ)).

The following statement shows the optimal choice of the step size η.

Proposition 4.2. Let L ∈ C2(Φ), φ∗ ∈ Φ be a nondegenerate maximal point of L
and H := ∇2L(φ∗) the Hessian of L at φ∗. Moreover, let B ∈ C1(Φ) be s.p.d. on Φ.
Then, the preconditioned gradient ascent method (4.3) is locally linear convergent
with optimal step size ηopt and corresponding optimal error reduction %opt given by

(4.4) ηopt =
2

|r|+ |R|
, %opt =

κ− 1

κ+ 1
,

where r := λmin(B(φ∗)H), R := λmax(B(φ∗)H) are minimal and maximal eigen-

values of B(φ∗)H, respectively, and κ := |r|
|R| , which corresponds to the condition

number κ2(B(φ∗)H) provided that the product B(φ∗)H is normal.

Proof. Since H is symmetric negative definite and B(φ) symmetric positive definite
by assumption, the eigenvalues of the product B(φ∗)H are all real and negative,
so that −∞ < r < R < 0 (see Remark 4.3 below). Since ∇L(φ∗) = 0, we have
∇Mη(φ∗) = I + η B(φ∗)∇2L(φ∗). The spectral radius of ∇Mη(φ∗) is hence given
by %η = max{|1 + ηr|, |1 + ηR|}. It is readily seen that 0 < η < 2

|r| =: η∞ ensures

%η < 1. It is also readily seen that

%η = (1− η|R|)χ(0,ηopt) + (η|r| − 1)χ[ηopt,η∞)

is convex and piecewise linear so that it takes its minimum at ηopt given by 1 −
ηopt|R| = ηopt|r| − 1, which shows the first formula in (4.4). Finally,

%opt = %ηopt
= 1− ηopt|R| =

|r| − |R|
|r|+ |R|

=
κ− 1

κ+ 1
,

since κ = |r|
|R| . �

Remark 4.3. The product of two symmetric positive definite matrices A,B ∈ Rn×n
has only real and positive eigenvalues.

Proof. Since A is s.p.d., its inverse A−1 is also s.p.d. Hence, for the Cholesky
decomposition A−1 = LLT , the matrix L is lower triangular with strictly positive
diagonal entries. Thus, A = L−TL−1. Similarly, B = RRT , where R is also a lower
triangular matrix with strictly positive diagonal entries.

Note, that AB and L−1BL−T have the same eigenvalues, which can be seen as
follows: Let v be an eigenvector of AB with eigenvalue λ, then LT v is an eigenvector
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of L−1BL−T with eigenvalue λ: (L−1BL−T )(LT v) = L−1Bv = LTL−TL−1Bv =
LTABv = λLT v.

Since B is s.p.d., also L−1BL−T is s.p.d., since (L−1BL−T )T = L−1BTL−T =
L−1BL−T and thus for all x 6= 0

xTL−1BL−Tx = xTL−1RRTL−Tx = (RTL−Tx)T (RTL−Tx) = ‖RTL−Tx‖2 > 0.

The eigenvalues of L−1BL−T are hence all real and positive just as those of AB. �

Remark 4.4.

(a) The above convergence statements rely on the optimal step size choice in (4.4)
and are only true in this case.

(b) One expects improvements if the step size is adapted in each iteration which
corresponds to an exact line search. In this case, all convergence-statements
concerning steepest descent methods apply.

(c) Proposition 4.2 sets the framework for numerical comparisons of different meth-
ods by computing eigenvalues of B(φ∗)H for different choices of B — as
long as φ∗ is known, of course.

4.2. The EM algorithm. We conclude this section with some remarks concerning
the convergence of the EM algorithm in (3.1, 3.2). In the framework of Theorem
3.3, we can interpret the EM algorithm as a Quasi-Newton method. This means
by Proposition 4.1, that (3.1, 3.2) converges at least locally linear. If P (φ) =
−∇2L(φ)−1 (i.e. the Hessian is used), EM coincides with Newton’s method being
at least locally quadratical convergent. Moreover, the experiments for Gaussian
mixture densities in [28] as well as our analysis and experiments for the tracking
context in Sections 5.2 and 5.3 below show that the multiplication of ∇2L with P
in (3.5) significantly reduces the condition number. In the special cases considered,
this makes the EM algorithm similar to a superlinear method. For details on
preconditioners for gradient descent methods see [23].

5. The PHMT tracking model

In this section, we describe the Probabilistic Multi-Hypothesis Tracking (PMHT)
and apply our previous results to the EM algorithm for the PMHT problem. PMHT
is a data-association/tracking approach proposed in [25, 26]. In the literature,
PMHT is often understood as a model that is always solved by means of the EM
algorithm. We rather view PMHT just as a stochastic model that can be solved
with any appropriate numerical scheme. We will first describe the PMHT model
and then use our above results to analyze the performance of EM for PMHT.

5.1. The PMHT model. We start by reviewing the PMHT model. We will
mostly employ the notation used in the PMHT literature, but identify later the
properties with our notation used in Section 2.

Assume that we are aiming at tracking M ∈ N objects over T time steps, t =
1, . . . , T , given their state distribution at the initial time t = 0. The state of
each object can be described by an nX -dimensional vector, nX ∈ N. All state
information is collected in a vector

X := (X0, . . . , XT ), Xt := (xt1, . . . , x
t
M ), xtm ∈ X ⊂ RnX ,
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for 0 ≤ t ≤ T , 1 ≤ m ≤ M , where X ⊂ RnX is the compact data space for one
object. The corresponding complete state space reads

X :=
T

×
t=0

M

×
m=1

X = X (T+1)M ⊂ RNX , NX := (T + 1) ·M · nX .

The complete state information is neither known nor observable and thus needs to
be estimated.

The observed data is a measurement scan of the form

Z := (Z1, . . . , ZT ), Zt := (zt1, . . . , z
t
nt), ztr ∈ O ⊂ RnZ ,

for 1 ≤ t ≤ T , 1 ≤ r ≤ nt. Note, that the number nt of observations (measure-
ments) at time t may differ from the number M of targets. Moreover, the measure-
ment dimension nZ may also differ from the state dimension nX and O ⊂ RnZ is
the compact observation window. The measurement space is then given as

Z :=
T

×
t=1

nt×
r=1

O = ONT ⊂ RNZ , NT :=

T∑
t=1

nt, NZ := NT · nZ .

The connection between the observed data and the state is given by the assignment
which consists of two parts, namely the assignment probabilities and the assignment
of given observations. The assignment probabilities read

Π := (Π1, . . . ,ΠT ), Πt := (πt1, . . . , π
t
M ), πtm ∈ [0, 1],

where πtm denotes the (a priori) probability that a measurement at time t is asso-
ciated to target m. The assignment probability space is

� :=
T

×
t=1

M

×
m=1

[0, 1] = [0, 1]TM , NΠ := T ·M.

Finally, the assignment of given observations read

K := (K1, . . . ,KT ), Kt := (kt1, . . . , k
t
nt), ktr ∈ {1, . . . ,M},

where ktr = m means that the measurement ztr corresponds to object m, 1 ≤ m ≤
M , 1 ≤ r ≤ nt, 1 ≤ t ≤ T . The assignment space is then

K :=
T

×
t=1

{1, . . . ,M}nt , NK := NT .

Let us now interpret these four quantities in terms of our notation introduced in
Section 2. Of course, X contains all information that is relevant for tracking, so that
this could be interpreted as the complete data. However, since we are aiming at
determining an ML estimate for X, it makes more sense to view X as a parameter.
Moreover, the assignment probabilities Π obviously influence the Likelihood. Thus,
often the couple (X,Π) is interpreted as parameter. For simplicity, we will assume
that a model for Π is available, so that X is the parameter. The observed data
is obviously Z and the missing data is the assignment K. If Z and K are known,
we would be able to reconstruct the full data, so that (Z,K) is the full data. In
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summary, we have

φ ≡ X ∈ Φ ≡ X,
x ≡ (Z,K) ∈ D ≡ Z× K, X : Ω→ D,m = NX ,

y ≡ Z ∈ O ≡ Z, Y : Ω→ O, n = NZ ,

z ≡ K ∈ M ≡ K,
`(Z,K) = Z, `−1(Z) = {(Z,K) ∈ D : K ∈ K}.

We can already remark here, that for M > 0 and any observation batch Z with
NT > 0 the set `−1(Z) has positive counting measure. Thus, Assumption B is
met. The restrictions M > 0 and NT > 0 are without relevance in practice since a
multi-target tracking problem without measurements or tracks is irrelevant.

Next, we describe the PMHT model for the pdf of the random variables Z : Ω 3
ω 7→ Z = Z(ω), K : Ω 3 ω 7→ K = K(ω) ((Z,K) corresponding to X in Section 2),
namely (note that we omit the superscript indices for convenience)

fXφ (x) ≡ fX(Z,K)

=

{
M∏
ν=1

ϕ0
ν(x0

ν)

}
T∏
t=1

{[
M∏
s=1

ϕts(x
t
s|xt−1

s )

]
nt∏
r=1

[
πtm ζtm(ztr|xtm)

∣∣
m=ktr

]}
,

(5.1)

where the following quantities are given by the specific chosen movement, measure
and initial model (see Section 5.3 below):

• ϕ0
ν denotes the a priori pdf for the initial state of target ν,

• ϕts(x|x̃), 1 ≤ t ≤ T , denotes the transition density of target s at time t to move
from x̃ ∈ X to x ∈ X ,

• ζts(z|x) is the measurement pdf that z ∈ O at time t is originated from object s
with state x ∈ X .
For details on the properties of fX(Z,K) and its practical meaning, we refer to

[24, 26]. We shortly note, however, that its domain D ≡ Z × K is compact as the
observation space O is compact and K is finite. Hence, Assumption A and C hold
true for fX(Z,K) whenever they hold true for all individual initial state, transition
and measurement densities. This is e.g. the case for a linear Gaussian tracking
model, where the individual densities are assumed to be non-degenerated Gaussian
pdf’s which are restricted to the compact spaces X ⊂ RnX and O ⊂ RnZ , resp.,
and normalized such that their integrals over X or O, resp., are unity.

Next, we get

gYφ (y) ≡ gX(Z) =

∫
`−1(Z)

fX(Z,K) d(Z,K) =
∑
K∈K

fX(Z,K)

=

{
M∏
ν=1

ϕ0
ν(x0

ν)

}
T∏
t=1

{[
M∏
s=1

ϕts(x
t
s|xt−1

s )

]
nt∏
r=1

M∑
m=1

πtm ζtm(ztr|xtm)

}
.
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Finally,

h
X|Y
φ (x|y) ≡ hX(Z,K|Z) =

fX(Z,K)

gX(Z)

=

T∏
t=1

nt∏
r=1

πtktr
ζtktr

(ztr|xtktr )∑M
m=1 π

t
m ζ

t
m(ztr|xtm)

=

T∏
t=1

nt∏
r=1

wtktr,r,

where the weights

(5.2) wts,r :=
πts ζ

t
s(z

t
r|xts)∑M

m=1 π
t
mζ

t
m(ztr|xtm)

∈ [0, 1]

can be interpreted as the a posteriori probabilities that a measurement ztr is assigned
to the target s conditioned on all measurements and target states, i.e.,

(5.3) wts,r = P(ktr(ω) = s|Z,X).

Here ktr(ω) denotes the corresponding component of the random variable K : Ω→
K. The log-Likelihood function which shall be optimized with respect to X is then
given by

(5.4) L(X) ≡ L(φ) = log gYφ (y)

=

{
M∑
ν=1

log
(
ϕ0
ν(x0

ν)
)}

+

T∑
t=1

{[
M∑
s=1

log
(
ϕts(x

t
s|xt−1

s )
)]

+

nt∑
r=1

[
log

(
M∑
m=1

πtm ζtm(ztr|xtm)

)]}
.

Remark 5.1. If we would consider the general case of unknown assignment proba-
bilities Π and thus a parameter (X,Π), we would get additional constraints, namely

0 ≤ πts ≤ 1,

M∑
s=1

πts = 1.

Thus, this would lead to a constraint optimization problem. In order to avoid such
constraints, one could e.g. consider a reparameterization with the “softmax” func-

tion πts = exp(γts)
(∑M

m=1 exp(γtm)
)−1

with parameters γtm ∈ R.
As already mentioned above, we consider the case of a given Π. One major

reason for this is the fact that this setting allows for a comparison of the EM
algorithm with a standard Newton’s method. We will come to that point later.

Next, we develop expressions for Q(X, X̃) and H(X, X̃) defined in (2.5) and
(2.8), respectively, for the specific case of PMHT. First, we obtain

Q(X, X̃) =

∫
`−1(Z)

(
log fX(Z,K)

)
hX̃(Z,K|Z) d(Z,K)

=
∑
K∈K

(
log fX(Z,K)

)
hX̃(Z,K|Z).

As hX̃(Z,K|Z) is a probability measure for the discrete random variable K, we

have
∑

K∈K hX̃(Z,K|Z) = 1. By setting the weights in (5.2) and (5.3) for X̃ as
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w̃ts,r := P(ktr(ω) = s|Z, X̃), we obtain

(5.5)
∑

K∈Kts,r

hX̃(Z,K|Z) = P(ktr(ω) = s|Z, X̃) = w̃ts,r,

where Kts,r := {K ∈ K : ktr = s}. Using these identities we arrive at

(5.6) Q(X, X̃) =

T∑
t=1

QΠt +

M∑
s=1

QXs ,

where QΠt :=
∑nt
r=1

∑M
s=1w̃

t
s,rlog πts and QXs :=log(ϕ0

s(x
0
s))+

∑T
t=1{log(ϕts(x

t
s|xt−1

s ))

+
∑nt
r=1 w

t
s,r log(ζts(z

t
r|xts))}. For details on the derivation of (5.6) see [26]. As QΠt

is independent of X and QXs only depends on Xs, the maximization problem in
the M-step decouples into M independent maximization problems for each target

(5.7) X̂s = arg max
Xs

QXs , for s = 1, . . . ,M.

The ML estimate X̂s can hence be obtained from the systems of equations d
dXs

QXs
= 0. For some tracking models, the optimization problem (5.7) can even be solved
analytically. As an example, for a linear Gaussian tracking model the solution is
given by the so-called RTS formulas [1, 19] employed with a synthetic measurement
(see [26]).

Next, we obtain

H(X, X̃) =

∫
`−1(Z)

(
log hX(Z,K)

)
hX̃(Z,K|Z) d(Z,K)

=
∑
K∈K

(
log hX(Z,K)

)
hX̃(Z,K|Z)

=
∑
K∈K

( T∑
t=1

nt∑
r=1

log(wtktr,r)
)
hX̃(Z,K|Z).

Similar to the derivation of Q in [26], we rearrange the sum over K ∈ K as follows

H(X, X̃) =

T∑
t=1

nt∑
r=1

∑
K∈K

log(wtktr,r)hX̃(Z,K|Z)

=

T∑
t=1

nt∑
r=1

M∑
s=1

log(wts,r)
∑

K∈Kts,r

hX̃(Z,K|Z),

so that using the identity (5.5) once more we obtain

(5.8) H(X, X̃) =

M∑
s=1

T∑
t=1

nt∑
r=1

w̃ts,r log(wts,r).

Now, we are going to determine the derivatives. Recall the above notation

Proposition 5.2. (a) If ζts(z|·) ∈ C1(X ), then ∂
∂x0
s
H(X, X̃) = 0 and for t > 0

we have ∂
∂xts

H(X, X̃) =
∑nt
r=1

{(
−wts,r + w̃ts,r

)
· ∂
∂xts

log (ζts (ztr|xts))
}

.
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(b) If ζts(z|·) ∈ C2(X ), then

D20H(X, X̃) =


H1,1 H1,2 · · · H1,M

H2,1 H2,2 · · · H2,M

...
...

. . .
...

HM,1 HM,2 · · · HM,M

 ,(5.9)

with Hs,m = diag(Hs,m;1, . . . ,Hs,m;T ), where Hs,m;0 = 0nx×nx and Hs,m;t,
for t = 1, . . . , T , are (nx × nx) - matrices given by

(5.10) Hs,m;t =

nt∑
r=1

{
− wts,r

(
δs,m − wtm,r

)
·
[
∂

∂xts
log
(
ζts
(
ztr|xts

))]

×
[

∂

∂xtm
log
(
ζtm
(
ztr|xtm

))]T
+ δs,m · (w̃ts,r − wts,r) ·

∂2

∂xts ∂x
t
s

log
(
ζts
(
ztr|xts

))}
.

Proof. (a) Obviously, we have D10H(X, X̃) =
∑M
s=1

∑T
t=1

∑nt
r=1 w̃

t
s,r

d
dX log

(
wts,r

)
and

∂

∂xt
′
s′

log
(
wts,r

)
=

∂

∂xt
′
s′

log

(
πts ζ

t
s (ztr|xts)∑M

m=1 π
t
m ζtm (ztr|xtm)

)
.(5.11)

Since wts,r only depends on the values of xts′ for s′ = 1, . . . ,M , all partial derivatives
∂

∂xt
′
s′

log
(
wts,r

)
with t′ = 0 or t′ 6= t vanish. For the partial derivatives with t′ = t

we have to distinguish between the cases s′ = s and s′ 6= s, which is done by means
of the Kronecker delta δs′,s:

∂

∂xts′
log
(
wts,r

)
=

=
1

wts,r

δs′,s · πts
(

∂
∂xts

ζts (ztr|xts)
)
·
(∑M

m=1 π
t
m ζtm (ztr|xtm)

)
(∑M

m=1 π
t
m ζtm (ztr|xtm)

)2

−
πts ζ

t
s (ztr|xts) · πts′

(
∂

∂xt
s′
ζts′ (z

t
r|xts′)

)
(∑M

m=1 π
t
m ζtm (ztr|xtm)

)2


=
(
δs′,s − wts′,r

)
· ∂

∂xts′
log
(
ζts′
(
ztr|xts′

))
.

This results in the following expression for t > 0:

∂

∂xts′
H(X, X̃) =

M∑
s=1

nt∑
r=1

[
w̃ts,r

(
δs′s − wts′,r

)
· ∂

∂xts′
log
(
ζts′
(
ztr|xts′

))]

=

nt∑
r=1

{
∂

∂xts′
log
(
ζts′
(
ztr|xts′

)) [
−wts′,r

M∑
s=1

w̃ts,r + w̃ts′,r

]}

=

nt∑
r=1

{(
−wts′,r + w̃ts′,r

)
· ∂

∂xts′
log
(
ζts′
(
ztr|xts′

))}
,(5.12)

since
∑M
s=1 w̃

t
s,r = 1. For t = 0 holds ∂

∂x0
s′
H(X, X̃) = 0.
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(b) Again, all second order partial derivatives with t′ = 0 or t′ 6= t vanish. Next,

∂2

∂xts ∂x
t
s′
H(X, X̃) =

(
nt∑
r=1

∂

∂xts

{(
−wts′,r + w̃ts′,r

)
·
[
∂

∂xts′
log
(
ζts′
(
ztr|xts′

))]})T

=

nt∑
r=1

{
− ∂

∂xts
wts′,r ·

[
∂

∂xts′
log
(
ζts′
(
ztr|xts′

))]T
+
(
−wts′,r + w̃ts′,r

)
· ∂2

∂xts ∂x
t
s′

log
(
ζts′
(
ztr|xts′

))}

=

nt∑
r=1

{
−wts,r

(
δs,s′ − wts′,r

)
·
[
∂

∂xts
log
(
ζts
(
ztr|xts

))]

×
[
∂

∂xts′
log
(
ζts′
(
ztr|xts′

))]T
+ δss′ · (w̃ts,r − wts,r)

· ∂2

∂xts ∂x
t
s

log
(
ζts
(
ztr|xts

))}
.

(5.13)

This proves our claim. �

5.2. Convergence analysis. Now, we investigate the convergence of the EM al-
gorithm for the PMHT problem in a specific tracking scenario. It will turn out that
EM converges fast, if the observed targets are ‘well separated’, whereas the conver-
gence of gradient ascent might be rather slow. This corresponds to observations in
[28] for the parameter estimation of Gaussian mixtures.

As we already remarked before, Assumption B is always met in the PMHT
context and the Assumptions A and C hold true whenever they hold true for the
individual initial, transition and measurement densities of a tracking model which
is e.g. the case for the linear Gaussian PMHT. Moreover, we restrict our tracking
model to one where the second assumption of Proposition 3.5 is also met, i.e.
‖(D20Q(X,X))−1‖ <∞. Hence, the EM algorithm reads in the PMHT context

(5.14) X(k+1) = X(k) + ηP (X(k))∇L(X(k)) + o(‖X(k+1) −X(k)‖),

where P (X(k)) = −
(
ηD20Q(X(k),X(k))

)−1

. Using a linear Gaussian motion and

measurement model for PMHT, the assumptions of Theorem 3.4 are met and (5.14)
is exact:

X(k+1) = X(k) + ηP (X(k))∇L(X(k)).

From (3.15), we know that P (X∗) = (ηIfull(X
∗))−1 is s.p.d. and we can apply

the convergence analysis of Section 4. Thus, we consider the ratio of biggest and
smallest eigenvalues of −P (X∗) ∇2L(X∗) in order to investigate the convergence
speed. Since we know by Lemma 2.7 2.7 that
(5.15)

P (X∗) = −η−1
(
D20Q(X∗,X∗)

)−1
= −η−1

(
∇2L(X∗) +D20H(X∗,X∗)

)−1

,

we will take a closer look at D20H(X∗,X∗) for PMHT, see Proposition 5.2 (b).

First of all, we note that since we have X = X̃ ≡ X∗, the second term of Hs,m;t in
(5.10) vanishes as w̃ts,r = wts,r ≡ wt∗s,r. Furthermore, we consider a tracking scenario
with M ‘well separated’ targets and without false alarms, i.e. measurements that
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are not target originated. Note, that to some extend, the notion ‘well separated’ is
somewhat vague since it depends on the tracking model, the measurement model
and an appropriate distance measure. We will report a quantitative investigation
in Section 5.3 below. In the specified situation, we can assume that each obtained
measurement can easily be assigned to one particular target. Thus, since the as-
signment weight wt∗s,r is the a posteriori probability of assigning observation r of
scan t to target s, we can assume that for every index combination (r, t) there exists
exactly one index s such that wt∗s,r ≈ 1 and for all other indices m 6= s, wt∗m,r ≈ 0.

Consequently, the products −wt∗s,r
(
1− wt∗s,r

)
and −wt∗s,rwt∗m,r, for m 6= s, are both

approximately zero and the Hessian D20H(X∗,X∗) is approximately a zero matrix.
This, in turn, leads to P (X∗) being approximately equal to the negative inverse
of the Hessian of the log-Likelihood multiplied by η−1 (cf. (5.15)). The product
P (X∗)∇2L(X∗) is thus approximately equal to −η−1 times the identity matrix and

λmax

(
−P (X∗)∇2L(X∗)

)
λmin (−P (X∗)∇2L(X∗))

≈
λmax

(
η−1I

)
λmin (η−1I)

= 1.(5.16)

The first ratio being close to one implies superlinear convergence if the step size
of each iteration is chosen in an optimal way corresponding to ηopt of (4.4). Yet,
since

ηopt =
2

λmin (−P (X∗)∇2L(X∗)) + λmax (−P (X∗)∇2L(X∗))
(5.17)

≈ 2

λmin (η−1I) + λmax (η−1I)
= η

for the described tracking situation, the step size of the EM algorithm is close to
the optimal choice. Thus, the EM algorithm resembles Newton’s method for such
a scenario and possesses locally quadratic convergence.

For gradient ascent on contrast, we have shown that the convergence speed
depends on the condition number of −∇2L(X∗) which can be pretty large, resulting
in slow convergence even for unambiguous situations of ‘well separated’ targets.

5.3. Numerical Experiments. Finally, we want to quantify our above analysis by
some numerical experiments. In order to do so, we consider the number of iterations
until convergence for a tracking scenario of several objects moving parallel to each
other with a fixed distance and the same velocity. The distance varies from 100m
to 1 km in order to quantify the notion of ‘well separated targets’. The targets
move with a constant speed of v0 = 200 m/s and the time period between two
consecutive scans is set to ∆t = 2 s. For the filter, we assume a linear Gaussian
motion and measurement model:

xt+1
s = F ts x

t
s + vts, ztr = Ht

s x
t
s + wts,

where the discrete target states consist of two-dimensional Cartesian position data,
(x, y), and velocity data, (ẋ, ẏ). The elements of a target’s state are ordered as
xts = (x, ẋ, y, ẏ)T ∈ Rnx with nx = 4. The measurements are position-only, i.e.
ztr ∈ Rnz with nz = 2. The state transition matrices, F ts , and the measurement
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matrices, Ht
s, are given as

(5.18) F ts ≡ F =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

 and Ht
s ≡ H =

(
1 0 0 0
0 0 1 0

)
.

In our model, vts and wts are mutually independent zero-mean, white Gaussian
process and measurement noise, respectively, with covariances Qts and Rts. The
process noise vts is assumed to reflect white noise acceleration. The covariance
matrices Qts are thus given by [2]

(5.19) Qts ≡ Q = q̃ ·


∆t3

3
∆t2

2 0 0
∆t2

2 ∆t 0 0

0 0 ∆t3

3
∆t2

2

0 0 ∆t2

2 ∆t

 .

The factor q̃ is due to the process noise intensity and often assumed to be a tuning
parameter, [4]. The measurement covariance matrices are chosen to be

(5.20) Rts ≡ R =

(
σ2
x

1
2σxσy

1
2σxσy σ2

y

)
.

In our simulations we use σx = 30 m, σy = 100 m and q̃ = 0.5 sg2, where g ≈
9.81m/s2 is the value of the gravitational acceleration. This model yields

ϕs(x
t+1
s |xts) = N (xt+1

s ;F tsx
t
s, Q

t
s), ζts(z

t
r|xts) = N (ztr;H

t
sx
t
s, R

t
s),(5.21)

where N (x;µ,Σ) is the Gaussian density in variable x with mean µ and covariance
Σ. Furthermore, we assume a Gaussian distribution for the initial target states
which yields ϕ0

s(x
0
s) = N (x0

s; x̄0s, Σ̄0s). For a random (but realistic) initialization of
{x̄0s, Σ̄0s}, simulated measurements of four data scans are used. The measurements
of the first scan are employed for a one-point initialization [3, 16]. The correctly
assigned simulated measurements of the next three scans are then used to perform
Kalman updates [11] to improve track quality. The state and covariance estimates
resulting from this procedure constitute the initial track estimates.

In our numerical experiments we process a measurement batch of length T = 3.
We hence simulate measurements for another three data scans. The measurements
in each scan are generated from the true target states of M = 4 targets using the
above given measurement model together with a detection probability of pD = 0.9.
False alarms are not assumed to be present. The values of the prior assignment
probabilities are set to πts ≡ 1

M for all targets s = 1, . . . ,M .
The iterations of the algorithm are stopped if either the stopping criterion of [27]

averaged over all targets is less than a given tolerance ε1:

(5.22)
1

TM

M∑
s=1

T∑
t=1

(xts
(i) − xts

(i−1)
)T (Qts)

−1(xts
(i) − xts

(i−1)
) < ε1,

or if the Euclidean norm of the gradient of the log-Likelihood at the current iterate
falls below a given threshold ε2:

(5.23) ‖∇L(X(i))‖2 < ε2.

The values of ε1 and ε2 are chosen as 10−5 and 10−2, respectively.
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For gradient ascent or Newton’s method, the gradient has to be computed any-
way. A check of its magnitude is important to avoid numerical instabilities. In our
example, the gradient can also be easily obtained as a by-product of the EM iter-
ation. A check of the second stopping criterion hence does not produce extra cost
but might recognize convergence at an early stage avoiding superfluous iterations.

For the evaluation of the number of iterations we simulate data for 100 Monte-
Carlo (MC) runs for each scenario with a different target distance. The input data
are then processed by (a) the standard PMHT algorithm using the EM algorithm,
(b) by a hybrid Newton-EM method and (c) by a conjugate-gradient ascent algo-
rithm. For Newton’s method and the conjugate-gradient ascent algorithm, a line
search is performed in order to find a step size that ensures an increase in the log-
Likelihood. The EM step is known to always increase the Likelihood. For stability
reasons, Newton’s method is started with two iterations of the EM algorithm and
switches to an EM step whenever the Hessian is not negative definite. That is why
we call it Newton-EM method. A combination of Newton’s method with gradi-
ent ascent was also investigated, but showed a desperate slow convergence due to
frequent switches to gradient ascent at the beginning.
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Figure 5.1. Mean iteration number as a function of target distances.

In Figure 5.1, the results of the described simulations are shown. The mean
iteration number of each of the above mentioned algorithms is plotted as a func-
tion of target distances. In the left plot, it becomes evident that the number of
iterations of conjugate-gradient ascent algorithm is by far larger than for the other
two algorithms even for ‘well separated’ targets. For a better comparison of the
EM algorithm with Newton’s method we show an excerpt of these two methods in
the right plot. For large target distances, the required iteration numbers of both
methods is small and nearly the same. With decreasing distance the number of
iterations increases for both methods and a larger increase is observed for the EM
algorithm as compared with Newton’s method.

In Figures 5.2 and 5.3, two MC runs are compared in more detail. The first
one is a simulation with target distance 0.3 km and the second one with 0.6 km.
The plots in the upper row of both figures illustrate the learning curves and the
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Figure 5.2. Single MC run with target distance 0.3 km.
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Figure 5.3. Single MC run with target distance 0.6 km.
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convergence of the estimated parameter. For the convergence plot the parameter
estimate of the last iteration of each algorithm is used as reference value for X∗.

In the lower row on the left, we examine the eigenvalue ratios ofB(X(k))∇2L(X(k))
at the iteration points of the EM algorithm. In that product, B(X(k)) corresponds
to the preconditioner of an preconditioned gradient ascent method of the form
(4.3). For Newton’s method, the preconditioner B corresponds to the inverse Hes-
sian of L. The product thus corresponds to the identity matrix so that the eigen-
value ratio always equals 1. For gradient ascent there exists no preconditioner,
i.e. B(X(k)) ≡ I. We thus analyze the eigenvalues of the Hessian of L. Finally,
for the EM algorithm it was shown, that under the assumptions of Theorem 3.4

we have B(X(k)) =
[
−ηD20Q(X(k),X(k))

]−1
. In our example, the assumptions of

Theorem 3.4 are met. It can be seen in Proposition 4.2 that the closer this eigen-
value ratio gets to 1 for a given algorithm, the smaller is the error reduction factor
which should yield faster local convergence. Our numerical examples agree with
that. The large eigenvalue ratios of the gradient ascent algorithm correspond to
extremely slow convergence of that algorithm. The values of the eigenvalue ratio of
the EM algorithm on the other hand come close to 1 and the algorithm is observed
to converge fast.

The plots in the lower right corners of Figure 5.2 and 5.3, respectively, visualize
the tracking results. The a priori target state predictions are shown as red-colored
crosses together with their also red-colored 90% confidence ellipses and the black-
colored innovation covariance ellipses. The black stars are the simulated measure-
ments. The tracking results of the three analyzed algorithms are plotted in green,
blue and cyan, respectively. As all algorithms converge to the same maximum,
their tracking results coincide. Note that for any of the considered algorithms (as
for most optimization algorithms) convergence to a global maximum is not guaran-
teed. Yet, in the 1000 MC runs that we performed for the generation of Figure 5.1,
the maxima found by PMHT and Newton’s method differed only once.

The results for the second tracking scenario depict the truth of parallel moving
objects quite well whereas the tracking results of the first scenario have problems
to match reality. This is however no problem of the employed algorithm but rather
due to an erroneous model or insufficient data.

5.4. Discussion. Even for unambiguous situations of ‘well separated’ targets, ex-
tremely slow convergence has been observed for the conjugate-gradient method.
This disqualifies gradient ascent for practical appliance.

Comparing the EM algorithm with Newton’s method by only looking at the
number of iterations, Newton’s method converges faster. Yet, the computational
costs of each iteration are higher compared to those of the EM algorithm due to
the calculation of the Hessian. Thus, for ‘well separated’ targets the application
of Newton’s method does not pay off since the difference in the total number of
iterations is not significant. For closely spaced targets, however, a switch to New-
ton’s method after some EM iterations might be advisable. Yet, at the beginning
and whenever the Hessian is not negative definite, one should resort to EM as the
global convergence properties of EM are much better. Figure 5.4 compares the
actual CPU times spent by both algorithms for the processing of the above de-
scribed simulation and emphasizes the mentioned strategy. As it is quite often the
case, the actual gain of one of these methods over the other depends on the spe-
cific problem at hand. Furthermore, implementational issues may also influence the
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Figure 5.4. CPU time as a function of target distances.

choice whether to prefer the pure EM algorithm or a hybrid Newton-EM algorithm.
For example, in the PMHT context, a parallelization is easily implemented for the
EM algorithm since the M-step decouples into smaller independent maximization
problems (cf.(5.7)). This is not the case for Newton’s method.

The above derived convergence results might be relevant for automatic tracking
and data association. One might argue that for ‘well separated’ targets without
clutter, data association is usually not a problem and can be performed with much
simpler modeling and algorithms than PMHT. Albeit this might be true, one first
has to automatically recognize that the targets are separated well enough to em-
ploy these simpler methods. If targets come closer, one has to detect the change
and switch back to a more elaborated data association algorithm. This automatic
recognition of the adequate algorithm for the current situation can e.g. be per-
formed using clustering, but requires additional routines and hence involves extra
computational costs. With the above derived convergence result, we know, how-
ever, that if targets are ‘well separated’, the EM algorithm is very fast and does not
produce much overhead. Nothing is lost by still applying it. Furthermore, we can
omit the mentioned routines for analyzing the type of the current tracking situation
and avoid additional computational efforts. The situation is captured quickly and
there is no need to make provisions for recognizing situations where alternative al-
gorithms are sufficient. Yet, it is important to implement a good adaptive stopping
criterion to identify convergence as fast as possible and stop further processing.
Otherwise nothing would be gained.

Appendix A. Interchanging integration and differentiation

In several places we need to exchange differentiation w.r.t. the parameter and
integration over the data. In this appendix, we collect the analytical justification to
do so. We start by reviewing the well-known Leibniz rule adapted to the framework
and notation that we need here (for completeness we include a proof). We will use
the following abbreviation

L1(D)×C1(Φ) := {G : D×Φ→ R : G(·, φ) ∈ L1(D), φ ∈ Φ;G(x, ·) ∈ C1(Φ), x ∈ D}.
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Theorem A.1 (Leibniz integral rule). Let D ⊂ Rn be a bounded domain, Φ ⊂ RP
open and F : D×Φ→ R with F ∈ L1(D)×C1(Φ) such that there exists a function
0 ≤ Ψ ∈ L1(D)∩C(D) satisfying |D01F (x, φ)| ≤ Ψ(x) for all (x, φ) ∈ D×Φ. Then,
D01F (·, φ) ∈ L1(D),

∫
D
F (x, φ) dx ∈ C1(Φ) and

(A.1)
∂

∂φ

∫
D

F (x, φ) dx =

∫
D

∂

∂φ
F (x, φ) dx.

Proof. The proof follows the lines of [12, p. 195]. Let φ(0) ∈ Φ and choose r > 0
such that ‖φ − φ(0)‖ < r for all φ ∈ Φ. Next, choose a sequence (h(k))k∈N ⊂ R,
h(k) ↘ 0 and |h(k)| < r, h(k) 6= 0 for all k ∈ N. Denoting by eν , 1 ≤ ν ≤ P , the
ν-th unit vector in RP , set φ(k) := φ(0) + h(k)eν as well as

ϕ(k)(x) :=
1

h(k)

(
F (x, φ(k))− F (x, φ(0))

)
, x ∈ D.

By assumption, we obtain ϕ(k) ∈ L1(D) and limk→∞ ϕ(k)(x) = ∂
∂φν

F (x, φ(0)),

x ∈ D. By |D01F (x, φ)| ≤ Ψ(x), we conclude that |ϕ(k)(x)| ≤ Ψ(x) for all x ∈ D
and hence ∂

∂φν
F (·, φ(0)) ∈ L1(D) as well as

∂

∂φν

∫
D

F (x, φ) dx = lim
k→∞

1

h(k)

∫
D

(
F (x, φ(k))− F (x, φ(0))

)
dx

= lim
k→∞

∫
D

ϕ(k)(x) dx =

∫
D

∂

∂φν
F (x, φ(0)) dx,

which proves the claim. �

Slightly different versions of the Leibniz integral rule can also be found in [7, 8,
10].

Remark A.2. Assume that a parametric probability density function fXφ satisfies
Assumption A. Then,

∂

∂φ

∫
D̃

fXφ (x) dx =

∫
D̃

∂

∂φ
fXφ (x) dx

for any D̃ ⊂ D. In fact, it can easily be seen that Assumption A implies the validity
of the assumptions in Theorem A.1.

Let us now collect several circumstances allowing the above interchange of dif-
ferentiation w.r.t. parameter and integration w.r.t. data.

Lemma A.3. Let Assumption A hold true. If fXφ (x) ∈ C2(Φ) for all x ∈ D and
∂
∂φf

X
φ ∈ L∞(D), then

∂

∂φ

∫
D

∂

∂φ
fXφ (x) dx =

∫
D

∂2

∂φ2
fXφ (x) dx.

Proof. Again, it is straightforward to verify that the assumptions in Theorem A.1
hold for F (x, φ) = ∂

∂φf
X
φ (x). �

Lemma A.4. Let Assumptions A and B hold. Then,
∫
`−1(y)

∂
∂φh

X|Y
φ (x|y) dx = 0.

Proof. We only have to show that
∫
`−1(y)

∂
∂φh

X|Y
φ (x|y) dx = ∂

∂φ

∫
`−1(y)

h
X|Y
φ (x|y) dx,

since the integral on the right-hand side is unity. First, we have by definition

and assumption that
∫
`−1(y)

|hX|Yφ (x|y)| dx = 1
gYφ (y)

∫
`−1(y)

|fXφ (x)| dx < ∞, since
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gYφ (y) > 0 by Assumption B, `−1(y) has positive measure and fXφ ∈ L1(D) by

assumption. By (2.1), Theorem A.1 and (A2), we have that gYφ (y) ∈ C1(Φ) for all

y ∈ O and the same holds for h
X|Y
φ (x|y), x ∈ `−1(y), as well. Finally ∂

∂φh
X|Y
φ (x) =

∂
∂φ f

X
φ (x)

gYφ (y)
− fXφ (x) ∂

∂φ g
Y
φ (y)

(gYφ (y))2
∈ L∞(`−1(y)) by (A3). �

We note an immediate consequence.

Corollary A.5. In addition to Assumption A and B let fXφ ∈ C2(Φ) for all x ∈ D
and ∂

∂φf
X
φ ∈ L∞(D). Then, ∂

∂φ

∫
`−1(y)

∂
∂φh

X|Y
φ (x) dx =

∫
`−1(y)

∂2

∂φ2h
X|Y
φ (x) dx =

0. �

Lemma A.6. If Assumptions A and B hold, we have

∂

∂φ

∫
`−1(y)

(
log fXφ (x)

)
h
X|Y
ψ (x|y) dx =

∫
`−1(y)

∂
∂φf

X
φ (x)

fXφ (x)
h
X|Y
ψ (x|y) dx

for all fixed ψ ∈ Φ.

Proof. We have to verify the conditions of Theorem A.1 for the specific choice

F (x, φ) =
(

log fXφ (x)
)
h
X|Y
ψ (x|y), ψ ∈ Φ fixed. First,∫

`−1(y)

|F (x, φ)| dx =

∫
`−1(y)

∣∣∣( log fXφ (x)
)fXψ (x)

gYψ (y)

∣∣∣ dx
=

1

gYψ (y)

∫
`−1(y)

|fXψ (x) log fXφ (x)| dx

since gYψ (y) > 0 due to Assumption B. Since fXψ ∈ L∞(D) and log fXφ ∈ L1(`−1(y)),

we obtain that F (·, φ) ∈ L1(D). It is obvious that F (x, ·) ∈ C1(Φ) for x ∈ D by
(A2). Finally,

∂

∂φ
F (x, φ) =

∂
∂φf

X
φ (x)

fXφ (x)

fXψ (x)

gYψ (y)
,

the second term being in L∞(D) and the first one in L1(D) so that ∂
∂φF (·, φ) ∈ L1(D)

for all φ ∈ Φ. �

Corollary A.7. If Assumption C holds, we have

∂

∂φ

∫
`−1(y)

( ∂

∂φ
log fXφ (x)

)
h
X|Y
ψ (x|y) dx =

∫
`−1(y)

∂

∂φ

∂
∂φf

X
φ (x)

fXφ (x)
h
X|Y
ψ (x|y) dx

for all fixed ψ ∈ Φ.

Proof. It suffices to remark that fXφ is bounded away from zero by Remark 2.1 and
that Assumption C ensures sufficient regularity. �

Corollary A.8. Let Assumptions A and B hold, then

∂

∂φ

∫
`−1(y)

(log h
X|Y
φ (x|y))h

X|Y
ψ (x|y) dx =

∫
`−1(y)

∂
∂φh

X|Y
φ (x|y)

h
X|Y
φ (x|y)

h
X|Y
ψ (x|y) dx.
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Proof. We set

F (x, φ) := h
X|Y
ψ (x|y) log h

X|Y
φ (x|y) = h

X|Y
ψ (x|y) (log fXφ (x)− log gYφ (y)).

The first term can be treated by Lemma A.6 and the second one is straightfor-

ward since log gYφ (y) is independent of the integration variable and h
X|Y
ψ (x|y) is

independent of φ. �

Lemma A.9. In addition to the Assumptions A and B let q ∈ L∞(D), then

∂

∂φ

∫
`−1(y)

h
X|Y
φ (x|y) q(x) dx =

∫
`−1(y)

∂

∂φ
h
X|Y
φ (x|y) q(x) dx.

Proof. Consider the function F (x, φ) := h
X|Y
φ (x|y) q(x). By assumption, we have

that h
X|Y
φ ∈ L1(D) so that F ∈ L1(D)× C1(Φ). Next,

∂

∂φ
h
X|Y
φ (x) =

(
∂
∂φf

X
φ (x)

)
gYφ (y)− fXφ (x) ∂

∂φg
Y
φ (y)(

gYφ (y)
)2

=

∂
∂φf

X
φ (x)

gYφ (y)
− fXφ (x)

∂
∂φg

Y
φ (y)(

gYφ (y)
)2

which is an L1(D)-function by our assumptions. Thus, all requirements of Theorem
A.1 hold. �

Lemma A.10. Let Assumption C hold, then

∂

∂φ

∫
`−1(y)

∂
∂φh

X|Y
φ (x|y)

h
X|Y
φ (x|y)

h
X|Y
ψ (x|y) dx =

∫
`−1(y)

∂

∂φ

∂
∂φh

X|Y
φ (x|y)

h
X|Y
φ (x|y)

h
X|Y
ψ (x|y) dx.

Proof. We have to show that F (x, φ) :=
∂
∂φh

X|Y
φ (x|y)

h
X|Y
φ (x|y)

h
X|Y
ψ (x|y) satisfies all require-

ments of Theorem A.1. To this end, note that h
X|Y
φ (x|y) ≥ f−φ · (gYφ (y))−1 > 0 by

Remark 2.1, which implies that F (·, φ) ∈ L1(D) for all φ ∈ Φ. Moreover, it is then
immediate that F ∈ L1(D)× C1(Φ). Next, we have

D01F (x, φ) = h
X|Y
ψ (x|y)

h
X|Y
φ (x|y) ∂2

∂φ2h
X|Y
φ (x|y)−

(
∂
∂φh

X|Y
φ (x|y)

)2(
h
X|Y
φ (x|y)

)2 ,

which is also in L1(D) ∩ L∞(D) by the above arguments. �
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